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Abstract In this paper, we present a numerical technique to deal with the one-dimensional
forward-backward heat equations. First, the physical domain is divided into two
non-overlapping subdomains resulting in two separate forward and backward sub-

problems, and then a meshless method based on multiquadric radial basis functions
is employed to treat the spatial variables in each subproblem using the Kansa’s
method. We use a time discretization scheme to approximate the time derivative
by the forward and backward finite difference formulas. In order to have adequate

boundary conditions for each subproblem, an initial approximate solution is assumed
on the interface boundary, and the solution is improved by solving the subproblems
in an iterative way. The numerical results show that the proposed method is very
useful and computationally efficient in comparison with the previous works.
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1. Introduction

In the last two decades, meshfree methods based on radial basis functions (RBFs)
have been applied to almost all types of partial differential equations (PDEs) [14, 29].
This method was first introduced by Kansa for the numerical solution of elliptic and
parabolic equations [22] and then developed by many other researchers (see for exam-
ple [10, 15, 16, 23]). The main attractive features of these methods are, firstly, they
are truly meshless method meaning that neither in the domain representation nor in
the solution procedure, mesh construction is required. Secondly, they can be easily
applied to higher dimensional cases due to their radial nature and thirdly, they are
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very convenient for the problems with complicated geometry.

The commonly used RBFs are multiquadrics (MQ), Gaussian, Thin plate splines
(TPS) and compactly supported RBFs (CS-RBFs) [39]. For a comprehensive discus-
sion about RBFs see [5].

In this work we propose a truly meshless method for the numerical solution of the
forward-backward heat equation (FBHE) in a one-dimensional case as follows,

a(x)ut − uxx = f(x, t), (x, t) ∈ Ω = (−1, 1)× (0, 1),
u(−1, t) = g−1(t), t ∈ [0, 1],
u(1, t) = g1(t), t ∈ [0, 1],
u(x, 0) = u0(x), x ∈ [0, 1], (initial condition)
u(x, 1) = u1(x), x ∈ [−1, 0], (terminal condition)

(1.1)

where a(x), g−1(t), g1(t), u0(x), u1(x) are given functions and a(x) > 0 for x > 0,
a(x) < 0 for x < 0 and a(0) = 0. For a theoretical and practical consideration of the
solution of this equation see for example [8, 35, 38].
The FBHE has appeared in a variety of applications in different areas some of which
are briefly mentioned here.

• Randomly accelerated particle
This problem considers the determination of the time that it takes a particle
which is restricted to move on a line segment with a specific initial position
and an initial velocity undergoing random acceleration to reach either of the
boundary points. For full consideration of this problem in details see [18].

• LaRosas electron beam model
This problem considers a beam electron velocity distribution that specifies the
measure of how large a population of electrons at location x and time t travel
at velocity v. At the leading edge of the beam it is considered appropriate to
model the diffusion of electrons by the quasi-linear plasma diffusion equations
[33].

• Prandtl boundary layer equations
This problem arises in two dimensional fluid flow near a boundary when sepa-
ration occurs. Starting with the nondimensionalized Navier-Stokes equations
for a viscous incompressible fluid and considering the flow near the boundary
leads to a non-linear FBHE [34].

• Transport during flow reversal
This problem arises from modeling of transport by convection dominated
flow of temperature or a pollutant or salt in the boundary layer of a fluid
undergoing a flow separation or reversal (to see an example in details see
[36]).

• Neutron scattering
This is another example of the problems whose modeling lead to a forward-
backward heat equation.
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The FBHE has been solved by various methods such as finite difference method
[7, 20, 38], transformation to a system of first order differential equations [30], least
square approach [1] and Galerkin finite element [19].
While the meshless methods are classified into two major categories: meshfree strong
form and meshfree weak form, the current work is based on the strong form and col-
location method [29]. We apply the MQ to the underlying equation. This RBF was
initially suggested by Hardy for applications in cartography to improve the approxi-
mation previously obtained by polynomial interpolation [21]. The MQ often gives the
most accurate results in two dimensions for different applications [17].
One difficulty with using RBFs such as MQ is the existence of shape parameters whose
values seriously affect the quality of the approximation. There have been many works
regarding the choice of the shape parameters for various RBFs [24, 28]. Although,
there is no mathematical theory for finding optimal values of these parameters. For
some applications, suitable values have been suggested based on both theoretical and
experimental works [11, 28].

Another disadvantage of using RBFs is that their interpolation matrices are fully
populated. This causes the linear system of equations to be ill-conditioned, especially
for large scale problems. To avoid this difficulty, some treatments such as domain
decomposition method (DDM) [4], the preconditioner [26] and CS-RBFs [39] have
been proposed.

This paper is organized as follows: In section 2, some theoretical and practical
aspects of RBFs will be discussed. In section 3, the domain partitioning will be
carried out for the underlying problem and the RBF meshfree formulation will be
applied to the forward and backward subproblems. The solution of the algebraic
equations resulted from the local problems will be dealt with via the standard iterative
DDM in section 4. Finally, some numerical results will be presented in section 5.

2. RBF interpolation

This section discusses the theoretical aspects concerning interpolation (or colloca-
tion) via RBFs. These meshfree schemes are flexible methods that effectively work in
scattered data points; therefore, it can be easily applied to problems with irregular
domains. Some of the most popular RBFs are listed in Table 1.

As seen in Table 1, some RBFs contain a parameter ϵ known as a shape parameter
which affects the flatness of the RBF profile. Many of these RBFs have been proven
to be the smoothest interpolant and for solving PDEs, an RBF must be chosen with
adequate order of smoothness up to the order of the underlying PDE.

A given function u(x) in scattered data interpolation can be approximated by an
interpolant such as U(x) which is a linear combination of RBFs at N distinct nodes
or centers X = {x1, ..., xN} augmented by certain polynomials as follows,

U(x) =

N∑
i=1

αiϕi(x) +

M∑
j=1

βjpj(x) = ΦT (x)α+ PT (x)β, x ∈ Rd, (2.1)
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Table 1. Example of some popular radial basis functions

Name ϕ(r) Restrictions Smoothness
Generalized Multiquadric (r2 + ϵ2)

s
2 s ̸= 2n, n ∈ N, s > 0 C∞

Generalized Inverse Multiquadric (r2 + ϵ2)−s s > 0 C∞

Gaussian e−( r
ϵ )

2

C∞

Matern (M2) e
r
ϵ ( rϵ + 1) C2

Wendland (W2) (1− r
ϵ )

4
+(4

r
ϵ + 1) C2

Polyharmonic (odd s) rs s ̸= 2n, n ∈ N, s > 0 C⌈s⌉−1

Polyharmonic r2s log(r) s ∈ N, s > 0 C2s−1

where ϕi : Rd −→ R is a radial basis function ΦT (x) = [ϕ1(x), ϕ2(x), ..., ϕN (x)],
and PT (x) is a polynomial basis function that has the monomial terms as PT (x) =
[p1(x), p2(x), ..., pM (x)], where, p1(x), p2(x), ..., pM (x) form a base for the M-dimensional
space πm−1(Rd) of polynomials of total degree ≤ m− 1 in d variables.
Also α = (α1, α2, ..., αN )T and β = (β1, β2, ..., βM )T .

Similarly for any differential operator L, Lu may be approximated by

LU(x) =
N∑
i=1

αiLϕi(x)+
M∑
j=1

βjLpj(x) = LΦT (x)α+LPT (x)β, x ∈ Rd (2.2)

where ϕ(x) = φ(ri) : R+ −→ R in which ri is a distace between an interpolating point
x and the node xi. The function ϕi depends only on the distance between x and a
fixed point xi. This distance in the Euclidean d-dimensional space for x = (x1, ..., xd)
and xi = (y1i , ..., y

d
i ) is given by

ri = ||x− xi|| = ((x1 − y1i )
2 + ...+ (xd − ydi )

2)
1
2 ,

The vectors α and β are determined by enforcing the interpolation pass through
all N scattered nodal points as follows,

Uk =

N∑
i=1

αiϕi(xk) +

M∑
j=1

βjpj(xk), k = 1, 2, ..., N. (2.3)

The above equations form an undetermined system as the number of unknown co-
efficients is N +M whereas there are only N equations. In order to make a square
system, some additional equations are requaired. Based on the theory of the con-
ditionally positive definite functions, the following equations are added to the linear
system (2.3) (see [15]).

N∑
i=1

αipj(xi) = 0, j = 1, 2, ...,M. (2.4)
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The above equations can be reduced to the matrix form

Û =

[
U
0

]
=

[
Φ P
PT O

] [
α
β

]
, (2.5)

where the matrix Φ ∈ RN×N is given by Φij = φ(∥xi − xj∥), i, j = 1, ..., N ,
P ∈ RN×M has entries Pjk = pk(xj), j = 1, ..., N, k = 1, ...,M , UT = (U1, ..., Un), 0
is a zero vector of length M , and O is a M ×M zero matrix. The system (2.5) is
solvable if the coefficient matrix on the left-hand side is invertible. The invertibility
of the coefficient matrix in (2.5) for a class of RBFs have been considered in [15].
In eq. (2.1), if ϕ is conditionally positive definite i.e. ϕ has a polynomial growth
towards infinity such as Multiquadric and Thin Plate Spline, then we need to add

polynomial
∑M

j=1 βjpj(x) in order to have a unique solution for the system (2.5).
Unlike these functions, RBFs such as Gaussian, Inverse Multiquadric functions

are strictly positive definite RBFs. Adding a polynomial to these functions is not
necessary since the solvability of the resulting interpolation system, in this case, is
guaranteed. If ϕ is a positive definite function then by omitting the polynomial∑M

j=1 βjpj(x) in (2.1) we may have

U(x) =
N∑
i=1

αiϕi(x) = ΦT (x)α, x ∈ Rd, (2.6)

by enforcing the interpolation pass through all N scattered nodal points, the fol-
lowing equations are obtained

Uk =
N∑
i=1

αiϕi(xk) = Φα, k = 1, 2, ..., N, (2.7)

for which the associated matrix Φ is invertible and the RBF interpolation problem
is well-posed, hence a unique solution exists .

Regardless of the property of the positive definiteness in these two general type
of RBFs, the interpolation matrix of these functions is dense and it may be very
ill-conditioned by choosing some particular RBF shape parameters [15]. That would
happen because of the globally supported of RBFs.

To overcome the conditioning dilemma in the system of collocation equations,
several recipes such as compactly supported RBFs [39], preconditioning [3], domain
decomposition [26] and local methods have been applied [37].

A few works have been accomplished to consider the accuracy and convergence of
the RBF collocation method. Madych and Nelson in [31] have theoretically shown

that the error converges at the exponential rate O(λ
1
h ) for a class of RBFs covering

Multiquadric and the Gaussian, where 0 < λ < 1 and h is the maximum mesh size.
Along the same works for the Multiquadrics, Madych in [32] presented O(eacλ

c
h ),

where c is the shape parameter and a > 0 is a constant. For PDEs, Cheng et al in [6]
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obtained the error estimateO(λ
√

c
h ) to the convergence of Gaussian and Multiquadrics

for elliptic problems.

3. Domain partitioning

Figure 1. The domain partitioning scheme

Let the domain Ω be divided into two subdomains, Ω1 = (−1, 0) × (0, 1) and
Ω2 = (0, 1) × (0, 1) with the real boundaries Γ1 and Γ2 and an artificial boundary
ΓI = {0} × (0, 1) in between (Fig. 1). This partitioning divides problem (1.1) into
two subproblems as follows,
Subproblem 1:

a(x)ut − uxx = f(x, t), (x, t) ∈ Ω1 = (−1, 0)× (0, 1),
u(−1, t) = g−1(t), t ∈ [0, 1],
u(x, 1) = u1(x), x ∈ [−1, 0],

(3.1)

Subproblem 2:

a(x)ut − uxx = f(x, t), (x, t) ∈ Ω2 = (0, 1)× (0, 1),
u(1, t) = g1(t), t ∈ [0, 1],
u(x, 0) = u0(x), x ∈ [0, 1].

(3.2)

To solve the subproblems (3.1) and (3.2), we first deal with the spatial variable by
the RBF method.

Let {xi}Ni=1 be a set of nodes in [−1, 0] where {xi}N−1
i=2 and {x1 = −1, xN = 0}

represent the interior and boundary points respectively.



CMDE Vol. 9, No. 4, 2021, pp. 1083-1099 1089

An approximation of the function u(x, t) in the backward equations (3.1), can be
written as

u(x, t) ≈
N∑
j=1

λj(t)φ(||x− xj ||), x ∈ Rd, (3.3)

where {φ(||x− xj ||)}Nj=1 is a set of the Multiquadric functions, centered at xj as

φ(||x− xj ||) =
√
||x− xj ||2 + c2,

and the constant c is a shape parameter. Also {λj(t)}Nj=1 are time-dependent un-
known coefficients to be determined.

Substituting (3.3) into (3.1), we obtain

a(x)
N∑
j=1

dλj(t)

dt
φ(||x− xj ||)− λj(t))φxx(||x− xj || = f(x, t), (3.4)

u(−1, t) =
N∑
j=1

λj(t)φ(|| − 1− xj ||) = g−1(t), (3.5)

N∑
j=1

λj(1)φ(||x− xj ||) = u1(x), (3.6)

where φxx(||x−xj || represents the second derivative of φ(||x−xj || with respect to x.
It should be noted that the last equation is associated with the terminal condition,
that is, the solution function at t = 1.
Similarly, using N nodes {xi}2N−1

i=N in [0, 1], the solution function u(x, t) for subprob-
lem 2 can be approximated as

u(x, t) ≈
2N−1∑
j=N

γj(t)φ(||x− xj ||, (3.7)

where {xN = 0, x2N−1 = 1} and {xj}2N−2
j=N+1 are the boundary and interior nodes,

respectively, for this subproblem and γj ’s are the corresponding unknown coefficients.
Substituting (3.7) into (3.2) yields
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a(x)
2N−1∑
j=N

dγj(t)

dt
φ(||x− xj ||)− γj(t)φxx(||x− xj ||) = f(x, t), (3.8)

u(1, t) =
2N−1∑
j=N

γj(t)φ(||1− xj || = g1(t), (3.9)

2N−1∑
j=N

γj(0)φ(||x− xj ||) = u0(x). (3.10)

We notice that this subproblem represents a forward type and the last equation is
associated with the initial condition.

Employing the collocation method at the interior points gives

a(x)
N∑
j=1

dλj(t)

dt
φ(||xi−xj ||)−λj(t))φxx(||xi−xj || = f(xi, t), i = 2, . . . , N−1.

(3.11)

We now discretize the time by the first order forward and backward schemes,
respectively, for subproblems 1 and 2.
Let δt = 1/M and tj = jδt for j = 0, ...,M . By a first order forward difference scheme
in Ω1, we approximate the time derivative as

dλj(t)

dt
≈ 1

δt
(λj(t+ δt)− λj(t)). (3.12)

Substituting the difference formula (3.12) into (3.11) at t = tn leads to the equations

a(x)
N∑
j=1

(λj(tn+1)− λj(tn))

δt
φ(||xi − xj ||)− λj(t))φxx(||xi − xj || = f(xi, tn),

i = 2, . . . , N − 1,

which can be reduced to a matrix form as follows,

(D(1)C(1) + δtC(1)
xx )λ

n = D(1)C(1)λn+1 − δtfn, n =M − 1, ..., 0, (3.13)

where C(1) and C
(1)
xx are (N − 2)×N matrices with

C
(1)
ij = φ(||xi − xj ||, (C(1)

xx )ij = φxx(||xi − xj ||; i = 2, ..., N − 1, j = 1, ...N

, D(1) is a diagonal matrix of the same size with D
(1)
ii = a(xi); i = 2, ..., N − 1,

fni = f(xi, nδt),

λn = [λ1(tn), . . . , λN (tn)]
T
, fn =

[
fn2 , . . . , f

n
N−1

]
,

and the superscripts n and (1), respectively, denote the time steps and the association
of the matrices with the subdomain Ω1. Note that this system includesN−2 equations
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associated with the interior nodes. Equations formed by the real boundary x = −1
and the virtual boundary x = 0 are given by

B1λ
n = g−1(tn),

B
(1)
N λn = ψn

1 ,
(3.14)

where B1 and B
(1)
N are 1×N matrices as follows,

B1 = [φ(||x1 − x1||, . . . , φ(||x1 − xN ||)] ,

B
(1)
N = [φ(||xN − x1||, . . . , φ(||xN − xN ||)] ,

and ψn
1 is a fictitious function acted at the time step n on the virtual boundary x = 0

for subproblem 1.
Using a backward scheme for the time derivative in the subproblem 2, and repeating
a similar process, the final linear system of equations takes the form

D(2)C(2) − δtC
(2)
xx )γn+1 = D(2)C(2)γn + δtfn+1, n = 0, ...,M − 1,

B
(2)
N γn+1 = ψn

2 ,
B2N−1γ

n+1 = g1(tn),

(3.15)

where

γn = [γN (tn), . . . , γ2N−1(tn)]
T
,

and all the matrices with superscript (2) have the same duty as those for subproblem
1 and B2N−1 is associated with the boundary point x2N−1 = 1.
As seen above, for the subproblem associated with Ω1, which is a backward problem,
a forward finite difference is used, whereas for the subproblem associated with Ω2

which is a forward problem, a backward formula is utilized.

4. Applying iterative DDM

The linear system of equations (3.13) and (3.14) can not be solved as the boundary
conditions on the virtual boundary point x = 0 is not available, that is, the values of
ψn
1 , are not known. The same problem occurs for subproblem 2. To fix this issue, we

use some approximate values on the interface boundary ΓI .

To proceed, we need some approximations on the virtual boundary x = 0. Let

{u(0)0j ≈ u(0, tj) 1 ≤ j ≤M − 1} be the initial approximate values of the solution on

this boundary where the superscript (.) indicates the number of performed iterations.
In this case, the above linear systems can be dealt with separately. To do so, we first
need to find λM and γ0, respectively, for the backward and the forward problems.
To this end, we use the functions u1(x) and u0(x) which specify the terminal and
initial conditions for the subproblems 1 and 2, respectively. For instance, applying
the terminal condition for subproblem 1 and using (3.3), we derive the following
equations:

A(1)λM = u1, (4.1)



1092 S. BANEI AND K. SHANAZARI

where

A(1) =

 B1

C(1)

B
(1)
N

 ,
u1 is a vector of the nodal values of function u1(x) and the matrices are those

introduced in (3.13) and (3.14).

Similarly, the equation associated with initial conditions for subproblem 2 can be
written as

A(2)γ0 = u0, (4.2)

where u0 is a vector of the nodal values of function u0(x), and

A(2) =

 B
(2)
N

C(2)

B2N−1

 .
Now the linear equations (4.1) and (4.2) can be solved to obtain λM and γ0 followed
by finding λn, n = M − 1, ..., 0 and γn, n = 1, ...,M via solving equations (3.13),
(3.14) and (3.15) at each time step.

Having solved the subproblems for the approximate values u
(0)
0j , we need to update

the solution on ΓI .
We can use a number of nodes in the neighborhood of x = 0 to interpolate the

solution function on the interface at each time step as follows,
Suppose that

u(x, tj) ≈
N+L∑

l=N−L

ηk(tj)φ(||x− xl||), j = 0, . . . ,M. (4.3)

where φ can be the MQ or any other RBFs, ηk’s are unknown coefficients and L is
chosen such that L < N . To solve the interpolation problem, we use the interior
approximate solutions of the subproblems to find the unknown coefficients ηj , that
is,

u(xi, tj) =

N+L∑
l=N−L

ηl(tj)φ(||xi − xl||), i = N − L, . . . , N + L, i ̸= N. (4.4)

We also know that in the governing equation of problem (1.1), a(x) = 0 at x = 0,
Hence, xN = 0, as an interior point of the main equation, satisfies

−uxx = f(x, t) (x, t) ∈ ΓI = {0} × (0, 1), (4.5)
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Thus, by substituting (4.3) into (4.5) and applying the collocation method at x = xN ,
we obtain

N+L∑
l=N−L

ηlφxx(||xN − xl||) = −f(0, tj), j = 1, . . . ,M − 1. (4.6)

Solving equations (4.4) and (4.6) will give the values of ηk followed by evaluating
u(xN , tj) by the use of (4.3) to update the interface boundary solution. This process is

performed iteratively to produce the interface boundary solution u
(m)
0j (mth iteration)

until a desired accuracy is achieved.

5. Numerical results

In order to demonstrate the performance of the proposed method, we present some
numerical results by considering a forward-backward heat equation using MQ with
the shape parameter ϵ.
To measure the accuracy of the numerical solution, the maximum error (Max error)
and the root-mean-square error (RMSE) are used as follows:

Max error =
N

max
j=1

|ûj − uj |, RMSE =

√√√√ 1

N

N∑
j=1

(ûj − uj)2,

whereN is the number of nodes, uj and ûj denote the exact and approximate solutions
at the jth node.

Example 5.1. We consider equation (1.1) with g−1(t) = 0, g1(t) = 0, u0(x) =
0, u1(x) = 0 and

f(x, t) =


2x(x2 − 1)t[(t− 1)2 − 4x2 + t(t− 1)]− 2t2[(t− 1)2 − 24x2 + 4],
x ≥ 0, t ∈ [0, 1],

2x(x2 − 1)(t− 1)(2t2 − t− 4x2)− 2(t− 1)2(t2 − 24x2 + 4),
x ≤ 0, t ∈ [0, 1].

(5.1)

The exact solution of the above problem is given by:

u(x, t) =

 (x2 − 1)t2[(t− 1)2 − 4x2], x ≥ 0 t ∈ [0, 1],

(x2 − 1)(t2 − t− 4x2)(t− 1)2, x ≤ 0 t ∈ [0, 1],
(5.2)

This problem has been solved by the proposed method and the numerical results
are presented for various numbers of time steps, M , the total number of nodes in
each subproblem, N and two values of the shape parameter ϵ. Also, in each case, the
number of iterations, represented by k is given. The numerical errors in the cases of
(I) ϵ = 0.5, N = 10, and (II) ϵ = 1.4, N = 20, for various number of time steps are
given, respectively, in Tables 2 and 3. As seen, in both cases, the results demonstrate
the convergence of the proposed method as by increasing the number of nodes, the
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errors are decreased.
It should be noted that the number of nodes used, for the interpolation part of the up-
dating stage in (4.3), is taken as twenty percent of the total number, that is, L = N/5.
Of course by increasing the number of interpolation nodes, L, the number of iterations
required for a desired accuracy is reduced.

In addition, the exact solution and the approximate solutions obtained by the
new method, are compared in Figures 2 and 3 for various number of nodes and the
time steps and different initial approximate solution ψn on the virtual boundary.
As observed in the right sides of the Figures, the approximate solution is in a good
agreement with the exact solution. Also the plots of the error values, in the left sides,
demonstrate the accuracy of the numerical results.
To consider the convergence behavior of the current method, we applied it to the above
problem while using different values of the initial approximate values ψn. To do this,
we chose this values to be a multiple of the exact solution, that is, ψn = cu(x, y),
when c = 0, 1.5, 2. The results are displayed in each case and the number of iterations
required for the accuracy achieved are mentioned in the Figures. One can see that
the number of iterations required, in each case, is proportional to the closeness of the
ψn to the exact solution.

Table 2. Error values in the case of ϵ = 0.5. for Example 5.1.

N M Max error RMSE k
10 10 3.2E-2 1.3E-2 18
10 20 1.9E-2 6.9E-3 15
10 30 1.3E-2 4.8E-3 13
10 40 1.1E-2 3.9E-3 12

Table 3. Error values in the case of ϵ = 1.4 for Example 5.1.

N M Maxerror RMSE k
20 10 2.9E-2 1.1E-2 14
20 20 1.5E-2 4.1E-3 14
20 30 8.3E-3 2.1E-3 13
20 40 7.0E-3 2.1E-3 13

The numerical results achieved by the new method and the results presented in [20]
are compared in Table 4. Both methods are based on an iterative non-overlapping
DDM, but the previous work used the FDM for the spatial dimension. As a result,
being a meshfree method, the current work is more computationally efficient than
the other one which is a mesh-dependent method, taking into account, nearly the
same accuracy is gained in the two methods. Moreover, in the previous work, an
appropriate iteration parameter is required in order to make the method convergent.
Finding a suitable parameter is a difficult task and needs time and care.
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Figure 2. Configuration of the the error values in the left side and
comparison the exact and approximate solutions in the right side
with N=8, M=16 and ϵ = 0.14 (Example 1).

Table 4. Comparison of the Max error for Example 5.1 with the
previous numerical results.

N M Method of [20] k New method ϵ k
4 4 1.36E-2 24 4.37E-2 .033 5
8 16 3.68E-2 38 2.19E-2 .14 15
16 64 9.22E-3 63 5.4E-3 .84 20

Example 5.2. Consider eqs. (1.1) with

f(x, t) = −x x
2 + 1

(1 + t)2
− 2

1 + t
, (5.3)

with the initial and terminal conditions

u(x, 0) = x2 + 1, u(x, 1) =
x2 + 1

2
,

and the dirichlet condition

u(x, t) =
x2 + 1

1 + t
, x ∈ ∂Ω, 0 < t < 1.

The exact solution, in this case, is given by:

u(x, y, t) =
x2 + 1

1 + t
. (5.4)
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Figure 3. Configuration of the error values in the left side and com-
parison the exact and approximate solutions in the right side with
N=16, M=64 and ϵ = 0.84 (Example 1).

The numerical errors are presented in Tables 5 and 6. Also the exact and approx-
imate solutions together with the error function are plotted in Figure 4. Again we
observe reasonable accuracy for this example while having the advantages mentioned
for the previous example.

Table 5. Error values of the new method for Example 5.2.

N M ϵ k Max error MSRE
12 6.30E-2 1.36E-2

8 8 0.05 14 2.23E-2 6.60E-3
16 1.41E-2 4.30E-3
12 7.60E-3 2.40E-3

10 10 0.14 14 3.00E-3 9.49E-4
16 4.20E-3 7.68E-4

Table 6. Error values of the new method for Example 5.2.

N M ϵ k Max error MSRE
24 1.90E-3 4.97E-4

20 20 1.54 26 1.30E-3 2.45E-4
28 6.29E-4 2.40E-4
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Figure 4. Configuration of the error values in the left side and com-
parison the exact and approximate solutions in the right side with
N=20, M=20 and ϵ = 1.54 (Example 2).

It should be emphasized that due to the nature of the forward-backward problem,
the physical domain is essentially divided into a couple of subdomains. However,
applying domain decomposition with more than two subdomains could improve both
the computational efficiency and the accuracy, since on the one hand, it leads to
solving a number of small systems of equations rather than a single large system
and on the other hand, the method improve the conditioning of the matrices which
results in improving the accuracy of the solution. However, because the current
work concerns about a 1D forward-backward problem and, in this case, we are not
dealing with large scale matrices, the DDM with many subdomains is not motivated.
In a primary attempt, we have considered a DDM with many subdomains for 2D
problems confirming the improvement of the results. These achievements together
with consideration of 2D problems are not presented here and left for a future work.

6. Conclusion

An iterative non-overlapping domain decomposition method based on Multiquadric
RBF meshfree method was developed for the numerical solution of the forward-
backward heat equation. The proposed method was established by considering two
separate backward and forward subproblems via splitting the domain.

The effectiveness of the new method was demonstrated by considering two exam-
ples and comparing the results with the numerical solutions obtained by the finite
difference method in a previous work.
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The method was presented for the case of one dimensional spatial variable. Ex-
tending the method to the cases of 2D and 3D are also possible and left for a future
work. The method can offer much more computational efficiency in the higher dimen-
sional cases, taking into account that mesh-dependent methods have more difficulty
in these cases and their efficiency considerably decreases, especially when an adaptive
analysis is required.
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