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Abstract In the present article, we utilize the Conformable Double Laplace Transform Method
(CDLTM) to get the exact solutions of a wide class of Conformable fractional differ-

ential in mathematical physics. The results obtained show that the proposed method

is efficient, reliable and easy to be implemented on related linear problems in applied
mathematics and physics. Moreover, the (CDLTM) has a small computational size

as compared to other methods.
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1. Introduction

Many applications in modern science are modeled by linear fractional partial
differential equations (FPDEs) such as in physics, fluids mechanics, chemistry, bi-
ology, mathematics, due to this, solving (FPDEs) attracted the interest of many
authors[5, 13, 16]. Several definitions of fractional derivatives have been stated to
date, such as Rizez, Riemann-Liouville, Caputo, Hadamard and so on. Two of which
are the most popular ones the Riemann-Liouville and Caputo, inspite of the popu-
larity of these fractional derivatives, they have a lot of unusual properties such as all
the fractional derivatives do not obey chain rule, product and quotient rule of two
functions, these properties lead to some flaws in applications of fractional derivatives
in mathematical physics and engineering. Recently, Khalil et. al in (2014)[9] extends
the familiar limit definition of the derivative of the function and proposed the so-called
Conformable fractional derivative (CFD) which satisfies the basic classical properties
of the derivatives. During the past few years, a great deal of interest appears in
solving (CFPDEs), so several scientists have been implementing the (CFD) in a lot
of applications see [4, 7, 11, 17, 18, 19]. The Laplace transform method [2, 10] is one
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of the most popular method for obtaining the approximate and the exact solutions
of (FDEs), due to that many authors still working with great efforts in developing
and generalizing this transform to be applicable and consistent with the developed
fractional derivatives and integrals. For instance, lately, Abedwljawad in (2015) [1]
proposed the single Conformable Laplace transform (CLT) to be applicable to solve
(FPDEs) in the Conformable fractional derivative sense, this transform has proven to
be a powerful technique to obtain the exact and the approximate solutions of a wide
class of (CFDEs) that played a very important role in different fields of science and
engineering. After the appearance of single (CLT), Ozan özkan and Ali kurt in (2018)
[15] introduced a new generalization of double Laplace transform called conformable
double Laplace transform (CDLT) and they implemented it to solve Conformable
fractional partial heat equation and Conformable fractional partial Telegraph equa-
tion. Recently, there are a very extensive works available on the single (CLT) and
there is a very little work available on the (CDLT). So the aim of this study is to
implement the (CDLTM) to obtain the exact solutions of a class of (CFDEs) that
appears in mathematical physics.

2. Preliminaries

Herein, basic definitions of the conformable fractional derivatives (CFDs) are pre-
sented.

Definition 2.1. [1] The (CFD) of a function Φ : (0,∞)→ < of order ν is defined by:

Dν
xΦ
(
xν/ν

)
= lim
λ→0

Φ
(
xν/ν + λx1−ν

)
− Φ

(
xν/ν

)
λ

, x
ν
/ν > 0, 0 < ν ≤ 1.

Definition 2.2. [17] The (CFPD) of a function Φ
(
xν

ν ,
τβ

β

)
: <×(0,∞)→ < of order

ν is defined by:

Dν
xΦ
(
xν/ν,

τβ
/
β

)
= lim
λ→0

Φ
(
xν/ν + λx1−ν , τ

β/
β

)
− Φ

(
xν/ν,

τβ
/
β

)
λ

,

where, 0 < ν, β ≤ 1, x
ν
/ν,

τβ
/
β > 0.

Definition 2.3. [17] The (CFPD) of a function Φ
(
xν

ν ,
τβ

β

)
: <×(0,∞)→ < of order

β is given by:

Dβ
τΦ
(
xν/ν,

τβ
/
β

)
= lim
γ→0

Φ
(
xν/ν,

τβ
/
β + γτ1−β ,

)
− Φ

(
xν/ν,

τβ
/
β

)
γ

where, 0 < ν, β ≤ 1, x
ν
/ν,

τβ
/
β > 0.

Definition 2.4. Forx,β ∈ C, R(ν) > 0, the Mittag-Leffler formula is given by:

Eν,β (x) =

∞∑
j=0

xj

Γ (νj + β)
.
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Conformable fractional partial derivatives (CFPD) of certain functions:
∀m,n, c,d,λ,ω ∈,we have Dν

x

((
xν/ν

)(
τβ
/
β

))
=
(
τβ
/
β

)
,

Dβ
τ

((
xν/ν

)(
τβ
/
β

))
=
(
xν/ν

)
, Dν

x

((
xν/ν

)n(
τβ
/
β

)m)
= n

(
xν/ν

)n−ν(
τβ
/
β

)m
,

Dβ
τ

((
xν/ν

)n(
τβ
/
β

)m)
= m

(
xν/ν

)r(
τβ
/
β

)m−β
.

Dν
x

ec
(
xν/ν

)
+d

(
τβ/β

) = ce

c

(
xν/ν

)
+d

τβ/β

,

Dβ
τ

ec
(
xν/ν

)
+d

(
τβ/β

) = de

c

(
xν/ν

)
+d

τβ/β

. Dν

x

(
sin
(
c
(
xν/ν

)
+ d
)

sin
(
λ
(
τβ
/
β

)
+ ω

))
= c. cos

(
c
(
xν/ν

)
+ d
)

sin
(
λ
(
τβ
/
β

)
+ ω

)
,

Dβ
τ

(
sin
(
c
(
xν/ν

)
+ d
)

sin
(
λ
(
τβ
/
β

)
+ ω

))
= λ sin

(
c
(
xν/ν

)
+ d
)

cos
(
λ
(
τβ
/
β

)
+ ω

)
. Dρ

x

(
cos
(
c
(
xν/ν

)
+ d
)

cos
(
λ
(
τβ
/
β

)
+ ω

))
= −c. sin

(
c
(
xν/ν

)
+ d
)

sin
(
λ
(
τβ
/
β

)
+ ω

)
,

Dβ
τ

(
cos
(
c
(
xν/ν

)
+ d
)

cos
(
λ
(
τβ
/
β

)
+ ω

))
= −λ cos

(
c
(
xν/ν

)
+ d
)

sin
(
λ
(
τβ
/
β

)
+ ω

)
.

3. Conformable Laplace transforms (CLT)

In this section we present a brief Introduction on (CLT).

Definition 3.1. [8] The (CLT) of a real valued function Φ : [0,∞)→ R is defined by:

Φ̄(p) = Lνx

(
Φ

(
xν

ν

))
=

∫ ∞
0

e−p
xν

ν Φ

(
xν

ν

)
xν−1dx,∀p ∈ C.

Definition 3.2. [15] The (CDLT) of a piecewise continuous function Φ : [0,∞)×[0,∞)→ R
is defined by

Φ̄(p, q) = LνxL
β
τ

(
Φ

(
xν

ν
,
τβ

β

))
=

∫ ∞
0

∫ ∞
0

e
−
(
p x
ν

ν
+q τ

β

β

)
Φ

(
xν

ν
,
τβ

β

)
xν−1τβ−1dxdτ,

where, p, q ∈ C 0 < ν, β ≤ 1.

Theorem 3.3. [15] The (CDLT) of the, conformable partial fractional derivatives ∂nνΦ
∂xnν

,
∂mβϕ

∂τmβ
, of the function Φ is given by:

LνxL
β
τ

(
∂nνΦ

∂xnν

)
= pnΦ̄(p, q)−

n−1∑
i=0

pn−1−iLβτ

(
∂iν

∂xiν
Φ

(
0,
τβ

β

))
,

LνxL
β
τ

(
∂mβΦ

∂τmβ

)
= qmΦ̄(p, q)−

m−1∑
i=0

qm−1−kLνx

(
∂kβ

∂τkβ
ϕ

(
xν

ν
, 0

))
,

Where, n,m ∈ N, 0 < ν, β ≤ 1.
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Theorem 3.4. Let Φ
(
xν

ν
, τ

β

β

)
: R× (0,∞)→ R be a function where

Φ̄(p, q) = LνxL
β
τ

(
Φ
(
xν

ν
, τ

β

β

))
exist, then

LνxL
β
τ

(
Φ

(
xν

ν
,
τβ

β

))
= LxLτ (Φ(x, τ)) ,

where, LxLτ (Φ(x, τ)) =
∫∞

0

∫∞
0
e−px−qτΦ(x, τ)dxdτ .

Theorem 3.5. If Φ̄(p, q) = LνxL
β
τ

(
Φ
(
xν

ν
, τ

β

β

))
exist for p, q > 0, then for,

a, b, r, s ∈ R,we have:

1. LνxL
β
τ (1) = 1

pq
,

2. LνxL
β
τ

((
xν

ν

)r (
τβ

β

)s)
= Γ(r+1)Γ(s+1)

pr+1qs+1 ,

3. LνxL
β
τ

(
e
c
(
xν

ν

)
+d

(
τβ

β

)
Φ
(
xν

ν
, τ

β

β

))
= Φ̄ (p− c, q − d) ,

4. LνxL
β
τ

(
Φ
(
cx

ν

ν
, d τ

β

β

))
= 1

cd
Φ̄
(
p
c
, q
d

)
,

5. LνxL
β
τ

(
cΦ
(
xν

ν
, τ

β

β

)
+ dΨ

(
xν

ν
, τ

β

β

))
= cΦ̄ (p, q) + dΨ̄ (p, q) ,

6. LνxL
β
τ

(
f
(
xν

ν

)
g
(
τβ

β

))
= f̄(p)ḡ(q).

Theorem 3.2: the single (CLT) of
(
xν

ν

)r
Eν,β

(
c
(
xν

ν

)ν)
is given by

Lνx

((
xν

ν

)r−1

Eν,β

(
c

(
xν

ν

)ν))
=

pν−r

pν − c , |c| < |p
ν | .

4. Basic idea of (CDLTM)

This section illustrate the idea of the proposed approach, so we first consider the general
form of a linear (CFPDE) of the form:

n∑
j=0

AjD
jβ
τ Φ

(
xρ

ρ
,
τβ

β

)
+

m∑
i=1

BiD
iν
x Φ

(
xν

ν
,
τβ

β

)
= h

(
xν

ν
,
τβ

β

)
, (4.1)

where, Djβ
τ Φ denotes jβ−th order of CFPDs, 0 < ν ≤ 1, 0 < β ≤ 1, (x,τ) ∈ R2

+, Φ
(
xν

ν
, τ

β

β

)
and h

(
xν

ν
, τ

β

β

)
are given functions, Aj , Bi are constants ∀j, i.

Herein, we consider the initial and the boundary conditions as follows

Djβ
τ Φ

(
xν

ν
, 0

)
= φj

(
xν

ν

)
,

Diν
x Φ

(
0,
τβ

β

)
= ϕi

(
τβ

β

)
, j = 0, 1, 2, ..., n− 1, i = 0, 1, 2, ...,m− 1. (4.2)

Applying the (CDLT) on both sides of the equation (4.1), we get

n∑
j=0

Aj

[
qjΦ̄ (p, q)−

n−1∑
k=0

qn−k−1Lνx

(
Dkβ
τ Φ

(
xν

ν
, 0

))]

+

m∑
i=1

Bi

[
piΦ̄ (p, q)−

m−1∑
s=0

pm−s−1Lβτ

(
Dkβ
τ Φ

(
0,
τβ

β

))]
= h̄(p, q). (4.3)
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Applying single (CLT) to equation (4.2), we get

Lνx

(
Dkβ
τ Φ

(
xν

ν
, 0

))
= φ̄j(p), Lβτ

(
Dkβ
τ Φ

(
0,
τβ

β

))
= ϕ̄j(q). (4.4)

Substituting (4.4) into (4.3), we get

n∑
j=0

Aj

[
qjΦ̄ (p, q)−

n−1∑
k=0

qn−k−1φ̄j(p)

]
+

m∑
i=1

Bi

[
piΦ̄ (p, q)−

m−1∑
s=0

pm−s−1ϕ̄j(q)

]
= h̄(p, q).

Simplifying,

Φ̄ (p, q)

[
n∑
j=0

qjAj +

m∑
i=1

piBi

]
= h̄(p, q) +

n∑
j=0

(
Aj

n−1∑
k=0

qn−k−1φ̄j(p)

)

+

m∑
i=1

(
Bi

m−1∑
s=0

pm−s−1ϕ̄j(q)

)
,

consequently,

Φ̄ (p, q) =
h̄(p, q) +

∑n
j=0

(
Aj
∑n−1
k=0 q

n−k−1φ̄j(p)
)

+
∑m
i=1

(
Bi
∑m−1
s=0 pm−s−1ϕ̄j(q)

)[∑n
j=0 q

jAj +
∑m
i=1 p

iBi
] .

(4.5)

Taking inverse (CDLT) of (4.5), we get

Φ

(
xν

ν
,
τβ

β

)
= L−1

x L−1
τ

(
h̄(p, q) +

∑n
j=0

(
Aj
∑n−1
k=0 q

n−k−1φ̄j(p)
)[∑n

j=0 q
jAj +

∑m
i=1 p

iBi
] (4.6)

+

∑m
i=1

(
Bi
∑m−1
s=0 pm−s−1ϕ̄j(q)

)[∑n
j=0 q

jAj +
∑m
i=1 p

iBi
] )

,

which is the exact solution of linear fractional differential equation (4.1) with respect to the
initial and boundary conditions (4.2).

5. Applications

Example 5.1. Consider the Advection- diffusion equation of (CFPDs)

∂βΦ

∂τβ
− ∂2νΦ

∂x2ν
+
∂νΦ

∂xν
= 0, 0 <ν,β ≤ 1, (5.1)

and the initial and boundary conditions are given by:

Φ

(
xρ

ρ
, 0

)
= e

xν

ν − xν

ν
, Φ

(
0,
τβ

β

)
= 1 +

τβ

β
,
∂ν

∂xν
Φ

(
0,
τβ

β

)
= 0. (5.2)

Applying the (CDLT) to equation (5.1) and single (CLT) to initial and boundary conditions
given in (5.2) we get

qΦ̄ (p, q)− Φ̄ (p, 0)− p2Φ̄ (p, q) + pΦ̄ (0, q) +
∂Φ̄ (0, q)

∂xν
+ pΦ̄ (p, q)− Φ̄ (0, q) = 0,

(5.3)
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substituting,

Φ̄ (p, 0) =
1

p− 1
− 1

p2
, Φ̄ (0, q) = p

(
1

q
+

1

q2

)
,
∂Φ̄ (0, q)

∂xν
= 0.

into equation (5.3) we get(
q − p2 + p

)
Φ̄ (p, q) =

(
1

p− 1
− 1

p2

)
− p

(
1

q
+

1

q2

)
−
(

1

q
+

1

q2

)
.

Consequently,

Φ

(
xν

ν
,
τβ

β

)
= L−1

x L−1
τ


(

1
p−1
− 1

p2

)
− p

(
1
q

+ 1
q2

)
−
(

1
q

+ 1
q2

)
(q − p2 + p)

 , (5.4)

simplifying,

Φ

(
xν

ν
,
τβ

β

)
= L−1

x L−1
τ

[
1

q (p− 1)
− 1

qp2
+

1

q2p

]
= e

xν

ν − xν

ν
+
τβ

β
. (5.5)

When ν = 1, and β = 1, the solution of equation (5.1) becomes

Φ(x, τ) = ex − x+ τ,

which agrees with the solution obtained in [12].

Example 5.2. Consider the following equation of (CFPDs)

∂2βΦ

∂τβ
− ∂2νΦ

∂x2ν
− 2Φ = −2 sin

(
xν

ν

)
sin

(
τβ

β

)
, 0 <ν,β ≤ 1 (5.6)

with respect to the following initial and boundary conditions

Φ
(
xν

ν
, 0
)

= 0, ∂τ

∂τν
Φ
(
xν

ν
, 0
)

= sin
(
xν

ν

)
,

Φ
(

0, τ
β

β

)
= 0, ∂ν

∂xν
Φ
(

0, τ
β

β

)
= sin

(
τβ

β

)
.

(5.7)

The single (CLT) of the initial and boundary conditions (5.7) is given by

Φ̄ (p, 0) = 0, Φ̄ (0, q) = 0,
∂νΦ̄ (0, q)

∂xν
=

1

1 + q2
,
∂βΦ̄ (p, 0)

∂τβ
=

1

1 + p2
.

As explained above in the (CDLTM) in equation (4.6), the solution of equation (5.6) can be
written as

Φ

(
xν

ν
,
τβ

β

)
= L−1

x L−1
τ

[
1

(q2 − p2 − 2)

(
1

1 + p2
− 1

1 + q2
− 2

(1 + q2) (1 + p2)

)]
,

(5.8)

simplifying,

Φ

(
xν

ν
,
τβ

β

)
= L−1

x L−1
τ

[
1

(1 + q2) (1 + p2)

]
= sin

(
xν

ν

)
sin

(
τβ

β

)
. (5.9)

When ν = 1, and β = 1, the solution of equation (5.6) becomes

Φ(x, τ) = sin(x) sin(τ).

Which agrees with the solution obtained in [6].
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Example 5.3. Consider the following equation of CFPDs

∂βΦ

∂τβ
+
∂3νΦ

∂x3ν
+
∂νΦ

∂xν
= 0, 0 <,β ≤ 1 (5.10)

where the initial and boundary conditions are given by

Φ
(
xν

ν
, 0
)

= e−
xν

ν , Φ
(

0, τ
β

β

)
= e

2 τ
β

β , ∂ν

∂xν
Φ
(

0, τ
β

β

)
= −e2 τ

β

β ,

∂2ν

∂x2ν
Φ
(

0, τ
β

β

)
= e

2 τ
β

β .
(5.11)

Substituting the single (CLT) of the conditions (5.11)

Φ̄ (p, 0) =
1

1 + p
, Φ̄ (0, q) =

1

−2 + q
,
∂νΦ̄ (0, q)

∂xν
=

−1

−2 + q
,
∂2νΦ̄ (0, q)

∂x2ν
=

1

−2 + q
,

in equation (4.6), and for n = 1, m = 3, A0 = 0, A1 = 1, B1 = 1, B2 = 0, B3 =
1, and h(x,τ) = 0.
The solution of equation (5.10) can be written as

Φ

(
xν

ν
,
τβ

β

)
= L−1

x L−1
τ

[
1

(q + p3 + p)

(
1

1 + p
+

p2

−2 + q
− p

−2 + q
+

1

−2 + q
+

1

−2 + q

)]
,

(5.12)

simplifying, we get

Φ

(
xν

ν
,
τβ

β

)
= L−1

x L−1
τ

[
1

(−2 + q) (1 + p)

]
= e

2

(
τβ

β

)
−
(
xν

ν

)
. (5.13)

In the case ν = 1 and β = 1, then the exact solutionof equation (5.10) can be written as
Φ(x, τ) = e2τ−x, which coicides with the exact solution given in [6].

Example 5.4. Consider the Euler -Bernoulli equation of CFPDs

∂4νΦ

∂x4ν
+
∂2βΦ

∂τ2β
−
(
xν

ν

)(
τβ

β

)
−
(
τβ

β

)2

= 0. (5.14)

With the following initial and boundary conditions

Φ
(
xν

ν
, 0
)

= 0, , ∂
τ

∂τν
Φ
(
xν

ν
, 0
)

= 1
120

(
xν

ν

)5

,

Φ
(

0, τ
β

β

)
= 1

12

(
τβ

β

)4

, ∂rν

∂xrν
Φ
(

0, τ
β

β

)
= 0, for, r = 1, 2, 3.

(5.15)

As explained above, substituting

Φ̄ (p, 0) = 0,
∂βΦ̄ (p, 0)

∂τβ
=

1

p6
, Φ̄ (0, q) =

2

q5
,
∂rν

∂xrν
Φ̄ (0, q ) = 0,

for, r = 1, 2, 3. m = 4, n = 2, A0 = A1 = 0, B1 = B2 = B3 = 0, B4 = 1,

and h̄(p, q) =
1

(pq)2 +
2

q3p
,

in equation (4.6), we get the solution (5.14)

Φ

(
xν

ν
,
τβ

β

)
= L−1

x L−1
τ

[
1

(p4 + q2)

(
1

p6
+

2p2

q5
+

1

(pq)2 +
2

q3p

)]
, (5.16)
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simplifying, we get

Φ

(
xν

ν
,
τβ

β

)
= L−1

x L−1
τ

[(
1

p6q2
+

2

q5p

)]
=

1

120

(
xν

ν

)5(
τβ

β

)
+

1

12

(
τβ

β

)4

,

(5.17)

when ν = β = 1, we get

Φ(x, τ) =
τx5

120
+
τ4

12
,

which is fully compatible with the exact solution obtained by [6].

Example 5.5. Consider the Telegraph equation of CFPDs

∂2νΦ

∂x2ν
− ∂2βΦ

∂τ2β
− ∂βΦ

∂τβ
− Φ +

(
xν

ν

)2

+

(
τβ

β

)
− 1 = 0. (5.18)

With respect to the initial and boundary conditions

Φ
(
xν

ν
, 0
)

=
(
xν

ν

)2

, ∂
τ

∂τν
Φ
(
xν

ν
, 0
)

= 1,

Φ
(

0, τ
β

β

)
=
(
τβ

β

)
, ∂ν

∂xν
Φ
(

0, τ
β

β

)
= 0.

(5.19)

By applying the (CDLT) to equation (5.18), and the initial and boundary conditions
(5.19)

p2Φ̄ (p, q)− pΦ̄ (0, q)− ∂νΦ̄ (0, q)

∂xν
− q2Φ̄ (p, q) + qΦ̄ (p, 0) +

∂βΦ̄ (p, 0)

∂τβ

− qΦ̄ (p, q) + Φ̄ (p, 0)− Φ̄ (p, q) +
2

qp3
+

2

q2p
− 1

pq
= 0, (5.20)

substituting,

Φ̄ (0, q) =
1

q2
,
∂βΦ̄ (p, 0)

∂τβ
=

1

p
,
∂ν

∂xν
Φ̄ (0, q ) = 0,

Φ̄ (p, 0) =
2

p3
− 2p2−3

p2 − 1
+

2p2−1

p2 − 1
− 2

p
=

2

p3
,

in equation (5.20), we get(
p2 − q2 − q − 1

)
Φ̄ (p, q) =

(
p

q2
− 2q

p3
− 1

p
− 2

p3
− 2

p3q
− 1

pq2
+

1

pq

)
, (5.21)

simplifying, we obtain

Φ̄ (p, q) =

(
2

p3q
+

1

pq2

)
, (5.22)

taking the inverse (CDLT), we get

Φ

(
xν

ν
,
τβ

β

)
= L−1

x L−1
τ

[(
2

p3q
+

1

pq2

)]
=

(
xν

ν

)2

+

(
τβ

β

)
, (5.23)

for ν = β = 1, the exact solution of (5.18) becomes

Φ(x, τ) = x2 + τ,

which is fully compatible with the solution obtained in [3].
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Example 5.6. Consider the Telegraph equation of CFPDs

∂2βΦ

∂τ2β
− ∂2νΦ

∂x2ν
+
∂βΦ

∂τβ
+ Φ = 0, (5.24)

with initial and boundary conditions given as follows

Φ

(
xν

ν
, 0

)
= 0 ,

∂βΦ

∂τβ

(
xν

ν
, 0

)
= Exp

(
xν

ν

)
,

Φ

(
0,
τβ

β

)
=

(
τβ

β

)
E1,2

((
−τβ

β

))
,
∂νΦ

∂xν

(
0,
τβ

β

)
=

(
τβ

β

)
E1,2

((
−τβ

β

))
.

(5.25)

By substituting n = 2,m = 2, A0 = A1 = A2 = 1, B1 = 0, B2 = −1, h = 0, and the single
(CLT) of the initial and boundary conditions

Φ̄ (p, 0) = 0, ,
∂βΦ̄ (p, 0)

∂τβ
=

1

p− 1
, Φ̄ (0, q) =

∂ν

∂xν
Φ̄ (0, q ) =

1

q2 + q
,

in equation (4.6), we have

Φ

(
xν

ν
,
τβ

β

)
= L−1

x L−1
τ

[
1

(q2 − p2 + q + 1)

(
1

p− 1
− 1

q2 + q
− p

q2 + q

)]
,

simplifying,

Φ

(
xν

ν
,
τβ

β

)
= L−1

x L−1
τ

[
1

(p− 1) (q2 + q)

]
=

(
τβ

β

)
e

(
xν

ν

)
E1,2

(
−
(
τβ

β

))
, (5.26)

when ν = β = 1, the exact solution of (5.24) becomes

Φ (x, τ) = τexE1,2 (−τ) , (5.27)

which agrees with the solution obtained in [14].

Example 5.7. Consider the following boundary value problem of CFPDs

∂2νΦ

∂x2ν
− ∂2βΦ

∂τ2β
= sin

(
πxν

ν

)
, 0 <

xν

ν
< 1,

τβ

β
> 0. (5.28)

with initial and boundary conditions given by

Φ

(
xν

ν
, 0+

)
= 0 ,

∂βΦ

∂τβ

(
xν

ν
, 0+

)
= 0, Φ

(
0,
τβ

β

)
= 0, Φ

(
1,
τβ

β

)
= 0. (5.29)

Applying the (CDLT) to equation (5.28) and single (CLT) to initial and boundary con-
ditions given in (5.29) we get

p2Φ̄ (p, q)− pΦ̄ (0, q)− ∂νΦ̄ (0, q)

∂xν
− q2Φ̄ (p, q) + qΦ̄ (p, 0) +

∂βΦ̄ (p, 0)

∂τβ
=

π

q (π2 + p2)
,

(5.30)

substituting,

Φ̄ (p, 0) = 0, Φ̄ (0, q) = 0,
∂βΦ̄ (p, 0)

∂τβ
= 0, (5.31)

in equation (5.30), we get

p2Φ̄ (p, q)− ∂νΦ̄ (0, q)

∂xν
− q2Φ̄ (p, q) =

π

q (π2 + p2)
, (5.32)
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simplifying,

Φ̄ (p, q) =
1

(p2 − q2)

∂νΦ̄ (0, q)

∂xν
+

1

(p2 − q2)

π

q (π2 + p2)
(5.33)

equation (5.33) can be written in the form

Φ̄ (p, q) =
1

(p2 − q2)

[
∂νΦ̄ (0, q)

∂xν
+

π

q (π2 + q2)

]
− 1

(π2 + q2)

π

q (π2 + p2)
, (5.34)

or,

Φ̄ (p, q) =
1

2q

[
1

(p− q) +
1

(p+ q)

] [
∂νΦ̄ (0, q)

∂xν
+

π

q (π2 + q2)

]
− 1

(π2 + q2)

π

q (π2 + p2)
.

(5.35)

Applying the inverse Laplace transform with respect to x, we obtain

Φ̄ (x, q) =
1

2q

[
eq
xν

ν + e−q
xν

ν

] [∂νΦ̄ (0, q)

∂xν
+

π

q (π2 + q2)

]
− 1

q (π2 + q2)
sin

(
πxν

ν

)
, (5.36)

as xν

ν
→ 1, Φ̄ (x, q)→ 0,, we have ∂ν Φ̄(0,q)

∂xν
= −π

q(π2+q2)
.

Thus,

Φ̄ (x, q) = − 1

q (π2 + q2)
sin

(
πxν

ν

)
, (5.37)

applying the inverse Laplace transform with respect to τ , we obtain

Φ

(
xν

ν
,
τβ

β

)
=

1

π2
sin

(
πxν

ν

)[
cos

(
πτβ

β

)
− 1

]
. (5.38)

6. Conclusion

In this article, we have successfully implemented the Conformable Double Laplace trans-
form method (CDLTM) to get the exact solutions of fractional partial differential equations
(FPDEs) involving conformable fractional derivatives (CFD) that arise in different areas of
real life science. All results show that the (CDLTM) is appropriate, efficient, advantageous,
reliable and sufficient to acquire the exact solutions of (CFPDEs). Moreover, as a conse-
quence the calculations involved in (CDLTM) have a small computational size as compared
to other methods.
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