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Abstract This work presents a new approximation approach to solve the linear/nonlinear
distributed order fractional differential equations using the Chebyshev polynomials.
Here, we use the Chebyshev polynomials combined with the idea of the collocation

method for converting the distributed order fractional differential equation into a
system of linear/nonlinear algebraic equations. Also, fractional differential equations
with initial conditions can be solved by the present method. We also give the error
bound of the modified equation for the present method. Moreover, four numerical

tests are included to show the effectiveness and applicability of the suggested method.
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1. Introduction

The theory of fractional differential operators has a large history and is considered
by a lot of researchers [28, 31]. Over the last decade, fractional differential equations
(FDEs) have many applications in several branches of science and areas in fluid flow,
physics, mechanics and other applications, see, say [28, 31, 39]. The existence of a
unique solution of FDE has been studied by many researchers [15, 24]. Generally,
since most of FDEs do not have closed form solutions, therefore numerical algorithms
should be applied (see e.g., [2, 13, 14, 27, 29, 30, 32, 34, 35, 36]).

In recent years, special attention has been paid to distributed order fractional dif-
ferential equations (DFDEs), see, say [1, 23, 33, 41]. As pointed by [25], an important
relation between integer order and fractional order operators can be expressed by the
distributed order operator. In 1995, Caputo [10] applied this concept for generaliza-
tion the stress-strain relation in dielectrics. In 2000, Bagley and Torvik [6, 7] used
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DFDEs in linear time-variant system. Also, a time-fractional diffusion-like of dis-
tributed order equation is considered in [11] and the Bagley-Torvik equation with the
distributed order fractional derivative, which is used in fluid mechanics, is considered
in [4, 20]. Finally, DFDEs appear in modelling of many interdisciplinary areas, such
as diffusion and wave phenomena [12, 16], control systems [42], viscoelastic model [5],
dynamical system [20]. It is often more difficult to get a closed form solution than
a numerical one for a given DFDE. Therefore, effective numerical techniques should
be applied (for example, we refer the reader to see [1, 16, 18, 22, 34, 38], and the
references therein).

In this work, we focus on the following DFDE [21, 26, 40],∫ τ2

τ1

H1 (α,D
αu(t)) dα+H2 (t, u(t), D

γiu(t)) = g(t), t ∈ [0, L] (1.1)

where τ1 and τ2 are positive constants; Dα is the fractional derivative of Caputo type
of order α; γi (γ1 < γ2 < . . . < γr) are positive real numbers. Also, both H1,H2 are
linear/nonlinear functions. Moreover, Eq. (1.1) has the following initial conditions

u(j)(0) = u
(j)
0 , j = 0, 1, . . . , ℓ− 1, (1.2)

where ℓ = max{⌈τ2⌉, ⌈γr⌉} in which, the ceiling function denotes by ⌈.⌉.
Recently, some researchers have developed several approaches to approximate the

solution of this equation. For example, the authors of [26] in 2016 solved the above
problem by employing hybrid functions which consists of Bernoulli polynomials and
block-pulse functions. Also, an approach that uses hybrid of Taylor polynomials and
block-pulse functions can be found in [21]. Moreover, very recently, this equation
solved in [40] with Legendre wavelets method.

In the present paper an effective computational algorithm for solving Eqs. (1.1)
and (1.2) is proposed. In our technique u(t) is extended by shifted Chebyshev poly-
nomials with unknown coefficients. For approximation the integral in Eq. (1.1) the
Gauss-Legendre quadrature is used. Also, the Caputo fractional derivation for shifted-
Chebyshev polynomials is given. Finally, by using collocation method together with
the properties of Chebyshev polynomials the solution of Eqs. (1.1) and (1.2) reduce
to the solution of algebraic equations.

This paper has been organized as follows: In section 2 some mathematical prelim-
inaries of the fractional calculus and Chebyshev polynomials which are required for
our subsequent development are given. In section 3, we obtain numerical method for
solving the DFDEs given in Eqs. (1.1) and (1.2). In section 4, the error bound of
the modified equation for the present method is given. Finally in section 5, we solve
some examples by the proposed method.

2. Notations and Mathematical preliminaries

2.1. Preliminaries in fractional calculus.
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Definition 2.1. The Riemann-Liouville fractional integral operator of order q ≥ 0 is
defined as [32]

Jqu(t) =
1

Γ(q)

∫ t

0

(t− z)q−1u(z)dz =
1

Γ(q)
tq−1 ∗ u(t), t > 0, q > 0, (2.1)

J0u(t) = 1,

where Γ(.) is the Gamma function and the symbol ∗means the convolution product.

Definition 2.2. Let α > 0,m ∈ N and m − 1 < α ≤ m. The Caputo fractional
derivative with order α is defined as [32]:

Dαu(t) = Jm−αDmu(t) =
1

Γ(m− α)

∫ t

0

(t−z)m−α−1u(m)(z)dz, t > 0, (2.2)

Clearly, Dα is a linear operator and satisfies the following properties [32]:

DαK = 0, (K is a constant). (2.3)

Dαtj =

{
0, j < ⌈α⌉,
Γ(j+1)

Γ(j+1−α) t
j−α, j ≥ ⌈α⌉.

, j ∈ N. (2.4)

Definition 2.3. The fractional differential operator of distributed order for a function
u(t) with respect to nonnegative weight function ρ(α) is given by [20]

Dρ(α)u(t) =

∫ β2

β1

ρ(α)Dαu(t)dα, (2.5)

where β1 and β2 are positive numbers. Clearly, Dρ(α) is a linear operator, and we
have:

Dρ(α)K = 0, (K is a constant). (2.6)

2.2. Preliminary of Chebyshev polynomials.

The Chebyshev polynomials can be determined from three-term recurrence formula
as [9]:

T̃i+1(x) = 2xT̃i(x)− T̃i−1(x), x ∈ [−1, 1], i = 1, 2, . . .

where T̃0(x) = 1, T̃1(x) = x. Alos, the analytic form of T̃i(x) is given by

T̃i(x) = i

[ i2 ]∑
j=0

(−1)j2i−2j−1 (i− j − 1)!

j!(i− 2j)!
xi−2j . (2.7)

For the sake of using T̃i(x) on [0, L], we use the transformation x = 2t
L − 1. Let the

shifted Chebyshev polynomials T̃i(
2t
L − 1) be denoted by T ∗

i (t). In this form T ∗
i (t)

satisfy the recurrence relation:

T ∗
i+1(t) = 2

(
2t

L
− 1

)
T ∗
i (t)− T ∗

i−1(t), i = 1, 2, . . .
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where T ∗
0 (t) = 1 and T ∗

1 (t) =
2t
L − 1. The orthogonality condition is

∫ L

0

T ∗
j (t)T

∗
k (t)wL(t)dt =


π, j = k = 0,
π
2 j = k ̸= 0

0 j ̸= k,

,

where wL(t) =
1√

Lt−t2
. Also, T ∗

i (t) has the following explicit expression [17]

T ∗
i (t) = i

i∑
k=0

(−1)i−k (i+ k − 1)!22k

(i− k)!(2k)!Lk
tk. (2.8)

Note that T ∗
i (0) = (−1)i and T ∗

i (L) = 1. In this paper, for simplicity, we assume
L = 1.

2.2.1. Function approximation.

An arbitrary function u(t) ∈ L2[0, 1] may be approximated by shifted Chebyshev
polynomials as [9]

u(t) ≃
m∑
i=0

ciT
∗
i (t) = CTΦ(t), (2.9)

where

CT = [c0, c1, . . . , cm], Φ(t) = [T ∗
0 (t), T

∗
1 (t), . . . , T

∗
m(t)]T . (2.10)

The coefficients cj are given by [9]

cj =
1

hj

∫ 1

0

u(ϑ)T ∗
j (ϑ)

1√
ϑ− ϑ2

dϑ, j = 0, 1, 2, . . . ,m, (2.11)

where hj =
ϵj
2 π, ϵ0 = 2, ϵj = 1, j ≥ 1. Also, the derivative of Φ(t) is given by [17]

dΦ(t)

dt
= D(1)Φ(t), (2.12)

where

D(1) = drs =


4r
ϵs
, for s = 0, 1, . . . , r = s+ ℓ,

{
ℓ = 1, 3, ...,m, if m odd,

ℓ = 1, 3, ...,m− 1, if m even,

0, otherwise.

Here, D(1) is the operational matrix of derivative. It is obvious that, by using Eq.
(2.12), we have

dnΦ(t)

dtn
= D(n)Φ(t), n ∈ N, (2.13)

where D(n) = (D(1))n. Also, for the the shifted Chebyshev vector Φ(t) we have [3]

Φ(t) = ATm(t), (2.14)
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where

A =



1 0 0 · · · 0
−1 2 0 · · · 0

2(−1)2 1!
2!

2(−1)1 222!
2!

2(−1)0 243!
4!

· · · 0
...

...
...

. . .
...

m(−1)m (m−1)!
m!

m(−1)m−1 22(m)!
2!(m−1)!

m(−1)m−2 24(m+1)!
4!(m−2)!

· · · m(−1)0 22m(2m−1)!
(2m)!

 ,

(2.15)

and Tm(t) = [1, t, t2, . . . , tm]T .

2.3. Legendre-Gauss quadrature.
Let S be an arbitrary positive integer. The Legendre-Gauss quadrature rule on the
interval (τ1, τ2) is [19, 34]

∫ τ2

τ1

u(t)dt ≃
S∑

q=1

ωqu(σq), (2.16)

where

σq =
τ2 − τ1

2
ζq +

τ2 + τ1
2

, ωq =
τ2 − τ1

(1− ζ2q )(L
′
S(ζq))

2
, q = 1, ..., S.

Here, {ζ1, ζ2, . . . , ζS} denotes the S roots of the Legendre polynomial LS(x). Note
that, if u(t) is a polynomial of degree ≤ 2S − 1 then the quadrature given in Eq.
(2.16) is exact. [19].

3. Numerical solution of problem (1.1)-(1.2)

To solve problem (1.1)-(1.2), we use the shifted Chebyshev polynomials for approx-
imation of u(t) as:

u(t) ≃
m∑
i=0

ciT
∗
i (t) = CTΦ(t), (3.1)

where C = [c0, c1, . . . , cm]T is unknown vector. Employing Eq. (2.14), Eq. (3.1) can
be written as

u(t) ≃ CTATm(t). (3.2)
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Now, using Eqs. (2.4), (2.14) and (3.2) we get

dα(u(t))

dtα
≃ CTA

dα

dtα
(Tm(t))

= CTA
[
0 Γ(2)

Γ(2−α) t
1−α Γ(3)

Γ(3−α) t
2−α · · · Γ(m+1)

Γ(m+1−α) t
m−α

]T

= CTA



0 0 0 · · · 0

0 Γ(2)
Γ(2−α) 0 · · · 0

0 0 Γ(3)
Γ(3−α) · · · 0

...
...

...
. . .

...

0 0 0 0 Γ(m+1)
Γ(m+1−α)




1

t1−α

t2−α

...
tm−α


= CTAMαT̄m,α(t), (3.3)

where

Mα =



0 0 0 · · · 0

0 Γ(2)
Γ(2−α) 0 · · · 0

0 0 Γ(3)
Γ(3−α) · · · 0

...
...

...
. . .

...

0 0 0 0 Γ(m+1)
Γ(m+1−α)

 and T̄m,α(t) =


1

t1−α

t2−α

...
tm−α

 .

If we employ Eqs. (3.2) and (3.3), then Eq. (1.1) can be written as∫ τ2

τ1

H1(α,C
TAMαT̄m,α(t))dα +

H2

(
t, CTATm(t), CTAMγ1 T̄m,γ1(t), · · · , CTAMγr T̄m,γr (t)

)
= g(t). (3.4)

First, we evaluate the integral in Eq. (3.4) by using the Legendre-Gauss quadrature
rule (2.16). Then, we collocate Eq. (3.4) at m− ℓ+ 1 points ti. Therefore, from Eq.
(3.4), for i = 1, 2, . . . ,m− ℓ+ 1 we get

S∑
j=1

ωjH1

(
σj , C

TAMσj T̄m,σj (ti)
)
+

H2

(
ti, C

TATm(ti), C
TAMγ1 T̄m,γ1(ti), · · · , CTAMγr T̄m,γr (ti)

)
= g(ti).

(3.5)

To do this, we use the zeros of T ∗
m−ℓ+1(t) as a collocation points, i.e.

ti = 0.5 + 0.5 cos

(
(2i− 1)π

2(m− ℓ+ 1)

)
, i = 1, 2, . . . ,m− ℓ+ 1.

Moreover, by substituting Eqs. (2.13), (2.14) and (3.2) in initial conditions (1.2), we
obtain

CTATm(0) = u0, (3.6)
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CTD(j)ATm(0) = u
(j)
0 , j = 1, 2, . . . ℓ− 1. (3.7)

Eq. (3.5) together with Eqs. (3.6) and (3.7) generate a system of (m + 1) lin-
ear/nonlinear algebraic equations. The unknown vector C can be obtained by solving
this system of algebraic equations. In this paper we used fsolve command in Maple
for solving this system. Therefore, by Eq. (3.2), u(t) can be calculated.

4. Error bounds

Let N be any positive integer, I = (0, 1) and set PN (I) = span{T ∗
0 (t), T

∗
1 (t),

. . . , T ∗
N (t)}. Also,we define ΠNu from L2(I) into PN (I) by

(ΠNu− u, z) = 0, ∀z ∈ PN (I),

equivalently,

(ΠNu)(t) =

N∑
j=0

ajT
∗
j (t).

In fact, ΠNu is the best approximation of u out of PN (I) [37]. Following [8, 37], to
obtain the truncation error u(t)−ΠNu(t), for each m ∈ N, we define the Chebyshev-
weighted Sobolev space Bm(I) as:

Bm(I) =

{
u :

∂ku

∂tk
∈ L2(I), k = 0, 1, ...,m

}
.

The inner product, semi-norm and norm associated with Bm(I) are

(u, z)Bm =
m∑
j=0

(
∂ju

∂tj
,
∂jz

∂tj

)
, |u|Bm =

∥∥∥∥∂mu

∂tm

∥∥∥∥ , ∥u∥Bm = (u, u)
1
2

Bm .

As pointed by [37], this space identifies itself from the ordinary weighted Sobolev
space Hm(I) along with distinct weight functions for derivatives of various orders.
Also, Hm(I) is a subspace of Bm(I), and we have

∥u∥Bm ≤ c∥u||Hm , m ≥ 0.

The error u(t)−ΠNu(t) can be estimated as follows:

Theorem 4.1. ([9]) For m ≥ 0 and all u ∈ Hm(I) we have

∥u(t)−ΠNu(t)∥L2(I) ≤ CN−m∥u∥Hm .

Also, in the sequel, we need the following theorem:

Theorem 4.2. ([8]) If 0 ≤ p < m ≤ N + 1, then for any u ∈ Bm(I)

∥∂p
t (u−ΠNu)∥ ≤ C1

√
(N −m+ 1)!

(N − p+ 1)!
(N +m)

(p−m)
2 ∥∂m

t u∥

≤ C1

√
(N −m+ 1)!

(N − p+ 1)!
(N +m)

(p−m)
2 ∥u∥Bm .
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Moreover, in Hilbert space

∥∂p
t (u−ΠN )∥ ≤ C

√
(N −m+ 1)!

(N − p+ 1)!
(m+N)

(p−m)
2 ∥u∥Hm .

Here, C and C1 are some constant numbers.

We next estimate the error in the approximation of Dα.

Theorem 4.3. If nα − 1 < α ≤ nα, nα < r ≤ N + 1 and u ∈ Hr(I) where r ∈ N,
then

∥Dαu−Dα(ΠN (u))∥L2(I) ≤
(

Cα

Γ(nα + 1− α)

)(√
(N + 1− r)!

(N + 1− nα)!
(N + r)

(nα−r)
2

)
∥u∥Hr .

Proof. Employing Eq. (2.1), Theorem 4.2 and the following relation [8]

∥f ∗ g∥p ≤ ∥f∥1∥g∥p,

we obtain

∥Dαu−Dα(ΠNu)∥2L2(Ω) = ∥Inα−α
(
Dnαu−Dnα(ΠNu)

)
∥2L2(I)

=

∥∥∥∥ tnα−α−1

Γ(nα − α)
∗ (Dnαu−Dnα(ΠNu)

∥∥∥∥2
L2(I)

≤
∥∥∥∥ tnα−α−1

Γ(nα − α)

∥∥∥∥2
1

∥Dnαu−Dnα(ΠN )∥2L2(I)

≤
(

1

Γ(nα + 1− α)

)2
(
Cα

√
(N + 1− r)!

(N + 1− nα)!
(N + r)

(nα−r)
2

)2

∥u∥2Hr .

This completes the proof. □

We are now ready to obtain the bound of the modified equation for our technique.
Let us define

Θ1(u(t)) =

∫ τ2

τ1

H1(α,D
αu(t))dα+H2(t, u(t), D

γiu(t))− g(t), (4.1)

Θ2(u(t)) =

S∑
j=1

wjH1(σj , D
σju(t)) +H2(t, u(t), D

γiu(t))− g(t). (4.2)

Moreover, we define the residual function ResSN (u) of the approximation ΠNu for the
exact solution u in Eq. (1.1) as:

ResSN (u) = Θ2(ΠNu). (4.3)
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Theorem 4.4. Let u ∈ Bq(I) with q > 0. Also, assume that both H1 and H2 in Eq.
(1.1) are lipschitz functions, with constants µ1 and µ2 respectively, then

∥ResSN (u)∥2 ≤ C2π

4S
+ µ2CN−q∥u∥Hq

+ µ1

S∑
j=1

wjCσj

Γ(nσj − σj + 1)

{√
(N − q + 1)!

(N − nσj + 1)!
(N + q)

(nσj
−q)

2

}
∥u∥Hq

+ µ2

r∑
i=1

Cγi

Γ(nγi − γi + 1)

{√
(N − q + 1)!

(N − nγi + 1)!
(N + q)

(nγi
−q)

2

}
∥u∥Hq ,

where nσj − 1 < σj ≤ nσj , j = 1, ..., S and nγi − 1 < γi ≤ nγi , i = 1, ..., r. Also,
C,C2, Cσj and Cγi are constant numbers.

Proof. From Eqs. (4.1)-(4.3) we have

∥ResSN (u)∥2 = ∥0− ResSN (u)∥2 =
∥∥Θ1(u)− ResSN (u)

∥∥
2

≤ ∥Θ1(u)−Θ2(u)∥2 +
∥∥Θ2(u)− ResSN (u)

∥∥
2
. (4.4)

Θ1(u)−Θ2(u) is the error for applying quadrature rule and we have (see [34])

|| Θ1(u)−Θ2(u) ||2≤
C2π

4S
, (4.5)

where

C2 = max

{∣∣∣∣ ∂ 2S

∂α2S
H1(α,D

αu(t))

∣∣∣∣ , t ∈ [0, 1], τ1 < α < τ2

}
.

Also, since H1 and H2 satisfy a Lipschitz condition, we get

∥Θ2(u)− ResSN (u)∥L2(I) ≤
S∑

j=1

wjµ1∥Dσj (u− uN ) ∥L2(I)

+ µ2∥u− uN∥L2(I)

+ µ2

r∑
i=1

∥Dγi (u− uN )∥L2(I) . (4.6)

Let

max{nσj , j = 1, ..., S} ≤ q1 < N+1, and max{nγi , i = 1, ..., r} ≤ q2 < N+1.

Also, let q = max{q1, q2}. By using Theorems 4.1, 4.2, 4.3 and Eq. (4.6), we obtain

∥Θ2(u)− ResSN (u)∥L2(I) ≤ µ2CN−q∥u∥Hq

+ µ1

S∑
j=1

wjCσj

Γ(nσj − σj + 1)

{√
(N − q + 1)!

(N − nσj + 1)!
(N + q)

(nσj
−q)

2

}
∥u∥Hq

+ µ2

r∑
i=1

Cγi

Γ(nγi
− γi + 1)

{√
(N − q + 1)!

(N − nγi
+ 1)!

(N + q)
(nγi

−q)

2

}
∥u∥Hq . (4.7)

Then, the desired result follows from Eqs. (4.4), (4.5) and (4.7). □



CMDE Vol. 9, No. 3, 2021, pp. 858-873 867

5. Illustrative examples

In this part, we consider four test problems in order to illustrate the efficiency of
our numerical approach.
Example 1. Consider the following DFDE [21, 22]∫ 1.5

0.2

Γ(3− α)Dαu(t)dα = 2

(
t1.8 − t0.5

ln t

)
, u(0) = u′(0) = 0.

The exact solution is uexact(t) = t2. This problem was solved for m = 2 and S = 7
using the method described in section 3. So, we approximate u(t) as

u(t) ≃ c0T
∗
0 (t) + c1T

∗
1 (t) + c2T

∗
2 (t) = CTΦ(t),

where CT = [c0, c1, c2] is unknown vector and Φ(t) = [T ∗
0 (t), T

∗
1 (t), T

∗
2 (t)]

T . From Eq.
(2.14) we obtain

u(t) = CTAT2(t), (5.1)

and Dα(u(t)) = CTAMαT̄2,α(t), where

T2(t) =

 1t
t2

 , T̄2,α(t) =

 1
t1−α

t2−α

 , Mα =

0 0 0
0 1

Γ(2−α) 0

0 0 2
Γ(3−α)

 , A =

 1 0 0
−1 2 0
1 −8 8

 .

By collocating Eq. (3.5) at t1 = 0.5, we get

2.5534156946354227 c1− 0.52031731391918894 c2− 1.2116681830778127 = 0,

(5.2)

also, applying the initial conditions we have

c0 − c1 + c2 = 0, (5.3)

2c1 − 8c2 = 0. (5.4)

Finally, by solving Eqs. (5.2)-(5.4) we obtain

c0 ≃ 0.375000000000000000005, c1 ≃ 0.500000000000000000007,

c2 ≃ 0.125000000000000000001.
Thereby, using Eq. (5.1), we get u(t) ≃ 1.00000000000000000001 t2. The curve of

absolute error function |u(t) − uexact(t)| is shown in Figure 1. Also, in Table 1 we
give the values of L2-errors for m = 2 and various S.

Table 1. L2-errors with m = 2 and various S for Example 1.

S 2 3 4 5 6 7

L2-error 6.65 × 10−5 1.15 × 10−7 1.06 × 10−10 6.04 × 10−14 2.33 × 10−17 6.55 × 10−21

Example 2. Consider the nonlinear DFDE [21, 40]:∫ 1

0

(Γ(4− α)Dαu(t))2dα =
18t4(t2 − 1)

(ln t)
, u(0) = 0.
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Figure 1. Plot of |u(t)− uexact(t)| with S = 7 and m = 2, for Example 1.

The exact solution is uexact(t) = t3. Applying the method of Section 3 with m = 4
and S = 3, we obtain

c0 ≃ 0.312502, c1 ≃ 0.468750, c2 ≃ 0.187498,

c3 ≃ 0.031250, c4 ≃ −1.319035× 10−7.

Thus using Eq. (3.2) we obtain u(t) ≃ 1.00005661 t3. Table 2 shows the L2-errors for
m = 4, 7 and various S.

Table 2. L2-errors for m = 4, 7 and various S for Example 2.

S 2 3 4 5 6

m = 4 1.50× 10−4 2.69× 10−6 7.03× 10−8 1.85× 10−9 3.61× 10−11

m = 7 1.53× 10−4 3.22× 10−6 6.17× 10−8 1.17× 10−9 2.53× 10−11

Example 3. Consider the Bagly-Torvik equation of the following form [33, 40]

D(2)u(t) +Dρ(α)u(t) + u(t) = g(t), u(0) = u′(0) = 0, t ∈ [0, τ ]. (5.5)

Here,

g(t) =

{
8, 0 ≤ t ≤ 1
0, t > 1

, and ρ(α) = 6α(1− α), 0 ≤ α ≤ 1.
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Figure 2. The curve of u(t) for t ∈ [0, 30], for Example 3.

By virtue of Eq. (2.5), we rewrite Eq. (5.5) as:

u
′′
(t) +

∫ 1

0

ρ(α)Dαu(t)dα+ u(t) = g(t). (5.6)

Also, by using the transformation s = t/τ , Eq. (5.6) may then be restated as

1

τ2
u

′′
(s) +

∫ 1

0

ρ(α)
1

τα
Dαu(s)dα+ u(s) = g(s), s ∈ [0, 1]

where

g(s) =

{
8, 0 ≤ s ≤ 1

τ
0, s > 1

τ

.

In Figure 2 the curve of u(t) with m = 80 is plotted. Figure 2 has very good agrement
with the result obtained in [33, 40].
Example 4. In this test, we consider the mathematical model that relates the
fractional distributed order oscillator [21, 22, 23, 26, 38, 40]

d(2)u(t)

dt2
+ w2u(t) + σ(t) = G(t), u(0) = u

′
(0) = 0, (5.7)

∫ 1

0

Φ(α)Dασ(t)dα = λ

∫ 1

0

Ψ(α)Dαu(t)dα. (5.8)
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Figure 3. Plot of the exact and approximation solution withm = 55
(left) and m = 65 (right) and S = 2 for Example 4.

Here, u(t), σ(t) and G(t) respectively represent the displacement, the dissipation force
and the external forcing function. Also, w represents the eigenfrequency of the un-
damped system. We also assume that Φ(α) = aα, Ψ(α) = bα and G(t) = G0 sin(Ωt),
where G0, a, b, λ are some constants. If a = b, the solution u(t) of this problem is

identical to the elastic with wel =
√
w2 + 1 =

√
10 and is given by [40]

uexact(t) =
G0

w2
el − Ω

(sin(Ωt)− Ω

wel
sin(welt)).

Following [23], we can convert the system of Eqs. (5.7) and (5.8) into a single DFDE
as: ∫ 1

0

{
Φ(α)Dα+2u(t) + Z(α)Dαu(t)

}
dα = f(t), t ∈ [0, τ ],

where

Z(α) = w2Φ(α) + λΨ(α), and f(t) =

∫ 1

0

Φ(α)DαG(t)dα.

Using the transformation s = t/τ yield∫ 1

0

{Φ(α)D
α+2

τα+2
u(s)+Z(α)

1

τα
Dαu(s)}dα =

∫ 1

0

Φ(α)
1

τα
DαG(s)dα, s ∈ [0, 1].

We use particular values of w = 3,Ω = 1.2w,G0 = 1 and λ = 1. Figure 3 shows the
exact and approximation solution for m = 55, 65 and S = 2. Also, in Figure 4 we
display the absolute error for m = 65, 75 and S = 2.

Moreover, in Table 3, we compare absolute error of the the presented method by
selecting S = 2 and m̂ = m+1 number of bases together with the result obtained by
using the Legendre wavelets method given in [40] (witch we denote as Method 1) and
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Figure 4. Graph of |u(t)−uexact(t)| with m = 65 (left) and m = 75
(right) and S = 2 for Example 4.

Table 3. Comparison of absolute error of u in [0, 10] in Example 4

t Present method Method 1([40]) Method 2([21])

m̂ = 41 m̂ = 51 m̂ = 71 k = 5,M = 10 N = 10,M = 10
(m̂ = 2k−1M = 160) (m̂ = N(M + 1) = 110)

1 1.25× 10−12 1.72× 10−19 6.79× 10−33 3.3× 10−12 1.3× 10−11

2 2.15× 10−12 3.84× 10−19 1.73× 10−34 4.1× 10−11 1.3× 10−10

3 6.12× 10−12 1.31× 10−19 6.46× 10−33 4.9× 10−11 6.8× 10−10

4 4.03× 10−12 8.25× 10−19 5.16× 10−36 5.6× 10−11 1.1× 10−9

5 1.17× 10−11 1.55× 10−18 6.94× 10−33 6.4× 10−11 2.1× 10−9

6 1.54× 10−11 1.95× 10−18 2.94× 10−34 7.1× 10−11 4.1× 10−9

7 1.52× 10−11 2.38× 10−18 6.57× 10−33 8.3× 10−11 7.6× 10−10

8 1.18× 10−12 3.60× 10−19 1.10× 10−34 8.2× 10−11 1.2× 10−8

9 1.03× 10−11 1.06× 10−18 6.70× 10−33 9.1× 10−11 1.0× 10−7

the hybrid of block-pulse function with Taylor polynomials given in [21] (witch we
denote as Method 2). It is important to notice that, in Table 3, the number of basis for
the methods given in [40] and [21] are (m̂ = 2k−1M = 160) and (m̂ = N(M+1) = 110)
respectively. From this table we see that the present method is clearly reliable if
compared with the Legendre wavelets and hybrid methods.

6. Conclusion

In the present paper, the fundamental aim is to apply Chebyshev polynomials
to reduce the solution of linear and nonlinear DFDEs with initial conditions to the
solution of algebraic equations. In Section 4 the error bounds for fractional derivative
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and residual function was obtained. Also, the results obtained from our technique
show in figures and tables, presented this approach is efficient and reliable.
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