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Abstract The cardiovascular system is an extremely intelligent and dynamic system which
adjusts its performance depending on the individual’s physical and environmental

conditions. Some of these physical and environmental conditions may create slight
disruptions in the cardiovascular system leading to a variety of diseases. Since pre-
vention has always been preferable to treatment, this paper examined the Instan-
taneous Pressure-Volume Relation (IPVR) and also the pressure of the artery root.

Fuzzy mathematics as a powerful tool is used to evaluate and predict the status of
an individual’s blood pressure. The arterial pressure is modeled as a first order fuzzy
differential equation and an analytical solution for this equation is obtained and an
example shows the behavior of the solution. The risk factors using fuzzy rules are

assessed, which help diagnose the status of an individual’s blood pressure. Using the
outcome by drawing the individual’s attention to these risk factors, the individual’s
health is improved. Moreover, in this study adaptive neuro-fuzzy inference system

(ANFIS) models are evaluated to predict the status of an individual’s blood pressure
on the basis of the inputs.
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1. Introduction

The function of the left ventricle (LV) is the result of the complex interaction
between contractility, heart rate. How these factors interact can be understood by
simulation of the relation between pressure and volume of the LV ( [9]). Furthermore,
simulation can support the decision as to what variables and parameters are vital in
the description of the pressure and volume of the LV. This may, for example, be of
use in integrative physiological modeling [19]. There are many models for the instant
pressure-volume relationship in the left ventricle (IPVR)[19]. However, most of these
models have been written in a nonlinear form [19]. It has been shown that the LinFree
linear model can well display IPVR and the model does not need to be nonlinear and
complex. On the other hand, we know that all phenomena, including IPVR, are
dynamic in the real world and change under the influence of various factors such as
genetic, physiological, psychological, social factors, and so on. Now, the question that
arises here is whether the models that have been presented so far can cover these
factors? And can a highly sensitive dynamic system, such as IPVR, be modeled with
definite equations and formulas?

The nature of most of these factors are qualitative, verbal, ambiguous, and im-
precise and fuzzy mathematics is a powerful tool for modeling uncertain problems.
The fuzzy concept was first introduced by Professor Zadeh in [33] which discussed
fuzzy sets and then fuzzy differential equations and fuzzy systems were introduced
[2, 6, 8, 28]. Today, this concept is used in mathematics, engineering, medical engi-
neering, medicine, biotechnology, genetics, etc. However, we know that most of the
physiological phenomena in the body, including the circulatory system, can be well
expressed as differential equations. And since mathematics has always been in the
service of other sciences, we have tried to introduce an improved model for IPVR us-
ing fuzzy differential equations so that the introduced model can be closer to reality
and act dynamically. We will introduce risk factors for hypertension as follows and
use the fuzzy logic to control these factors so that the person is placed in the range
of health (normal blood pressure) and also predict how long it takes for an individual
to contract the disease if no attention is given to controlling these risk factors.

To find the relationship between inputs and outputs of a production process, ar-
tificial intelligence (AI) has drawn more attention to the relationships between input
and output variables by training, and produce results without any prior assumptions
[17]. During the last twenty years, fuzzy if-then rule-based systems have been used to
control problems, while they are now mostly applied in classification tasks [1, 20, 24].
Many methods exist for the automatic generation and learning of the fuzzy if-then
rules from numerical data for pattern classification problems [20]. Zadeh [31] proposed
the concepts of a linguistic statement where it is crucial to see each attribute as a
linguistic value indicated by fuzzy numbers with trapezoidal membership function
[12].

Artificial neural network (ANN) models based on the studies of the human neuron
can be used to overcome the non-linearity problem, analyze biophysical data, model
complex relationships between inputs and outputs, find patterns in data, and capture
the statistical structure in an unknown joint probability distribution between the
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observed variables [17, 32]. ANNs have the potential to be a more practical alternative
to the traditional methods for modeling [7]. In recent years, ANN modeling technique
has been employed to show the robustness of AI versus regression methods. In recent
years, ANN modeling technique has been employed to show the robustness of AI
versus regression methods. Many scholars have discussed the classification of inputs
and their weighting [23] and produced more accurate results. The classifiers can be
improved using rule weighting [32]. The classifiers can improve generating, weighting,
and selecting rules. The total number of fuzzy if-then rules generated by partitioning
each attribute into k fuzzy subsets in a one-dimensional pattern classification is defined
as kn[22]. The adaptive neuro-fuzzy inference system (ANFIS) is a combination of
ANN and fuzzy systems which uses the learning capability of the ANN to derive the
fuzzy if-then rules with appropriate membership functions based on the training pairs,
which in turn leads to an inference [3].

In this paper, a fuzzy model is introduced and all fuzzy factors in the model are
defined. The fuzzy model for the arterial pressure is introduced and an example
is solved. In order to prove that the blood pressure is a fuzzy-valued function, 15
important factors that contribute in obtain the values of the resistance of root aortic,
left ventricular pressure and the arterial pressure are identified, and it is shown that
the amounts obtained are ambiguous and inaccurate. To investigate the result, we
select 200 healthy and sick people randomly from hospitals in Tehran and outside
of it, and we recorded all these 15 factors for them. Eventually, based on these 15
factors, we designed the ANFIS network and extracted all data for these 200 people,
then we predicted the blood pressure with the adaptive neuro-fuzzy inference system
(ANFIS). In fact, we translate the qualitative medical information in this paper into
quantitative information with respect to fuzzy rules and the ANFIS to be able to
provide a person with the necessary recommendations for maintaining health.

This paper is organized as follows: some definitions and basic notions concerning
fuzzy calculus are collected in Section 2. In section 3, the model of cardiovascular
system are studied in terms of fuzzy nature and related theorems are proved and the
proposed model and its advantages are reviewed. The fuzzy model of the arterial
pressure as a first order fuzzy differential is introduced and the generalized Hukuhara
differentiable solution is obtained in section 4. In section 5, the ANFIS method is
introduced and the application of fuzzy linear model with ANFIS is presented in
section 6. The conclusion is drawn in section 7. Finally in section 8, a method is
presented to solve first order linear fuzzy differential equation.

2. Preliminaries

In this section, we present some definitions and introduce the necessary notation,
which will be used throughout the paper.

We denote by RF , the set of fuzzy numbers, that is, normal, fuzzy convex, upper
semi-continuous and compactly supported fuzzy sets which defined over the real line.

For 0 < α ≤ 1, set [u]α =
{
x ∈ Rn

∣∣∣u(x) ≥ α
}
, and [u]0 = cl

{
x ∈ Rn

∣∣∣u(x) > 0
}
. We

represent [u]α = [ul, uu], so if u ∈ RF , the α-level set [u]
α is a closed interval for all

α ∈ [0, 1].
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Definition 2.1. (See [13]) Consider u, v ∈ RF . If there exists w ∈ RF so that
u = v + w, then w is called the Hukuhara difference of u and v, and it is denoted by
u ⊖H v and an important property of ⊖H is that u ⊖H u = 0. If u ⊖H v exists, it is
unique and its α−cut’s are [u⊖H v]α = [ul − vl, uu − vu].

Definition 2.2. (See [15]) A triangular fuzzy number defined as a fuzzy set in RT ,
that is specified by an ordered triple u = (u1, u2, u3) with u1 ≤ u2 ≤ u3. Let
u = (u1, u2, u3), v = (v1, v2, v3) are two triangular fuzzy numbers, so

1: [u]α = [(u1, u2, u3)]
α = [u1 + (u2 − u1)α, u3 − (u3 − u2)α] for all α ∈ [0, 1].

2: For all λ ∈ R

λ⊙ u =

{
(λu1, λu2, λu3), If λ ≥ 0;
(λu3, λu2, λu1), If λ < 0.

3: u⊙ v =
(
min{u1v1, u1v3, u3v1, u3v3}, u2v2,max{u1v1, u1v3, u3v1, u3v3}

)
.

4: The triangular fuzzy number u is said to be positive if u1 > 0. We denote by
R+

T , the set of all positive triangular fuzzy numbers.

Definition 2.3. (See [6]) The generalized Hukuhara difference of two fuzzy numbers
u, v ∈ RF is defined as follows

u⊖gH v = w ⇐⇒
{

(i). u = v + w;
or (ii). v = u+ (−1)w.

In terms of α-levels we have [u⊖gH v]
α = [min{ul−vl, uu−vu} , max{ul−vl, uu−vu}].

Now consider a, b ∈ RT , then

a⊖gH b = c⇐⇒ (i). c = (a1−b1, a2−b2, a3−b3), or (ii). c = (a3−b3, a2−b2, a1−b1).

Provided that c is a triangular fuzzy number and [a ⊖gH b]α = [min{a1 − b1, a3 −
b3} , a2 − b2, max{a1 − b1, a3 − b3}].

Remark 2.4. Throughout the rest of this paper, we assume that u⊖gH v ∈ RF .

Remark 2.5. Consider a and b are triangular fuzzy numbers. It is easy to prove that

1: 0⊖gH a = (−1)a provided that (−1)a is a triangular fuzzy number.
2: a⊖gH b ̸= a⊕ (−1)b.
3: a⊖gH (−1)b ̸= a⊕ b.

In this paper, for the ranking concept, we will use a partial ordering introduced in
[14].

Definition 2.6. Let ⪯ be the partial ordering in RF defined by

u ⪯ v if and only if ul ≤ vl and uu ≤ vu

and the strict inequality ≺ in RF defined by

1: u ≺ v if and only if ul < vl and uu < vu.
2: u ≻ 0 if and only if 0 < ul ≤ uu.
3: u ≺ 0 if and only if ul ≤ uu < 0.

∀α ∈ [0, 1], where [u]α = [ul, uu], [v]
α = [vl, vu].
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Definition 2.7. (See [10]) A fuzzy-valued function f : [a, b] → RF is said to be

continuous at t0 ∈ [a, b] if for each ϵ > 0 there is δ > 0 such that DF

(
f(t), f(t0)

)
< ϵ,

whenever t ∈ [a, b] and |t − t0| < δ. We say that f is fuzzy continuous on [a, b] if f
is continuous at each t0 ∈ [a, b].

3. The Cardiovascular Fuzzy Model and Advantages

3.1. The Fuzzy Linear Model. In this section, the equations used extensively in
the cardiovascular system are studied in terms of fuzzy nature and the all needed the-
orems are proved. In this paper, we will use all the constants and functions presented
in Table (1).

Remark 3.1. Note that, all the constants or fuzzy functions in Table (1) are related
to the left ventricular and the cardiovascular system, so their values are naturally
positive.

Table 1. Parameter and Location
Parameter Location
T Duration of a heart beat
1
T

Heart rate (or pulse )
V Fuzzy Volume
Vlv Fuzzy left ventricular volume
Vd,lv Fuzzy left ventricular volume at zero pressure
Va1 Fuzzy arterial volume,
P Fuzzy pressure
Ps Fuzzy systolic pressure
Plv Fuzzy left ventricular pressure
Pa1 Fuzzy arterial pressure
Pas Fuzzy root aortic pressure
Pve Fuzzy venous pressure
Elv Fuzzy left ventricular elastance function
Emin,lv Minimal diastolic fuzzy value of Elv
Emax,lv Maximal systolic fuzzy value of Elv
R0s Fuzzy resistance of root aortic
Rsi systemic resistance
Qlv Fuzzy left ventricular outflow
Qs Fuzzy systemic blood flow
Ca1 Compliance

We know that the amount of blood volume entering the ventricle of each person is
a function of complicity, so the pressure caused by it is also different, and these two
have an organism relationship with each other.

Definition 3.2. (FIPVR equation) Let Plv(t), Elv(t), Vlv(t), and Vd.lv(t) are fuzzy-
valued functions. The fuzzy instant pressure volume relationship in the left ventricle
(FIPVR) is equal

Plv = Elv ⊙ (Vlv ⊖gH Vd.lv) = g(t, Elv, Vlv, Vd.lv), (3.1)

where t ∈ [t0, T ] ⊆ R+, g is a continuous mapping and g : R+×RF ×RF ×RF → RF .

Lemma 3.3. Suppose that Plv(t), Elv(t), Vlv(t), and Vd.lv(t) are fuzzy-valued func-
tions, then

i: Elv ⊙ (Vlv ⊖gH Vd.lv) = (Elv ⊙ Vlv)⊖gH (Elv ⊙ Vd.lv).
ii: Elv ⊙ (Vlv ⊖H Vd.lv) = (Elv ⊙ Vlv)⊖H (Elv ⊙ Vd.lv).
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iii: Elv ⊙ (Vd.lv ⊖H Vlv) =
(
(Elv ⊙ Vd.lv)⊖H (Elv ⊙ Vlv)

)
.

Proof. Let Elv ⊙ (Vlv ⊖gH Vd.lv). Then by considering Definition (2.3), we have

[Elv ⊙ (Vlv ⊖gH Vd.lv)]
α

= [El,lv, Eu,lv].

[
min

{
(Vl,lv − Vl,d.lv), (Vu,lv − Vu,d.lv)

}
,max

{
(Vl,lv − Vl,d.lv), (Vu,lv − Vu,d.lv)

}]
=

[
min

{
El,lv(Vl,lv − Vl,d.lv), El,lv(Vu,lv − Vu,d.lv), Eu,lv(Vl,lv − Vl,d.lv)

, Eu,lv(Vu,lv − Vu,d.lv)
}

, max
{
El,lv(Vl,lv − Vl,d.lv), El,lv(Vu,lv − Vu,d.lv), Eu,lv(Vl,lv − Vl,d.lv)

, Eu,lv(Vu,lv − Vu,d.lv)
}]

=

[
min

{
El,lvVl,lv − El,lvVl,d.lv, El,lvVu,lv − El,lvVu,d.lv, Eu,lvVl,lv − Eu,lvVl,d.lv

, Eu,lvVu,lv − Eu,lvVu,d.lv

}
,max

{
El,lvVl,lv − El,lvVl,d.lv, El,lvVu,lv − El,lvVu,d.lv, Eu,lvVl,lv − Eu,lvVl,d.lv

, Eu,lvVu,lv − Eu,lvVu,d.lv

}]
Since Vlv, Vd.lv, Elv ≻ 0, we obtain

min
{
El,lvVl,lv − El,lvVl,d.lv, El,lvVu,lv − El,lvVu,d.lv, Eu,lvVl,lv − Eu,lvVl,d.lv

, Eu,lvVu,lv − Eu,lvVu,d.lv

}
= El,lvVl,lv − El,lvVl,d.lv

,max
{
El,lvVl,lv − El,lvVl,d.lv, El,lvVu,lv − El,lvVu,d.lv, Eu,lvVl,lv − Eu,lvVl,d.lv

, Eu,lvVu,lv − Eu,lvVu,d.lv

}
= Eu,lvVu,lv − Eu,lvVu,d.lv.

Therefore,

[Elv ⊙ (Vlv ⊖gH Vd.lv)]
α = [El,lvVl,lv − El,lvVl,d.lv, Eu,lvVu,lv − Eu,lvVu,d.lv]. (3.2)

Now let (Elv ⊙ Vlv)⊖gH (Elv ⊙ Vd.lv), then

[(Elv ⊙ Vlv)]
α = [El,lv, Eu,lv].[Vl,lv, Vu,lv]

=

[
min

{
El,lvVl,lv, El,lvVu,lv, Eu,lvVl,lv, Eu,lvVu,lv

}
,max

{
El,lvVl,lv, El,lvVu,lv, Eu,lvVl,lv, Eu,lvVu,lv

}]
.
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(Elv ⊙ Vd.lv)]
α = [El,lv, Eu,lv].[Vl,d.lv, Vu,d.lv]

=

[
min

{
El,lvVl,d.lv, El,lvVu,d.lv, Eu,lvVl,d.lv, Eu,lvVu,d.lv

}
,max

{
El,lvVl,d.lv, El,lvVu,d.lv, Eu,lvVl,d.lv, Eu,lvVu,d.lv

}]
.

Since Vlv, Elv, Vd.lv ∈ R+
F , then we have

min
{
El,lvVl,lv, El,lvVu,lv, Eu,lvVl,lv, Eu,lvVu,lv

}
= El,lvVl,lv,

max
{
El,lvVl,lv, El,lvVu,lv, Eu,lvVl,lv, Eu,lvVu,lv

}
= Eu,lvVu,lv,

min
{
El,lvVl,d.lv, El,lvVu,d.lv, Eu,lvVl,d.lv, Eu,lvVu,d.lv

}
= El,lvVl,d.lv,

max
{
El,lvVl,d.lv, El,lvVu,d.lv, Eu,lvVl,d.lv, Eu,lvVu,d.lv

}
= Eu,lvVu,d.lv.

According to Definition (2.1), we get

[(Elv ⊙ Vlv)⊖gH (Elv ⊙ Vd.lv)]
α =

= [El,lvVl,lv − El,lvVl,d.lv, Eu,lvVu,lv − Eu,lvVu,d.lv]. (3.3)

By attention to Eq. (3.2) and Eq. (3.3), the required result is obtain. Similarly by
using Definition 2.1, the rest of the cases can be proved. □

Proposition 3.4. If Plv, Elv, Vlv, Vd.lv are fuzzy-valued functions. Then one of the
cases may occurs:

i: Plv = Elv ⊙ (Vlv ⊖H Vd.lv) = g(t, v(t)).

ii: Plv = (−1)
(
Elv ⊙ (Vd.lv ⊖H Vlv)

)
= q(t, v(t)),

where g(t, v(t)) and q(t, v(t)) denote by g(t, v(t)) := g(t, Elv, Vlv, Vd.lv) and q(t, v(t)) :=
q(t, Elv, Vlv, Vd.lv).

Proof. (i) By applying Lemma 3.3 we have Plv = (Elv ⊙ Vlv) ⊖gH (Elv ⊙ Vd.lv),
so by using Definition 2.3 (i) we get Plv ⊕ (Elv ⊙ Vd.lv) = (Elv ⊙ Vlv), therefore
Plv = (Elv ⊙ Vlv)⊖H (Elv ⊙ Vd.lv) = Elv ⊙ (Vlv ⊖H Vd.lv).
(ii) Using Lemma 3.3 and Definition 2.3 (ii) we get (Elv⊙Vlv)⊕(−1)Plv = (Elv⊙Vd.lv),
therefore (−1)Plv = (Elv⊙Vd.lv)⊖H (Elv⊙Vlv), so Plv = (−1)

(
(Elv⊙Vd.lv)⊖H (Elv⊙

Vlv)
)
= (−1)

(
Elv ⊙ (Vd.lv ⊖H Vlv)

)
. □

Proposition 3.5. Suppose that Plv, Elv, Vlv, Vd.lv are fuzzy-valued functions. If Plv =
Elv ⊙ (Vlv ⊖H Vd.lv) = g(t, v(t)) or (−1)Plv = Elv ⊙ (Vd.lv ⊖H Vlv) = q(t, v(t)) there
exist ( g(t, v(t)) := g(t, Elv, Vlv, Vd.lv) and q(t, v(t)) := q(t, Elv, Vlv, Vd.lv)), then one
of the following statements may happen:

(i)

 Pl,lv = El,lv.(Vl,lv − Vl,d.lv) = gl (t, vl, vu) ,

Pu,lv = Eu,lv.(Vu,lv − Vu,d.lv) = gu (t, vl, vu) .
(3.4)
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(ii)

 (−1)Pl = Eu,lv.(Vu,lv − Vu,d.lv) = (−1)gu(t, vl, vu) = ql (t, vl, vu) ,

(−1)Pu = El,lv.(Vl,lv − Vl,d.lv) = (−1)gl(t, vl, vu) = qu (t, vl, vu) .
(3.5)

Proof. Let Plv = Elv ⊙ (Vlv ⊖H Vd.lv) = g(t, v(t)) there exist, so by applying Lemma
3.3 and Definition (2.1) we have

Pl,lv = El,lv.(Vl,lv − Vl,d.lv) = gl(vl, vu),

Pu,lv = Eu,lv.(Vu,lv − Vu,d.lv) = gu(t, vl, vu).

Similarly, the case (ii) can be proved. □

Then to show when equations (3.1) and (3.4), (3.5) are equivalent, we express and
prove the following theorem.

Theorem 3.6. (Characterization Theorem) Let Plv, Elv, Vlv, Vd.lv are fuzzy-valued
functions, t ∈ [t0, T ] and g : [t0, T ]×RF ×RF ×RF → RF is a continuous g-process
such that:

1.[g(t, v)]α = [gl(t, vl, vu), gu(t, vl, vu].

2.[q(t, v)]α = (−1)[g(t, v)]α = [ql(t, vl, vu), qu(t, vl, vu)].

Then the equation (3.1) and the system of ( (3.4)),( (3.5)) are equivalent.

Proof. According to Definition (3.2) and by using Propositions (3.4) and (3.5) the
proof is clear. □

In the next section, we will review the proposed model and its advantages.

3.2. Advantages of the model (Fuzzy LinFree). We know that thousands of
chemical reactions occur and thousands of changes take place every second in the
human body, which the reactions are created on the basis of different physical, psy-
chological, and environmental conditions of the individual. The human body smartly
organizes our activities under all circumstances to maintain our health. Therefore, it
can be said that all of the phenomena and activities occurring in the body, including
the instant pressure-volume relationship in the left ventricle, are dynamic and change
under the influence of various factors such as genetic, physiological, psychological and
social factors. Considering the importance of modeling the instant pressure-volume
relationship in the left ventricle, many scientists have been working on it [19, 25]
and it has been tried that the best model is provided to show the IPVR relationship.
Among all models, the model in [19] has been considered more and better results have
been obtained by it. In this modeling, a linear relationship has been established be-
tween the pressure and volume and the elastance function. Now, look at the following
conditions.

A: Arterial blood pressure is a function of cardiac output and vascular resistance,
which varies according to gender, age, metabolic rate, emotional states, and various
diseases, including cardiovascular disease.

B: Left ventricular volume varies in different people depending on the gender, the
bulk of the body, history of the disease, age, and even high or low blood pressure.
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C: When an artery suffers a pathological process such as artery diseases, the elas-
ticity of the arterial wall decreases and the stiffness increases due to changes that
the disease creates in the arterial wall, such as the loss of elastic fibers and increased
collagen and fat deposits and increased wall thickness. As a result, the lateral pres-
sure imposed on the arterial wall increases abnormally during systole and decreases
slightly during diastole.

An overview of three above-mentioned definitions leads to this question whether
the models that have been presented so far for IPVR relationships can cover these
factors? And are they consistent with the essence of the system that is smart and
dynamic?

Do the environmental, genetic, and social factors, history of the disease, smoking,
age, gender, diet, physical activity, stress, heart rate, and BMI index affect these
factors?

Have these factors been considered or ignored in the proposed models or have the
models been designed in a normal mode?

In general, is it appropriate to consider the definitive models for a very sensitive
dynamic system, such as IPVR (which is subject to change, although partial, at any
moment)?

In response to all of these questions, we have tried to provide a fuzzy model for
IPVR that not only matches the essence of the problem, namely its dynamism, but
also allows for environmental and individual factors to be considered and shows when
the individual is in perfect health, when he enters a stage that is associated with risk
and ultimately when he is in the stage of disease (blood pressure).

The advantage of this model is that the health status of a person can be determined
and, given the factors that are considered during the model, the prevention of disease
can always be achieved with minor changes in the life process of the individual.

The cardiac contractile properties of the two ventricles are assumed to be defined
by a pair of time-varying elastance functions [25]. The relation between the fuzzy left
ventricular pressure plv and the fuzzy ventricular volume Vlv is described by

Plv = Elv ⊙ (Vlv ⊖gH Vd.lv) ⇐⇒

 (i)Plv = Elv ⊙ (Vlv ⊖H Vd.lv),
or

(ii)(−1)Plv = Elv ⊙ (Vd.lv ⊖H Vlv).
(3.6)

where Vd.lv is the fuzzy left ventricular volume at zero pressure. The fuzzy elastance
function Elv(t) in (3.6) is given by

Elv = Emin,lv(1− ϕ(t))⊕ Emax,lvϕ(t),

where

ϕ(t) =


aϕsin(

πt
tce

)− bϕsin(
2πt
tce

) For 0 ≤ t ≤ tce,

0 For tce ≤ t ≤ th.

The parameters Emin,lv and Emax,lv are minimal diastolic and maximal systolic fuzzy
values of the fuzzy left ventricular elastance function, respectively, th is the heart
period and tce the time for onset of real constant elastance. The relation between
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heart period th and tce is given by

tce = k0 + k1th,

where k0 and k1 are real constant parameters and Pas is the fuzzy root aortic pressure
and is given by

Pas = R0s ⊙Qlv ⊕ Pa1.

In the crisp models only left ventricular pressure is achieved [25]. But the advantage of
this fuzzy model over other models is that it shows not only the fuzzy left ventricular
pressure (Theorem 3.7) but also the fuzzy flow back (Theorem 3.8). In addition,
suitable fuzzy numbers with suitable qualities can be considered for all the factors,
which the issue of the multi-dimensional fuzzy numbers arises in this case.

Theorem 3.7. (Fuzzy output blood flow Theorem) Let Plv(t), Elv(t), Vlv(t) and Vd.lv(t)
are fuzzy valued functions and Vlv ≻ Vd.lv then FIPVR represents the fuzzy flow of
the output from the left ventricle and is expressed in equation (3.7).

Plv = (Elv ⊙ Vlv)⊖H (Elv ⊙ Vd.lv). (3.7)

Proof. We know that the positive pressure expresses the flow of blood output from
the left ventricle. Then by using Definition 3.2, Proposition 3.4 (i) and Lemma 3.3
(ii), the proof is completed. □

Theorem 3.8. (Fuzzy blood flow back Theorem) If Plv(t), Elv(t), Vlv(t) and Vd.lv(t)
are fuzzy valued functions and Vlv ≺ Vd.lv then FIPVR represents the fuzzy flow back
to the left atrium and is expressed in equation (3.8).

(−1)Plv = (Elv ⊙ Vd.lv)⊖H (Elv ⊙ Vlv). (3.8)

Proof. The negative pressure expresses the flow back from the left ventricle to the left
atrium. Then by applying Definition 3.2, Proposition 3.4 (ii) and Lemma 3.3 (iii),
the proof is completed. □

4. Fuzzy Model of the Arterial Pressure

In this section, we will try to obtain the fuzzy model of the arterial pressure, Pa1(t),
during a single beat of the heart.

Let the blood ejected from the left ventricle into the aorta. If T is the duration of
a heart beat, so 1

T is the heart rate (or pulse ) in beats/min. We have the maximum
fuzzy pressure of the blood in the aorta, when the left ventricle completes pumping
the blood into the aorta and the valve close. This maximum fuzzy pressure is denoted
by Ps and is equal to the fuzzy systolic pressure.

If Rsi is the systemic resistance, then we can obtain the value of the fuzzy systemic
blood flow, Qs(t) by the following equation

Qs(t) =
1

Rsi
⊙
(
Pa1(t)⊖gH Pve(t)

)
. (4.1)

where
(
Pa1(t) ⊖gH Pve(t)

)
is the difference between the arterial and venous fuzzy

pressure. By attention to this fact that fuzzy venous pressure are very low, we can
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approximate the fuzzy systemic flow by the following fuzzy equation

Qs(t) =
1

Rsi
⊙ Pa1(t). (4.2)

Moreover, the fuzzy arterial volume, Va1(t) and the fuzzy arterial pressure have the
following relation

Va1(t) = Ca1 ⊙ Pa1(t), (4.3)

where Ca1 ̸= 0 is the compliance.
Using this fact that the change in the fuzzy arterial volume is given by the difference

between the rate of fuzzy flow entering the aorta and the rate of fuzzy flow from the
aorta, we have the following fuzzy differential equation

V ′
a1(t) = 0⊖gH Qs(t). (4.4)

In this equation, the rate of fuzzy flow entering the aorta is equal to zero, because
the aortic valve is closed during systole and no blood is entering the aorta. Hence by
Eq.(4.2) and Eq.(4.4) and Remark 2.5 we have

V ′
a1(t) = ⊖gH

1

Rsi
⊙ Pa1(t). (4.5)

But from Eq.(4.3), we can write

V ′
a1(t) = Ca1 ⊙ P ′

a1(t). (4.6)

Thus, by Eqs.(4.5) and (4.6) we can obtain a linear first order fuzzy differential
describing the fuzzy arterial pressure

P ′
a1(t) = ⊖gH

1

Ca1Rsi
⊙ Pa1(t). (4.7)

with the fuzzy initial value Pa1(0) = Ps.
Using the method described in Appendix 8, applying the fuzzy Laplace transform

to equation (4.7) and by Lemma (8.1) and initial condition Ps, Eq.(4.7) has the
following [(i)− gH]−differentiable solution (or [(ii)− gH]−differentiable solution)

Pa1(t) = PsCa1Rsi ⊙ e−Ca1Rsit.

This solution is valid for time t between 0 and T .

Example 4.1. For a normal person, we have a pulse approximately 70 beats/ min.
The systemic resistance and compliance for this person are 17.6165 and 0.002, respec-
tively. If the fuzzy systolic pressure is Ps = (118.8, 120, 121.2), then the fuzzy arterial
pressure for a normal person obtain by the following equation

Pa1(t) = (4.18568, 4.22796, 4.27024)e−0.035233t.

The fuzzy arterial pressure is presented in Fig. 1 for t ∈ [0, 1
70 ] and all α ∈ [0, 1].

Now we want to examine the cardiovascular equations from a different perspective.
we will introduce risk factors for hypertension and will show that the person is placed
in the range of health (normal blood pressure) by using the fuzzy logic and ANFIS
network. Moreover, we will predict how long it takes for an individual to contract
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Figure 1. Graph of Pa1(t) for all t ∈ [0, 1
70 ] for Example 4.1

the disease if no attention is given to controlling these risk factors. The advantages
of this method include high accuracy, prediction of blood pressure and practicality of
the procedure.

5. Methods:Adaptive neuro-fuzzy inference system (ANFIS)

In the following sections we recall the structure of the ANFIS model and the
topology of inputs variables.

5.1. The structure of the ANFIS model. A fuzzy inference algorithm is a method
where fuzzy rules are used to deduce a new approximate fuzzy set conclusion while
taking the fuzzy set as a premise [17]. A fuzzy inference system (FIS) is used in
cases where either the systems cannot be easily modeled or where the description
is ambiguous [30]. An ANFIS is used to map input features to input membership
functions (MFs), input MF to a set of if-then rules, rules to a set of output features,
output features to output MFs, and the output MFs to a single valued output or a
decision related to the output [27]. A typical ANFIS structure, which can be seen
in Fig. 2, includes 5 layers. Layer 1: Every node J in this layer is an adaptive node
with a node function,

Q1
j = µAj (x),

where x is the input to node j, Aj represents the linguistic label related to this node
function, and Q1

j is the membership function of Aj that shows the degree to which
the given x satisfies Aj . To the input y, the node functions in the same layer as the
same function family as x. The most common MFs are triangular and bell-shaped.
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Figure 2. Adaptive neuro-fuzzy inference system structur

Bell-shaped MF with maximally equals 1 and minimally equals 0 calculated as follows:

µ(x) =
1

1 +
∣∣(x− c)/a

∣∣2b
Layer 2: in this layer every node is a fixed node which serves as a simple multiplier.
The outputs of these nodes are calculated by

Q2
j = ψj = µAj

(x)× µBj
(y), j = 1, 2, . . .

which are the firing strengths of the rules. Layer 3: In this layer, each node is an
adaptive node labeled as N. The jth node determines the ratio of the jth rule’s firing
strength to the sum of all rules’ firing strengths

Q3
j = ψj =

ψj

ψ1 + ψ2
, j = 1, 2, . . .

For the sake of convenience, outputs of this layer are called normalized firing strengths.
Layer 4: In this layer every node is an adaptive node with a function

Q4
j = ψjfi = ψj(pjx+ qjy + rj), j = 1, 2, . . .

where ψj is the output of layer 3, and {pj , qj , rj} are called consequent parameters.
Layer 5: here, the single node is a fixed node labeled as

∑
, which computes the

overall output as the sum of all incoming signals as follows:

Q5
j =

2∑
j=1

ψjfj =

∑2
j=1 ψjfj∑2
j=1 ψj

.

It is seen that there are two modifiable parameter sets, {aj , bj , cj} labeled as premise
parameters and {pj , qj , rj} labeled as consequent parameters. The aim of the training
algorithm for this architecture is to tune the two parameter sets above to match the
ANFIS output with the training data [26, 27]. ANFIS only supports Sugeno-type
systems with the following properties [21]:

• Are first or zero order Sugeno-type systems.
• Have a single output, obtained using weighted average defuzzification. All

output MFs must be of the same type, either linear or constant.
• Have no rule sharing. Different rules cannot share the same output MF,

namely the number of output MFs must be equal to the number of rules.
• Have unity weight for each rule
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The main restriction of the ANFIS model is the number of input variables. If ANFIS
inputs go beyond five, the computational time and the number of rules will increase,
so ANFIS will not be able to model output with respect to inputs.

5.2. Topology of input variables. In this study, we consider 15 energy inputs
including systolic and diastolic blood pressure, age, smoking, exercise, BMI, weight,
height, sex, stress, background, and diet. To investigate which combination of input
parameters can produce the best ANFIS results with the highest accuracy, three main
schemes were developed. The first topology can be observed in Fig. 3

Figure 3. The topology of ANFIS model to predict blood pressure

Now, we want to consider our claim that the model is fuzzy and the qualities
mentioned in the fuzzy model.

6. Application of fuzzy linear model with ANFIS

This section, with a real sampling of 200 healthy and sick people, demonstrates
that blood pressure is a fuzzy function that depends on a variety of factors, in order
to prove that all the formulas and Theorems in Sections 3 and 4 are correct. We have
the following steps

Step 1: Fuzzy Equation of Aortic Root Pressure and all Fuzzy Factors
Consider the following fuzzy model.

Pas = R0s ⊙Qlv ⊕ Pa1, (6.1)

In this model, three basic functions including pressure, volume, and blood
flow can be seen that are introduced as a fuzzy functions due to the influence
of the various factors mentioned below.
Aortic root resistance (R0s):

• Age: as time elapses and the age increases, the elasticity of the vascular
wall decreases and the wall gets harder. As a result, the vascular wall
resistance increases with the increase in age.
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• Diet: another factor affecting the vascular wall is the high intake of salt,
sugar (glycosylated vascular wall), and fat, which increases the vascular
wall resistance.
• Smoking: smoking increases the vascular wall resistance.
• Exercise: aerobic exercises can prevent arteriosclerosis.
• Stress: stress stimulates the sympathetic nerves and increases the pres-
sure of peripheral vascular resistance.

Left ventricular volume (Vlv):

• Men have larger left ventricles than women.
•The height, weight, BMI of a person has a direct impact on the left
ventricular volume.

Arterial blood pressure (Pa1):

• The higher the systolic and diastolic blood pressure, the greater the
blood pressure in the arteries.

Step 2: Introduction of ANFIS network
Step 2-1: Input variables

• Systolic and diastolic blood pressure (in mmHg): Different values of
blood pressure change the result easily. We use systolic and diastolic BP.
Generally, diastolic blood pressure is more important but systolic BP is
more important above 50 years age. This input variable is divided into
7 fuzzy sets: Normal, Above Normal, Moderate, Above Moderate, Little
High, High and Very high sets (Table 2).
• Age: This input field is classified into 6 fuzzy sets. The fuzzy sets with
their ranges are given in the Table 3.

Table 2. Blood pressure

Systolic BP Diastolic
normal(n) < 120 < 80
above normal (an) 120-129 80-85
moderate(m) 130-139 86-91
above moderate(am) 140-149 92-97
little high(lh) 150-159 98-103
high (h) 160-169 104-109
very high(vh) > 170 > 110

Table 3. Age

Age
young(y) < 25
adult(a) 25-45
mid aged(m) 45-55
aged(ag) 55-65
old(o) 65-85
very old(vo) > 85

• Aerobic exercise (Physical activity): This input field is classified into
6 fuzzy sets. The fuzzy sets with their ranges are shown in the Table 4.
• Sex: This input field just has 2 values 0 and 1 and the sets are male
and female.
• Disease history: This input field just has 2 values 0 and 1 and the sets
are with a history of disease and no history of the disease.
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• Stress: This input field is classified into 6 fuzzy sets. The fuzzy sets
with their range are shown in the Table 5.

Table 4. Physical activity

Aerobic exercise
very less effective(vle) < 10 min
less effective(le) 10-20 min
moderate(m) 20-45 min
above moderate(am) 45-60 min
highly effective(he) 60-90 min
very highly effective(vhe) > 90 min

• Smoking: This input field is classified into 5 fuzzy sets. The fuzzy sets
with their range are shown in the Table 6.
• Diet: This input field is classified into 9 fuzzy sets. The fuzzy sets with
their ranges are shown in the Table 7. We consider three classes of salt,
sugar and fat each having three fuzzy sets.
• Heart Rate: In this field, we have 5 fuzzy sets. In the Table 8, we have
defined these fuzzy sets.

Table 5. Stress

Stress
very less (vl) < 3 min
less (l) 3-6 min
moderate(m) 6-10 min
above moderate(am) 10-20 min
highly (he) 20-30 min
very highly (vh) > 30 min

Table 6. Smoking

Smoking
Low smoking < 3 cigarettes
Moderate 3-6 cigarettes
Above moderate 6-10 cigarettes
High 10-15 cigarettes
Very high > 15 cigarettes

Table 7. Diet

Fat Salt Sugar
very less (vl) < 70 gr < 2 gr < 10 gr
less (l) 70-80 gr 2-4 gr 10-30 gr
very highly (vh) > 80 gr > 4 gr > 30 gr
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• Body Mass:(BMI) This input field is classified into 7 fuzzy sets. The
fuzzy sets with their ranges are shown in Table 9 (Considering the height
and weight).

Table 8. Heart Rate

Heart rate
very less (vle) < 55 beat
less (le) 55-60 beat
moderate(m) 60-90 beat
above moderate(am) 90-110 beat
very highly (vhe) > 110 beat

Table 9. Body Mass

BMI
very less (vle) < 20
less (le) 20-25
moderate(m) 25-30
above moderate(am) 30-35
less highly (lhe) 35-40
highly (he) 40-45
very highly (vhe) > 45

Step 2-2: Combination of input variables.
In this regard, 200 individuals have been selected as samples and the
15 factors have been evaluated and recorded for them. Then to study
which combination of input variables can produce the best ANFIS results
with the highest accuracy, three important schemes were developed. The
topology can be apperceived in Fig 3.

Step 2-3: Prediction of blood pressure (Output variable) and evaluation
of ANFIS model.
Then, considering the ANFIS network, the model has been designed and
70% of the data have been used as training data and 30% of them have
been used as check data (Figure 4, Figure 5, Figure 6) and finally, the
error Table 10 has been obtained as below, indicating that ANFIS has
done the modeling with a high confidence. To clearly see the relation-
ship between inputs and outputs, in Figure 7 we show the relationship
between sugar and salt with blood pressure, respectively.

Table 10. Error Table

Data RMES Error Correlation

Train Data 0.000046 0.99

Test Data 0.1212 0.94

All Data 0.0363 0.93
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Figure 4. Train Data

Figure 5. Test Data

Figure 6. All data
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Figure 7. The relationship between sugar and salt with blood pressure

7. Conclusion

In this paper, the cardiovascular fuzzy model and advantages are introduced and
fuzzy instantaneous pressure-volume relation is presented and it has been shown that
the fuzzy acquisition of the factors of this model can also provide fuzzy blood flow
back. A first order fuzzy differential equation for modeling the arterial pressure is
investigated and all types of solutions of this equation are obtained. Finally, in order
to prove the claim that pressure, volume, and left ventricular outflow are dynamic
and fuzzy factors, 15 factors were considered and according to the ANFIS network, it
was shown that these inputs affect the pressure. In this regard,70% of the data was
used as train data and 30% as check data, the results of which are shown in Table 10,
which shows that the model has been very confident.

8. Appendix

Let f is a fuzzy-valued function of the variable t > 0 and s is a real parameter .
The fuzzy Laplace transform is defined as following [16]

F (s) = L[f(t)] =
∫ ∞

0

e−st ⊙ f(t)dt = lim
τ→∞

∫ τ

0

e−st ⊙ f(t)dt. (8.1)

whenever the limit exist (as a finite fuzzy number).

Lemma 8.1. (See [16]) Consider f(t) and g(t) are fuzzy-valued functions. Let a, b
are two real constant such that a, b ≥ 0 (or a, b ≤ 0). If the fuzzy Laplace transform
f exists for Re(s) > α and the fuzzy Laplace transform g exists for Re(s) > β, hence
the fuzzy Laplace transform of af(t) ⊕ bg(t) and af(t) ⊖gH bg(t) exist for Re(s) >
Max{α, β}, and

aL[f(t)]⊖gH bL[g(t)] = L[af(t)⊖gH bg(t)].

Theorem 8.2. (See [16]) Let us consider
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1: f be a fuzzy-valued function that is fuzzy continuous for t ≥ 0 and of expo-
nential α.

2: f ′gH(t) be piecewise continuous in every finite closed interval I = [0, b].

Moreover, assume that f(t) is gH−differentiable in I provided that the type of
gH−differentiability doesn’t change in interval I. If Re(s) > β then the fuzzy Laplace
transform of f(t) by considering the type of gH-differentiability is

1: If f(t) is [i− gH]−differentiable in I, then

L[f ′i.gH(t)] = sF (s)⊖H f(0). (8.2)

2: If f(t) is [ii− gH]−differentiable in I, then

L[f ′ii.gH(t)] = (−1)f(0)⊖gH (−1)sF (s). (8.3)
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