
Computational Methods for Differential Equations
http://cmde.tabrizu.ac.ir

Vol. 9, No. 4, 2021, pp. 1176-1197

DOI:10.22034/cmde.2020.35895.1621

Laguerre collocation method for solving Lane-Emden type equations

Ali Zamiri
Department of Mathematics,
University of Mohaghegh Ardabili, Ardabil, Iran.
E-mail: ali.zamiri@uma.ac.ir

Abdollah Borhanifar∗
Department of Mathematics,
University of Mohaghegh Ardabili, Ardabil, Iran.
E-mail: borhani@uma.ac.ir

Amin Ghannadiasl
Department of Civil Engineering,
University of Mohaghegh Ardabili, Ardabil, Iran.
E-mail: aghannadiasl@uma.ac.ir

Abstract In this paper, a Laguerre collocation method is presented in order to obtain numer-
ical solutions for linear and nonlinear Lane-Emden type equations and their initial
conditions. The basis of the present method is operational matrices with respect

to modified generalized Laguerre polynomials(MGLPs) that transforms the solu-
tion of main equation and its initial conditions to the solution of a matrix equation
corresponding to the system of algebraic equations with the unknown Laguerre co-
efficients. By solving this system, coefficients of approximate solution of the main

problem will be determined. Implementation of the method is easy and has more
accurate results in comparison with results of other methods.
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1. Introduction

Most problems in science and engineering and other fields need solving the linear
and nonlinear differential equations. For solving these equations many analytical

methods such as the (G
′

G )-expansion method [2], the Exp-function method [3], the
differential transformation method [4], and numerical methods such as the Jacobi
operational matrix collocation [5], the finite difference, the finite element and the
spectral methods have been introduced [8, 13].

The spectral methods have developed quickly in the recent two decades. They have
become basic tools for numerical solving of ordinary differential equations(ODEs) and
partial differential equations(PDEs). The main advantage of the spectral methods
over other existing methods may be its ability in finding an accurate solution for
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the problem. These methods became distinguished in the 1970s [24] and the three
common spectral types are the Galerkin, collocation and Tau procedures.
Collocation methods are very accurate and efficient procedures for numerical solving
of linear and nonlinear differential equations. Their fundamental idea is to consider
the unknown solution y(x) which can be approximated by a linear combination of
certain basic functions, called the trial functions, such as orthogonal polynomials.
The orthogonal polynomials can be selected matching to their specific attributes which
construct them especially appropriate for the problem under investigation. We apply
modified generalized Laguerre polynomials(MGLPs) to instruct Laguerre collocation
method.

Lane-Emden equation was first studied by astrophysicists Jonathan Homer Lane
and Robert Emden, where they investigated the thermal behavior of a spherical cloud
of gas acting under the mutual attraction of its molecules and subject to the classical
laws of the thermodynamics [18, 26]. This equation is generally formulated as follows:

y′′(x) +
k

x
y′(x) + f(x)g(y(x)) = h(x), k > 0, x > 0, (1.1)

with initial conditions

y(0) = a, y′(0) = b, (1.2)

where the prime denotes the differentiation with respect to x, k is constant, f(x),
g(y) and h(x) are some given continuous functions and a, b are constants. It is one
of the singular initial value problems formulated by the second-order ODE, in which
singularity behavior occurs at x = 0. It is undeniable that an analytic solution of (1.1)
is always possible in the neighborhood of the singular point for the initial conditions
(1.2) [9].

Currently, many techniques used in studying Lane-Emden type equations are based
on either series solutions or perturbation techniques such as, Pade approximations
method [10], Quasi-Newton’s method [30], Adomian decomposition method(ADM)
[26, 27], variational iteration method [28], Legendre spectral method [1], Jacobi-Gauss
collocation method [6], Chebyshev collocation method [7], Bessel collocation method
[29], Hermite function collocation method(HFCM) [16], Hermite wavelets method [20],
operational matrix of integration [21], wavelet series collocation method [22], and so
on. Here, modified generalized Laguerre collocation method(MGLCM) is applied for
solving some special cases of linear/nonlinear and homogenous/nonhomogenous Lane-
Emden equation (1.1) and to illustrate its accuracy and efficiency in comparison with
other existing numerical methods.

The paper is organized as follows. In section 2, we present an overview on MGLPs
and their related features required afterward. In section 3, we explain the general
procedure of generating operational matrices of derivative and product with respect to
MGLPs. The creation of collocation method based on MGLPs is described in sections
4. In section 5, the suggested method is used to solve several types of Lane-Emden
equation and comparisons are made between our obtained results and the existing
analytical or numerical solutions that were presented in other published works. The
conclusion is given in section 6.
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2. Basic preparations on MGLPs

Some basic properties and results on MGLPs are introduced in this section.

Definition 2.1. Let X = [0,+∞) and w(α,β)(x) = xαe−βx, α > −1, β > 0, be a
weight function on X. The MGLP of degree n is defined by

L(α,β)
n (x) =

1

n!
x−αeβx∂nx (x

n+αe−βx), n = 0, 1, 2, . . . (2.1)

They are solutions of the Sturm-Liouville problem and satisfy the following three-
term recurrence formula [14, 23]:

L
(α,β)
0 (x) = 1,

L
(α,β)
1 (x) = 1 + α− βx,

L
(α,β)
n+1 (x) =

2n+ α− βx+ 1

n+ 1
L(α,β)
n (x)− n+ α

n+ 1
L
(α,β)
n−1 (x), n = 1, 2, . . . .

(2.2)

Also, the n−th degree MGLP has the analytical form

L(α,β)
n (x) =

n∑
k=0

(−1)k
βkΓ(n+ α+ 1)

Γ(k + α+ 1)(n− k)! k!
xk, (2.3)

where Γ(a) =
∫ +∞
0

xa−1e−xdx, is the Gamma function [15, 19].
Some other properties of the analytical form of MGLPs are presented as the following
statements and lemmas:

1− L(α,β)
n (0) =

Γ(n+ α+ 1)

Γ(α+ 1)Γ(n+ 1)
, n = 0, 1, 2, . . .

2− di

dxi
L(α,β)
n (x) =

n∑
k=i

(−1)k
βk Γ(n+ α+ 1) xk−i

Γ(k + α+ 1)Γ(k − i+ 1)(n− k)!
, i ≤ n

3− di

dxi
L(α,β)
n (x) = 0, n = 0, 1, 2, . . . , i > n.

(2.4)

Lemma 2.2. The nth modified generalized Laguerre polynomial can be written as

L(α,β)
n (x) =

n∑
k=0

γ
(n)
k xk, (2.5)

where γ
(n)
k = (−1)k βkΓ(n+α+1)

Γ(k+α+1)(n−k)!k! .

Proof. γ
(n)
k , are the Maclaurin series coefficients of L

(α,β)
n (x).

Thus, γ
(n)
k = 1

k!
dk

dxkL
(α,β)
n (x)

∣∣
x=0

. Now, the lemma can be proved by using proper-
ties (1-3) mentioned (2.4). □

Lemma 2.3. If p ≥ 0, then∫ +∞

0

xpL(α,β)
n (x)w(α,β)(x)dx =

n∑
l=0

(−1)lΓ(n+ α+ 1)(p+ l + α)!

Γ(l + α+ 1)(n− l)! l! βp+α+1
. (2.6)
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Proof. From analytical form of L
(α,β)
n (x), in (2.3) and using integration by parts we

have,

∫ +∞

0

xpL(α,β)
n (x)w(α,β)(x)dx =

∫ +∞

0

xp
n∑
l=0

[
(−1)lβlΓ(n+ α+ 1)xl

Γ(l + α+ 1)(n− l)! l!

]
xαe−βxdx

=
n∑
l=0

[
(−1)lβlΓ(n+ α+ 1)

Γ(l + α+ 1)(n− l)! l!

∫ +∞

0

xp+l+αe−βx dx

]

=
n∑
l=0

(−1)lΓ(n+ α+ 1)(p+ l + α)!

Γ(l + α+ 1)(n− l)! l! βp+α+1
.

□

Lemma 2.4. If L
(α,β)
j (x) and L

(α,β)
k (x) are j−th and k−th MGLPs respectively, then

their product can be written as

Q
(α,β)
j+k (x) =

j+k∑
r=0

λ(j,k)r xr, (2.7)

where

λ(j,k)r =
r∑
l=0

(−1)rβrΓ(j + α+ 1)Γ(k + α+ 1)

Γ(r − l + α+ 1)Γ(l + α+ 1)(j − r + l)!(r − l)!(k − l)! l!
.

Proof. The polynomial Q
(α,β)
j+k (x) = L

(α,β)
j (x)L

(α,β)
k (x) will be a polynomial of degree

j + k and considering lemma 2.2 it can be written as:

Q
(α,β)
j+k (x) = (

j∑
m=0

γ(j)m xm)(
k∑

n=0

γ(k)n xn) =

j+k∑
r=0

λ(j,k)r xr.

where

λ(j,k)r =

r∑
l=0

γ
(j)
r−lγ

(k)
l

=
r∑
l=0

[
(−1)r−lβr−l Γ(j + α+ 1)

Γ(r − l + α+ 1)(j − r + l)!(r − l)!
· (−1)lβl Γ(k + α+ 1)

Γ(l + α+ 1)(k − l)! l!

]

=
r∑
l=0

(−1)rβr Γ(j + α+ 1)Γ(k + α+ 1)

Γ(r − l + α+ 1)Γ(l + α+ 1)(j − r + l)!(r − l)!(k − l)! l!
.
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The relation between coefficients λ
(j,k)
r with coefficients γ

(j)
m and γ

(k)
n is in an algorithm

as follows.

If j ≥ k : If j < k :

r = 0, 1, . . . , j + k, r = 0, 1, . . . , j + k,
if r > j then if r ≤ j then

λ
(j,k)
r =

∑k
l=r−j γ

(j)
r−l γ

(k)
l , r1 = min{r, j},

else λ
(j,k)
r =

∑r1
l=0 γ

(j)
r−l γ

(k)
l ,

r1 = min{r, k}, else

λ
(j,k)
r =

∑r1
l=0 γ

(j)
r−l γ

(k)
l , r2 = min{r, k},

end. λ
(j,k)
r =

∑r2
l=r−j γ

(j)
r−l γ

(k)
l ,

end.

Thus, the coefficients λ
(j,k)
r are determined. □

Lemma 2.5. If L
(α,β)
i (x), L

(α,β)
j (x) and L

(α,β)
k (x) are i−, j− and k−th MGLPs

respectively, then∫ +∞

0

L
(α,β)
i (x)L

(α,β)
j (x)L

(α,β)
k (x)w(α,β)(x)dx = qijk, (2.8)

where

qijk =
k∑
l=0

i+j∑
r=0

(−1)lλ
(i,j)
r Γ(k + α+ 1)Γ(r + l + α+ 1)

Γ(l + α+ 1)(k − l)! l! βr+α+1
, (2.9)

and λ
(j,k)
r has been introduced in Lemma 2.4.

Proof. Simply, the lemma can be proved by setting L
(α,β)
j (x)L

(α,β)
k (x) = Q

(α,β)
j+k (x),

and applying (2.3) and Lemmas 2.3− 2.4. □

3. Operational matrix

Here, the operational matrices of derivatives and product of MGLPs are expressed.
Firstly, the concept of function approximation is introduced.

3.1. Function approximation. The set of MGLPs is the L2
w(α,β)(X)-orthogonal

system, namely⟨
L
(α,β)
j (x), L

(α,β)
k (x)

⟩
w(α,β),X

=

∫ +∞

0

L
(α,β)
j (x)L

(α,β)
k (x)w(α,β)(x)dx

= h
(α,β)
k δjk, j, k = 0, 1, 2, . . . ,

(3.1)

where δjk is the Kronecker function, h
(α,β)
k = Γ(k+α+1)

βα+1k! and L2
w(α,β)(X) is a Hilbert

space.
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A function y(x) ∈ L2
w(α,β)(X) can be expanded in terms of MGLPs as follows:

y(x) =
+∞∑
j=0

cjL
(α,β)
j (x),

cj =
1

h
(α,β)
j

∫ +∞

0

y(x)L
(α,β)
j (x)w(α,β)(x)dx, j = 0, 1, 2, . . . .

(3.2)

In implementation, just the first (N + 1) terms of MGLPs are considered. Then we
have

y(x) ≃ yN (x) =
N∑
j=0

cjL
(α,β)
j (x) = CTΦ(x), (3.3)

where, the MGLP coefficient vector C and the MGLP vector Φ(x) respectively, are
defined by

C = [c0, c1, . . . , cN ]T , Φ(x) = [L
(α,β)
0 (x), L

(α,β)
1 (x), . . . , L

(α,β)
N (x)]T . (3.4)

3.2. Operational matrix of derivative. The basic purpose of current subsection
is to extract the operational matrix of derivative from the MGLP vector Φ(x) defined
in (3.4).

Definition 3.1. Suppose Φ(x) be a MGLP vector, the matrixD(N+1)×(N+1) is named
as the operational matrix of derivative if and only if

dΦ(x)

dx
= D Φ(x). (3.5)

Theorem 3.2. The operational matrix of derivation D is defined by:

D =



0 0 0 · · · 0 0
−β 0 0 · · · 0 0
−β −β 0 · · · 0 0
...

...
... · · ·

...
...

−β −β −β · · · 0 0
−β −β −β · · · −β 0


. (3.6)

Proof. MGLPs are satisfy the recurrence relation

d

dx
L(α,β)
n (x) =

d

dx
L
(α,β)
n−1 (x)− βL

(α,β)
n−1 (x), n = 1, 2, . . .

thus,

d

dx
L(α,β)
n (x) =

d

dx
L
(α,β)
n−2 (x)− βL

(α,β)
n−2 (x)− βL

(α,β)
n−1 (x), n = 2, 3, . . . .

Using the above relation sequentially, yields

d

dx
L(α,β)
n (x) =

d

dx
L
(α,β)
n−n (x)− β

n−1∑
m=0

L(α,β)
m (x), n = 0, 1, 2, . . . ,
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whereof, L
(α,β)
0 (x) = 1, we give

d

dx
L(α,β)
n (x) = −β

n−1∑
m=0

L(α,β)
m (x), n = 0, 1, 2, . . . .

Generally, for the vector Φ(x) = [L
(α,β)
0 (x), L

(α,β)
1 (x), . . . , L

(α,β)
N (x)]T we have matrix

notation with the following form

d

dx
Φ(x) =

[
d
dxL

(α,β)
0 (x), ddxL

(α,β)
1 (x), . . . , ddxL

(α,β)
N−1 (x),

d
dxL

(α,β)
N (x)

]T
=

[
0,−βL(α,β)

0 (x), . . . ,−β
∑N−2
m=0 L

(α,β)
m (x),−β

∑N−1
m=0 L

(α,β)
m (x)

]T

=



0 0 0 · · · 0 0
−β 0 0 · · · 0 0
−β −β 0 · · · 0 0
...

...
... · · ·

...
...

−β −β −β · · · 0 0
−β −β −β · · · −β 0





L
(α,β)
0 (x)

L
(α,β)
1 (x)

L
(α,β)
2 (x)

...

L
(α,β)
N−1 (x)

L
(α,β)
N (x)


= DΦ(x).

□

Clearly, by using (3.5) we have dnΦ(x)
dxn = (D(1))nΦ(x), where n ∈ N, and the

superscript in D(1) expresses matrix powers. Therefore D(n) = (D(1))n.

3.3. Operational matrix of product. In this subsection, a general process is in-
troduced to find the (N + 1)× (N + 1) operational matrix of product of MGLPs.

Definition 3.3. Suppose C = [c0, c1, . . . , cN ]T , C̃ is named as operational matrix of
product if and only if

Φ(x)ΦT (x)C ≃ C̃Φ(x). (3.7)

The elements of matrix C̃ are determined using the following theorem.

Theorem 3.4. The elements of the matrix C̃ in (3.7) are calculated as:

C̃jk =
1

h
(α,β)
k

N∑
i=0

Ciqijk, j, k = 0, 1, . . . , N, (3.8)

where

qijk =

∫ +∞

0

L
(α,β)
i (x)L

(α,β)
j (x)L

(α,β)
k (x)w(α,β)(x)dx, i, j, k = 0, 1, . . . , N,

are computed by means of lemma 2.5 and Ci are the elements of the vector C in (3.7).
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Proof. The left side of (3.7) is as follows,

Φ(x)ΦT (x)C =


∑N
i=0 CiL

(α,β)
0 (x)L

(α,β)
i (x)∑N

i=0 CiL
(α,β)
1 (x)L

(α,β)
i (x)

...∑N
i=0 CiL

(α,β)
N (x)L

(α,β)
i (x)

 . (3.9)

One puts,

L
(α,β)
j (x)L

(α,β)
i (x) =

N∑
k=0

akL
(α,β)
k (x), i, j = 0, 1, . . . , N. (3.10)

Multiplying both side of (3.10) by L
(α,β)
m (x), m = 0, 1, . . . , N, and integrating from 0

to +∞ results,∫ +∞

0

L
(α,β)
j (x)L

(α,β)
i (x)L(α,β)

m (x)w(α,β)(x)dx

=
N∑
k=0

ak

∫ +∞

0

L
(α,β)
k (x)L(α,β)

m (x)w(α,β)(x)dx = amh
(α,β)
m .

Therefore,

am =
1

h
(α,β)
m

∫ +∞

0

L
(α,β)
j (x)L

(α,β)
i (x)L(α,β)

m (x)w(α,β)(x)dx.

Now suppose,∫ +∞

0

L
(α,β)
j (x)L

(α,β)
i (x)L(α,β)

m (x)w(α,β)(x)dx = qijm, i, j,m = 0, 1, . . . , N.

So, one gets,

am =
qijm

h
(α,β)
m

, i, j,m = 0, 1, . . . , N.

Substituting am into (3.10) one has

L
(α,β)
j (x)L

(α,β)
i (x) =

N∑
k=0

qijk

h
(α,β)
k

L
(α,β)
k (x), i, j = 0, 1, . . . , N.

Thus, each element of the vector Φ(x)ΦT (x)C in (3.9), is as

N∑
i=0

CiL
(α,β)
j (x)L

(α,β)
i (x) =

N∑
i=0

Ci

( N∑
k=0

qijk

h
(α,β)
k

L
(α,β)
k (x)

)

=
N∑
k=0

[
1

h
(α,β)
k

N∑
i=0

Ciqijk

]
L
(α,β)
k (x)

=
N∑
k=0

C̃kL
(α,β)
k (x).

(3.11)
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Using (3.11) for other elements of the vector Φ(x)ΦT (x)C leads to the desired result.
□

Forthcoming theorem offers the public relation for approximating nonlinear term
vr(x)us(x) which may appear in nonlinear equations.

Theorem 3.5. If

u(x) ≃ CTΦ(x) = Φ(x)TC, v(x) ≃ V TΦ(x) = ΦT (x)V,

Φ(x)ΦT (x)C ≃ C̃Φ(x), Φ(x)ΦT (x)V ≃ Ṽ Φ(x),
(3.12)

where C and V are the (N + 1) vectors and C̃ and Ṽ are the (N + 1) × (N + 1)
operational matrices of product, then the following relation is valid:

vr(x)us(x) ≃ V T (Ṽ )r−1B̃s−1Φ(x), Bs−1 = (C̃T )s−1C, r, s = 1, 2, . . . .

Proof. One has

u2(x) ≃ (ΦT (x)C)2 = CTΦ(x)ΦT (x)C = CT C̃Φ(x),

So, by use of induction us(x) will be approximated as

us(x) ≃ CT (C̃)s−1Φ(x), s = 1, 2, . . . .

To similar way, vr(x) is approximated as

vr(x) ≃ V T (Ṽ )r−1Φ(x), r = 1, 2, . . . .

By applying the declared formulas and induction is easily observed,

vr(x)us(x) ≃ V T (Ṽ )r−1B̃s−1Φ(x), Bs−1 = (C̃T )s−1C, r, s = 1, 2, . . . .

□

4. Modified generalized Laguerre collocation method

This section includes two subsections. The first one describes the concept of spec-
tral methods and modified generalized Laguerre collocation method (MGLCM). The
existence, uniqueness, convergence and stability of approximation and related theo-
rems are introduced in the second subsection.

4.1. Explaining the method. Spectral methods in the subject of numerical proce-
dures for solving differential equations commonly belong to the category of weighted
residual methods(WRMs). WRMs are included a special class of approximate tech-
niques, in which the residuals (or errors) are minimized in a specific procedure and
therewith leading to particular methods containing Galerkin, Petrov-Galerkin, collo-
cation and Tau methods [19].

Assume the general problem:

L[y(x)] +N [y(x)] = f(x), x ∈ X, (4.1)

with the initial conditions

y(i)(0) = di, i = 0, 1, . . . ,m− 1, (4.2)



CMDE Vol. 9, No. 4, 2021, pp. 1176-1197 1185

where L and N are linear and nonlinear operators, respectively, and f(x) is a function
of variable x and di(i = 0, 1, . . . ,m − 1) are initial values of unknown function y(x).
The beginning of the WRM is to approximate the solution y(x) by a finite sum

y(x) ≃ yN (x) =
N∑
i=0

ciϕi(x), x ∈ X, N ∈ N, (4.3)

where ϕi(x) are the basic or trial functions and the expansion coefficients must be
specified. Replacing y(x) by yN (x) in (4.1) leads to the residual function:

RN (x) = L[yN (x)] +N [yN (x)]− f(x) ̸= 0. (4.4)

The idea of the WRM is to compel the residual to zero by needing:

⟨RN , ψj⟩w,X =

∫
X

RN (x)ψj(x)w(x)dx = 0, 0 ≤ j ≤ N, (4.5)

where ψj(x) are test functions and w is positive weight function.
The choice of trial and test functions is one of the most important properties

that recognizes spectral methods from finite-element and finite-difference methods.
Spectral methods use globally smooth functions as trial and test functions. The
most generally used trial and test functions are trigonometric functions or orthogonal
polynomials (typically, the eigenfunctions of singular Sturm-Liouville problems) [19].

Therefore, with selecting MGLPs as the trial functions in (4.3), i.e., ϕi(x) = L
(α,β)
i (x)

and ψj(x) = δ(x − xj) as test functions and w(x) = w(α,β)(x) in (4.5), the residual
function is forced to zero at xj , i.e., RN (xj) = 0, which δ, is the Dirac delta function,
i.e., δ(x) = 1 for x = 0 and δ(x) = 0 for otherwise, and xj are preassigned colloca-
tion points. The name of this method is modified generalized Laguerre collocation
method(MGLCM).

Hence, using (4.3) with MGLPs as the trial functions and applying the expressed
matrices and approximations, the terms of assumed equations (4.1) are approximated
and replaced into (4.1) and the residual function is obtained. With collocating the
residual function at (N − m + 1) scaled roots of the (N − m + 1)−th MGLP(i.e.,
Laguerre-Gauss points) on interval (0, l) or other suitable collocation points for each
two particular selections of modified generalized Laguerre parameters α and β, the
(N−m+1) linear or nonlinear algebraic equations with (N+1) unknowns are obtained.
Consequently, this system of algebraic equations alongside m equations are generated
by substituting introduced matrices and approximations into initial conditions (4.2)
gives an algebraic system of (N + 1) equations with (N + 1) unknowns. This system
is solved with the aid of Maple software and the unknown spectral coefficients vector
C is determined and approximate solution yN (x) is calculated.
Notation. All roots of (N + m − 1)−th MGLP are positive and non-zero, so the
singularity of Lane-Emden type equations does not occur at these collocation points.
Therefore the equations obtained at these points, together with the approximate
equations of initial conditions, yield the favorable algebraic systems. Furthermore for
other suitable collocation points, such as xi =

l
N i, i = 0, 1, 2, . . . , N , the singularity

is eliminate by assuming the first node point x0 > 0, such as x0 = 0.0001. Then, by
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replacing the approximate equations of initial conditions with the first two equations,
the favorable algebraic system is obtained.

4.2. Existence, uniqueness, convergence and stability of approximation. Let
N be any non-negative integer and PN denotes the linear space of polynomials whose
degree is at most N on X. Clearly, the dimension of PN is N +1 and the polynomials

L
(α,β)
n (x), n = 0, 1, . . . , N are orthogonal with respect to inner product (3.1). There-

fore they form a basis for PN , i.e., PN = Span{L(α,β)
0 (x), L

(α,β)
1 (x), . . . , L

(α,β)
N (x)}.

According to Weierstrass theorem in a bounded closed interval and its extended
type for unbounded domains, any continuous function can be uniformly approximated
by polynomials.[12]

We define the orthogonal projection operator PN,w(α,β) : L2
w(α,β)(X) → PN , for

any continuous function y as PN,w(α,β)(y) = yN :=
∑N
n=0 cnL

(α,β)
n (x), where Laguerre

coefficients cn are computed according to (3.2). Since {L(α,β)
n (x)}Nn=0 are linearly in-

dependent, yN is determined uniquely. It turns out that PN,w(α,β) is a linear operator.
We call yN the orthogonal projection of y onto PN through the inner product (3.1).

At this point, the best approximation problem is finding one polynomial among
all the polynomials of degree less or equal to a fixed integer N , which be best ap-
proximates uniformly in X for a given continuous function y. It can be formulated in
terms of the norm ∥.∥w(α,β) and the next proposition fully determines the solution of
this problem [12, 15].

Theorem 4.1. For any y ∈ L2
w(α,β)(X), there exists a unique polynomial φN,w(α,β)(y) ∈

PN that

∥y − φN,w(α,β)(y)∥w(α,β) = infψ∈PN ∥y − ψ∥w(α,β) . (4.6)

Moreover φN,w(α,β)(y) = yN .

To proof of Theorem 4.1 is referred to [12].
In short, we can write

∥y − yN∥w(α,β) = infψ∈PN ∥y − ψ∥w(α,β) . (4.7)

Another interesting characterization is given in the following theorem.

Theorem 4.2. For any y ∈ L2
w(α,β)(X), we have

⟨y − yN , ϕ⟩w(α,β),X = 0, ∀ϕ ∈ PN . (4.8)

To proof of Theorem 4.2 is referred to [12].
By virtue of this theorem, the operator PN,w(α,β) takes the name of orthogonal pro-
jector, since the error y − yN is orthogonal to the space PN . Choosing in particular
ϕ = yN in (4.8), application of the Schwartz inequality leads to ∥yN∥w(α,β) ≤ ∥y∥w(α,β) .
The convergence of the Laguerre approximation is deduced from the next result[12].

Theorem 4.3. For any y(x) ∈ L2
w(α,β)(X), the sequence {yN (x)}N≥0 defined in (4.3)

using MGLPs is converges to y(x). i.e. we have

limN→+∞∥y − yN∥w(α,β) = 0. (4.9)
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Proof. Since PN is a complete Hilbert space, so it is sufficient we show the sequence
of patrial sums from {yN (x)}N≥0 is a Cauchy sequence.

Suppose {p(α,β)k (x)}k≥0 be the orthonormal form for MGLPs. Then

yN (x) =

N∑
k=0

dkp
(α,β)
k (x), dk = ck(h

(α,β)
k )

1
2 , p

(α,β)
k (x) =

L
(α,β)
k (x)

(h
(α,β)
k )

1
2

.

Also, we define the sequence of partial sums {SM (x)}M≥0 from {yN (x)}N≥0, such

that SM (x) =
∑M
k=0 dkp

(α,β)
k (x).

With L2
w(α,β) -norm, for arbitrary L and M ; L < M , we have

∥SM − SL∥2 = ∥
M∑

k=L+1

dkp
(α,β)
k (x)∥2

=

⟨
M∑

k=L+1

dkp
(α,β)
k (x),

M∑
j=L+1

djp
(α,β)
j (x)

⟩

=

M∑
k=L+1

M∑
j=L+1

dkdj
⟨
p
(α,β)
k (x), p

(α,β)
j (x)

⟩
=

M∑
k=L+1

|dk|2.

By Bessels inequality, since

M∑
k=L+1

|dk|2 ≤ ∥
M∑

k=L+1

dkp
(α,β)
k (x)∥2 ≤ ∥y(x)∥2,

therefore
∑+∞
k=0 |dk|2 is bounded and convergent. Hence ∥SM−SL∥2 → 0 as L,M → 0.

This implies ∥SM − SL∥ → 0. Then {SM (x)}M≥0 is a Cauchy sequence and it
converges to S(x) ∈ PN .
Now, we assert that S(x) = y(x).
By the projection operator, we have⟨

S(x)− y(x), p
(α,β)
j (x)

⟩
w(α,β) = 0, j = 0, 1, 2, . . . ,M.

Then S(x)− y(x) = 0. Hence S(x) = y(x) and yN (x) =
∑N
k=0 ckL

(α,β)
k (x) converges

to y(x) as N → +∞. Thus limN→+∞∥y − yN∥w(α,β) = 0. □

In order to describe approximation errors precisely and study stability of the
method, for any integer r ≥ 0, we define the non-uniformly weighted Sobolev space
Ar
w(α,β)(X) as follows:

Arw(α,β)(X) = {u | u is measurable on X and ∥u∥Ar

w(α,β)
<∞},
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equipped with the following norm and semi-norm

∥y∥Ar

w(α,β)
= (

r∑
k=0

|y|2Ar

w(α,β)
)1/2, |y|Ar

w(α,β)
= ∥∂rxy∥w(α+r,β) .

Clearly, Ar
w(α,β)(X) = {y | y ∈ L2

w(α,β)(X), ∂kxy ∈ L2
w(α+r,β)(X), 0 ≤ k ≤ r}, and

A0
w(α,β)(X) = L2

w(α,β)(X). The following basic result is available on bound of error of
the Laguerre approximation [14, 25].

Theorem 4.4. For any y ∈ Ar
w(α,β)(X) and any integers 0 ≤ s ≤ r, we have

∥∂sx(y − yN )∥w(α+s,β) ≤ c(βN)
s−r
2 ∥∂rxy∥w(α+r,β) . (4.10)

where c is a generic positive constant independent of any function and α, β, N .

To proof of Theorem 4.4 is referred to [14, 15, 19, 25].
We observe that the above result is valid for y ∈ Ar

w(α,β)(X) which includes functions
that do not decay at infinity, however, the error estimate is given in a weighted space
with an exponentially decay rate [19].
By assuming s = 0, in (4.10) we have

∥y − yN∥w(α,β) ≤ c(βN)
−r
2 ∥∂rxy∥w(α+r,β) , (4.11)

and,

∥y − yN∥w(α,β)

∥y − yN−1∥w(α,β)

≤
(

N

N − 1

)−r
2

< 1. (4.12)

Therefore, with L2
w(α,β)-norm, according to (4.11), the order of convergence isO(N−r/2)

for fixed r. Also, (4.12) concludes that the error of the method decreases at N−th
step compared to the (N − 1)−th step. Thus the stability of the method is resulted.

5. Numerical examples

To demonstrate the applicability and accuracy of the MGLCM, we apply the
method for special cases of Lane-Emden type equations. In some cases, the so-
lutions obtained by the proposed method and exact solutions are equal, which we
provide the value of unknown vector C and solution y(x). In some other cases, the
numerical solutions of the presented method are in excellent agreement with the exact
solutions, which we provide a table of results including the numerical solutions and
absolute errors of the presented method and other methods at selected points. All
of the numerical computations are done on a computer using written codes in Maple
software.

Example 1. The standard Lane-Emden equation
For f(x) = 1, g(y) = yr, h(x) = 0, k = 2, a = 1, b = 0, (1.1) is the standard
Lane-Emden equation of index r, in the following general form,

y′′(x) +
2

x
y′(x) + y(x)

r
= 0, (5.1)

with initial conditions y(0) = 1, y′(0) = 0.
The Lane-Emden equation of index r is a fundamental equation in the theory of stellar
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structure. It is a beneficial equation in astrophysics for calculating the structure of
interiors of the polytropic stars. This equation explains the temperature variation of
a spherical gas cloud under the mutual attraction of its molecules and subject to the
classical laws of thermodynamics [9]. The solutions of (5.1) for a given index r are
known as polytropic of index r, where the parameter r has physical significance in the
range 0 ≤ r ≤ 5. Unfortunately, exact solutions to (5.1) in closed form are possible
only for values of the polytropic index r = 0, 1 and 5. For other values of r between
0 and 5 only numerical solutions are available in the literature.
case 1. For r = 0, (5.1) turns into the following linear nonhomogeneous form

y′′(x) +
2

x
y′(x) + 1 = 0, (5.2)

with initial conditions y(0) = 1, y′(0) = 0 and has exact solution y(x) = 1− x2

6 .
Applying the present method for N = 2, we have

y(x) ≃ c0L
(α,β)
0 (x) + c1L

(α,β)
1 (x) + c2L

(α,β)
2 (x) = CTΦ(x),

y′(x) ≃ CTD1Φ(x), y′′(x) ≃ CTD2Φ(x),

where the operational matrices are obtained from Theorem 3.2,

D1 = −β

 0 0 0
1 0 0
1 1 0

 , D2 = β2

 0 0 0
0 0 0
1 0 0

 .

Firstly, substituting above approximations into (5.2) leads to the residual function

RN (x) ≃ CT (D2 +
2

x
D)Φ(x) + 1 = 0,

and collocating RN (x) in the root of L
(α,β)
1 (x), yields

−2βc1 + β(α− 1)c2 +
1 + α

β
= 0. (5.3)

Secondly, substituting above approximations into initial conditions yields

y(0) ≃ CTΦ(0) = c0 + (1 + α)c1 + (
1

2
α2 +

3

2
α+ 1)c2 = 1,

y′(0) ≃ CTD2Φ(0) = −βc1 + β(−2− α)c2 = 0.
(5.4)

Finally, by solving the linear system of Eqs (5.3)-(5.4) the three unknown coefficients
are determined as:

c0 = −α
2 − 6β2 + 3α+ 2

6β2
, c1 =

2 + α

3β2
, c2 = − 1

3β2
.

Consequentially, the numerical solution for arbitrary choices of α > −1 and β > 0 is
obtained as:

y(x) = (
−α2 + 6β2 − 3α− 2

6β2
,
2 + α

3β2
,
−1

3β2
)

 1
−βx+ α+ 1

β2x2

2 − β(α+ 2)x+ α2

2 + 3α
2 + 1


= 1− x2

6
,
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which is same the exact solution.
case 2. For r = 1, (5.1) has the following linear homogeneous type equation

y′′(x) +
2

x
y′(x) + y(x) = 0, (5.5)

with initial conditions y(0) = 1, y′(0) = 0 and exact solution y(x) = sin(x)
x .

Applying the present method for an assumed N and constructing the residual function

and collocating in the scaled roots of L
(α,β)
N−1 (x) on interval (0, 1) along with approxi-

mating the initial conditions equations, we will obtain a linear algebraic system with
(N + 1) equations and (N + 1) unknowns. After solving this algebraic system, the
maximum absolute errors for various choices of N , α and β are shown in Table 1. It
shows that for various values of α and β by increasing the value of N the maximum
absolute errors are decreased, which demonstrates the suggested method is of high
accuracy.

Table 1. Maximum absolute error for different values of α, β and
N for case 2.

N α β Max. Abs. Error N α β Max. Abs. Error
4 0 1 4.16E-06 4 5 5 7.61E-06
8 2.39E-11 8 9.76E-12
12 3.76E-15 12 2.10E-17
4 5 1 1.11E-05 4 3 5 3.18E-07
8 9.76E-12 8 1.43E-11
12 9.98E-16 12 1.50E-18

case 3. For r = 5, (5.1) has the nonlinear homogeneous form

y′′(x) +
2

x
y′(x) + y(x)

5
= 0, (5.6)

with initial conditions y(0) = 1, y′(0) = 0 and the exact solution y(x) = (1 + x2

3 )−
1
2 .

This solution is called the Talenti-Aubin solution for this critical Lane-Emden type
equation.
Applying the MGLCM for arbitrary value of N by replacing y(x) ≃ CTΦ(x), y′(x) ≃
CTDΦ(x), y′′(x) ≃ CTD2Φ(x) and y5(x) ≃ CT C̃4Φ(x) in (5.6) where D is the

operational matrix of derivative and C̃ is the operational matrix of product for the
vector C, constructing the residual function and collocating in the scaled roots of

L
(α,β)
N−1 (x) on interval (0, 1) along with inserting the above approximations into the

initial conditions equations, are formed a nonlinear algebraic system with (N + 1)
equations and (N + 1) unknowns. By solving this algebraic system, comparison of
the maximum absolute errors obtained by the present method for α = 0, β = 7 and
various choices of N and those obtained by the second kind Chebyshev operational
matrix(S2CTM) [11] are shown in Table 2. It observes that the order of errors for the
MGLCM is better than the order of errors for the S2CTM.

As shown in Figures 1a and 1b, the present method has an appropriate convergence
rate by increasing the value of N . Also, that is working well with only few MGLPs
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Table 2. Comparison of the maximum absolute error of the present
method and the S2CTM for case 3.

N Max. Abs. Error[11] Max. Abs. Error(MGLCM)
4 8.97E-03 1.19E-02
5 2.43E-03 3.24E-04
6 5.55E-03 1.65E-04
7 3.81E-03 2.74E-05
8 - 3.89E-06
10 - 2.71E-07

and providing the better order of errors and the better solutions in comparison with
the recently developed methods.

(a) (b)

Figure 1. (a): Graphs of the exact and approximate solutions for
α = 3, β = 5 in case 2, (b): Graphs of the exact and approximate
solutions for α = 0, β = 7 in case 3.

Example 2. Isothermal gas spheres equation
For f(x) = 1, g(y) = ey(x), h(x) = 0, k = 2, a = 0, b = 0, (1.1) is the isothermal gas
spheres equation,

y′′(x) +
2

x
y′(x) + ey(x) = 0, (5.7)

with initial conditions y(0) = y′(0) = 0 which are modeled by Davis [9]. Wazwaz has
obtained the following approximate solution for (5.7) by using the ADM [26]

y(x) = −1

6
x2 +

1

120
x4 − 1

1890
x6 +

61

1632960
x8 − 4087

1796256000
x10,

and (5.7) is solved by other methods such as, the HFCM [16], Legendre operational
matrix(LOM) [17], wavelet series collocation method [22] and other methods. We
apply the MGLCM to solve the isothermal gas spheres equation.
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Expanding g(y) = ey(x) by Taylor series, we get

ey = 1 + y +
y2

2!
+
y3

3!
+
y4

4!
+
y5

5!
+ . . . ,

and considering only first five terms we can write

ey = 1 + y +
(CTΦ(x))2

2!
+

(CTΦ(x))3

3!
+

(CTΦ(x))4

4!
,

and from Theorems 3.2, 3.4 and 3.5 we construct the residual function,

RN (x) ≃ CT {D2 +
k

x
D1 + I +

1

2
C̃ +

1

6
C̃2 +

1

24
C̃3}Φ(x) + 1 = 0,

where D is the operational matrix of derivative, C̃ is the operational matrix of
the product and I is the identify matrix. Collocating RN (x) in the scaled roots

of L
(α,β)
N−1 (x) on interval (0, 1) along with the approximating the initial conditions

y(0) ≃ CTΦ(0) = 0, y′(0) ≃ CTD2Φ(0) = 0 are formed a nonlinear algebraic sys-
tem with (N + 1) equations and (N + 1) unknowns. Solving the system resulted the
unknown vector C is determined and numerical solution y(x) is calculated.

Table 3 shows the comparison of the absolute errors obtained by the present method
in the selected points for various choices of α and β and N = 10. It shows that by
changing the values of α and β the numerical solutions obtained by the MGLCM have
an appropriate convergence rate. Also, the classical Laguerre polynomial (α = 0,
β = 1) is not the best one for approximating the solution of differential equations.

Table 4 shows the comparison of numerical solution y(x) and the absolute errors
obtained by the MGLCM for α = 1, β = 10 and those obtained by Wazwaz [26], the
HFCM [16], the LOM [17] and wavelet series collocation method [22]. It indicates
that a few terms of MGLPs are sufficient in order to achieve a better approximation
and the method has an appropriate convergence rate. The order of errors for the
MGLCM is better than the order of errors obtained at [16, 17, 22].

Table 3. Absolute error using the present method at N = 10 for
Example 2.

xi α = 1, β = 5 α = 3, β = 7 α = 4, β = 9
0.0 0.00E-00 0.00E-00 0.00E-00
0.1 4.48E-07 4.78E-09 5.51E-10
0.2 1.60E-07 7.10E-09 6.57E-10
0.3 9.72E-07 5.78E-09 6.32E-10
0.4 5.01E-07 5.29E-09 6.72E-10
0.5 1.19E-06 7.18E-09 2.64E-10
0.6 2.66E-06 1.10E-08 2.12E-09
0.7 2.28E-06 1.96E-08 1.15E-08
0.8 6.66E-07 4.72E-08 4.19E-08
0.9 5.26E-06 1.29E-07 1.26E-07
1.0 9.09E-06 3.31E-07 3.27E-07
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Table 4. Comparison of the numerical solution and absolute error
obtained by MGLCM with other methods in Example 2.

xi Wazwaz[26] Present Error Error[17] Error[16] Error[22]
method (N=10) (N=10) (N=30) (M=10)

0.0 0.0000000000 0.0000000000 0.00E-00 9.24E-18 0.00E-00 -
0.1 -0.0016658339 -0.0016658339 2.11E-14 5.28E-10 5.85E-07 1.09E-12
0.2 -0.0066533671 -0.0066533671 1.35E-14 3.37E-08 6.04E-07 1.86E-12
0.3 -0.0149328833 -0.0149328833 4.15E-12 - - 1.48E-12
0.4 -0.0264554763 -0.0264554763 5.01E-11 - - 5.16E-11
0.5 -0.0411539568 -0.0411539573 4.59E-10 8.12E-06 5.58E-07 4.63E-10
0.6 -0.0589440720 -0.0589440748 2.74E-09 - - 2.72E-09
0.7 -0.0797259923 -0.0797260044 1.21E-08 - - 1.20E-08
0.8 -0.1033860110 -0.1033860536 4.27E-08 - - 4.22E-08
0.9 -0.1297983988 -0.1297985256 1.27E-07 - - 1.26E-07
1.0 -0.1588273537 -0.1588276816 3.28E-07 4.93E-04 8.20E-07 3.24E-07

Also, Figure 2a shows the resulting graphs from numerical solutions of the present
method for N = 10 and various choices of α and β, and Figure 2b shows the resulting
graphs from numerical solutions of the present method for α = 1, β = 5 and various
choices of N in comparison with the solution obtained by Wazwaz [26]. Comparison
the graphs show that the numerical solutions of the MGLCM are convergence to the
Wazwaz solution with changing choices of α and β or increasing the value of N .

(a) (b)

Figure 2. (a): Graphs of the exact and approximate solutions for
N = 10 and various choices of α and β, (b): Graphs of the exact
and approximate solutions for α = 1, β = 5 and various choices of N
in Example 2.

Example 3. linear and nonhomogeneous Lane-Emden type equation
For f(x) = x, g(y) = y, h(x) = x5 − x4 + 44x2 − 30x, k = 8, a = 0, b = 0, (1.1) will
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be one of the linear and nonhomogeneous Lane-Emden type equations, that is:

y′′(x) +
8

x
y′(x) + xy(x) = x5 − x4 + 44x2 − 30x, (5.8)

with initial conditions y(0) = y′(0) = 0 which has the exact solution y(x) = x4 − x3.
By applying the present method for N = 4 with using the approximations

y(x) ≃ c0L
(α,β)
0 (x) + c1L

(α,β)
1 (x) + . . .+ c4L

(α,β)
4 (x) = CTΦ(x),

y′(x) ≃ CTDΦ(x), y′′(x) ≃ CTD2Φ(x),

and constructing the residual function and collocating in the roots of L
(α,β)
3 (x) along

with approximating the initial conditions equations, we will obtain a linear algebraic
system with five equations and five unknowns. By solving this system the unknown
vector C is determined

c0 =
α4 − α3β + 10α3 − 6α2β + 35α2 − 11αβ + 50α− 6β + 24

β4
,

c1 =
−(4α3 − 3α2β + 36α2 − 15αβ + 104α− 18β + 96)

β4
,

c2 =
6(2α2 − αβ + 14α− 3β + 24)

β4
, c3 =

−(6(4α− β + 16)

β4
, c4 =

24

β4
.

Consequentially, the numerical solution is obtained y(x) = x4−x3 for arbitrary choices
of α > −1 and β > 0 which is same the exact solution.

Example 4. nonlinear and homogeneous Lane-Emden type equation
For f(x) = 1, g(y) = −6y − 4ylny, h(x) = 0, k = 2, a = 1, b = 0, (1.1) will be one of
the nonlinear and homogeneous Lane-Emden type equations, that is:

y′′(x) +
2

x
y′(x)− 6y(x) = 4y(x)ln(y(x)), (5.9)

with initial conditions y(0) = 1, y′(0) = 0 which has the analytical solution y(x) = ex
2

.
In this model we have y(x)ln(y(x)) term that increases the order of calculation; there-
fore, we can use the transform y(x) = ez(x) in which z(x) is unknown; where upon
transformed form of the model will become the nonlinear and nonhomogeneous equa-
tion as follows:

z′′(x) +
2

x
z′(x)− 4z(x) + z′(x)

2
= 6, (5.10)

with initial conditions z(0) = z′(0) = 0.
Now, we approximate z(x) for N = 2 by the MGLPs

z(x) ≃ c0L
(α,β)
0 (x) + c1L

(α,β)
1 (x) + c2L

(α,β)
2 (x) = CTΦ(x),

and by using the Theorems 3.2, 3.4 and 3.5 we have

z′(x) ≃ CTDΦ(x), z′′(x) ≃ CTD2Φ(x),

z′(x)
2 ≃ CTDΦ(x)Φ(x)

T
DTC = CTDS̃Φ(x),
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where S = DTC and S̃ is the operational matrix of product for the vector S.
Substituting above approximations into (5.10) and constructing the residual function

and Collocating in the root of L
(α,β)
1 (x) yields

− 4(α+ 1)c0 − 2β2c1 + (αβ2 + 2α2 − β2 + 4α+ 2)c2 + β2(α+ 1)c2
2

+ 2β2(α+ 1)c1c2 + β2(α+ 1)c2
2 = 6(1 + α),

(5.11)

and substituting above approximations into initial conditions yields

y(0) ≃ CTΦ(0) = c0 + (1 + α)c1 + (
1

2
α2 +

3

2
α+ 1)c2 = 1,

y′(0) ≃ CTD2Φ(0) = −βc1 + β(−2− α)c2 = 0.
(5.12)

Finally, solving the linear system of Eqs (5.11)-(5.12) the three unknown coefficients
are determined as:

c0 =
α2 + 3α+ 2

β2
, c1 =

−2(α+ 2)

β2
, c2 =

2

β2
.

Consequentially, the numerical solution for arbitrary choices of α > −1 and β > 0 is
obtained as:

z(x) = (
α2 + 3α+ 2

β2
,
−2(α+ 2)

β2
,
2

β2
)

 1
−βx+ α+ 1

1
2β

2x2 − β(α+ 2)x+ 1
2α

2 + 3
2α+ 1


= x2.

Therefore, y(x) = ez(x) = ex
2

which is same the exact solution.

Corollary 5.1. From Examples 3−4, if the exact solution to equation be a polynomial,
then the present method will obtain in the real solution.

6. Conclusion

All things considered, we introduced a collocation method based on MGLPs for
solving Lane-Emden type equations with initial conditions. In this method, we used
the properties and operational matrices of derivatives and product from two MGLPs
to reduce Lane-Emden type equations and their initial conditions to solve a linear
or nonlinear algebraic system. From illustrated examples, we can conclude that this
method can obtain more accurate and strong convergence results and also a few terms
of MGLPs are sufficient to achieve a better approximation. In Examples 1 − 2, we
observed that the order of error in the presented method is better than the order of
error in other existing methods [11, 16, 17, 22] and by changing the values of α and
β the numerical solutions obtained by the MGLCM have an appropriate convergence
rate. Also, in Examples 3 − 4, we clearly see that in the equations which have an
exact solution of the polynomial functions, the numerical solutions of the MGLCM and
exact solutions are equal. Hence, the numerical results demonstrate high accuracy,
excellent efficiency and rapid convergency rate.



1196 A. ZAMIRI, A. BORHANIFAR, AND A. GHANNADIASL

Acknowledgment

The authors are very grateful to the reviewers for carefully reading the paper and
for their comments and suggestions which have improved the paper.

References

[1] H. Adibi and A. M. Rismani, On using a modified Legendre-spectral method for solving singular
IVPs of Lane-Emden type, Comput. Math. Appl., 60 (2010), 2126–2130.

[2] A. Borhanifar and A. Zamiri, Application of (G
′

G
)-expansion method for the Zhiber-Shabat equa-

tion and other related equations, Math. Comput. Model., 54 (2011), 2109–2116.

[3] A. Borhanifar and M. M. Kabir, New periodic and soliton solutions by application of Exp-
function method for nonlinear evolution equations, J. Comput. Appl. Math., 229 (2009), 158–
167.

[4] A. Borhanifar and R. Abazari. Numerical study of nonlinear Schrdinger and coupled Schrdinger
equations by differential transformation method , Opt. Commun., 283 (2010), 2026–2031.

[5] A. Borhanifar and Kh. Sadri, A new operational approach for numerical solution of generalized
functional integro-differential equations, J. Comput. Appl. Math., 279 (2015), 80–96.

[6] A. H. Bhrawy and A. S. Alofi, A JacobiGauss collocation method for solving nonlinear LaneEm-
den type equations, Commun. Nonlinear. Sci., 17 (2012), 62–70.

[7] J. P. Boyd, Chebyshev spectral methods and the Lane-Emden problem, Numer. Math. Theor.
Meth. Appl., 4 (2011), 142–157.

[8] C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang, Spectral methods in fluid dynamics,
Springer, New York, 1988.

[9] H. T. Davis, Introduction to nonlinear differential and integral equations, Dover publication,
Inc, New York, 1962.

[10] M. Dehghan, M. Shakourifar, and A. Hamidi, The solution of linear and nonlinear systems of
Volterra functional equations using AdomianPade technique, Chaos. Soliton. Fract., 39 (2009),
2509–2521.

[11] E. H. Doha, W. M. Abd-Elhameed, and Y. H. Youssri, Second kind Chebyshev operational
matrix algorithm for solving differential equations of LaneEmden type, New. Astron., 23 (2013),
113117.

[12] D. Funaro, Polynomial approximation of differential equations, Springer-Verlag, Berlin, 1992.

[13] B. Y. Guo and J. Shen, Laguerre-Galerkin method for nonlinear partial differential on a semi-
infinite interval, Numer. Math., 86 (2000), 635–654.

[14] B. Y. Guo and Z. Xiao-yong, A new generalized Laguerre approximation and its applications,
J. Comput. Appl. Math., 184 (2005), 382–403.

[15] B. Y. Guo, Spectral methods and their applications, World Scientific, 1998.
[16] K. Parand, M. Dehghan, A. R. Rezaei, and S. M. Ghaderi, An approximate algorithm for

the solution of the nonlinear LaneEmden type equations arising in astrophysics using Hermite
function collocation method, Comput. Phys. Commun., 181 (2010), 1096–1108.

[17] K. P. Rajesh, N. Kumar, A. Bhardwaj, and G. Dutta, Solution of LaneEmden type equations
using Legendre operational matrix of differentiation, Appl. Math. Comput., 218 (2012), 7629–
7637.

[18] O. W. Richardson, The emission of electricity from hot bodies, Longmans, Green and Company,

1921.
[19] J. Shen, T. Tang, and L. L. Wang, Spectral methods: algorithms, analysis and applications,

Springer, New York, 2011.

[20] S. C. Shiralashetti and S. Kumbinarasaiah, Hermite wavelets method for the numerical solution
of linear and nonlinear singular initial and boundary value problems, Comput. Methods Differ.
Equ., 7 (2019), 177–198.

[21] S. C. Shiralashetti and S. Kumbinarasaiah, New generalized operational matrix of integration

to solve nonlinear singular boundary value problems using Hermite wavelets, Arab journal of
basic and applied sciences, 26 (2019), 385–396.



CMDE Vol. 9, No. 4, 2021, pp. 1176-1197 1197

[22] S. C. Shiralashetti and S. Kumbinarasaiah, Theoretical study on continuous polynomial wavelet
bases through wavelet series collocation method for nonlinear LaneEmden type equations, Appl.
Math. Comput., 315 (2017), 591–602.

[23] G. Szego, Orthogonal polynomils, Colloquium publications, AMS, New York, 1939.
[24] L. N. Trefethen, Spectral methods in MATLAB, SIAM, Philadelphia, PA, 2000.
[25] Z. Q. Wang, The Laguerre spectral method for solving Neumann boundary value problems, J.

Comput. Appl. Math., 235 (2011), 3229–3237.

[26] A. M. Wazwaz, A new algorithm for solving differential equations of Lane-Emden type, Appl.
Math. Comput., 118 (2001), 287–310.

[27] A. M. Wazwaz, The modified decomposition method for analytic treatment of differential equa-
tions, Appl. Math. Comput., 173 (2006), 165–176.

[28] A. Yildirim and T. Ozis, Solutions of singular IVPs of LaneEmden type by the variational
iteration method, Nonlinear. Anal., 70 (2009), 2480–2484.

[29] S. Yzbasi and M. Sezer, An improved Bessel collocation method with a residual error function

to solve a class of LaneEmden differential equations, Math. Comput. Model., 57 (2013), 1298–
1311.

[30] H. Zhu, J. Niu, R. Zhang, and Y. Lin, A new approach for solving nonlinear singular boundary
value problems, Math. Model. Anal., 23 (2018), 33–43.


	1. Introduction
	2. Basic preparations on MGLPs
	3. Operational matrix
	3.1. Function approximation
	3.2. Operational matrix of derivative
	3.3. Operational matrix of product

	4. Modified generalized Laguerre collocation method
	4.1. Explaining the method 
	4.2. Existence, uniqueness, convergence and stability of approximation 

	5. Numerical examples
	6. Conclusion
	Acknowledgment
	References

