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Abstract In this paper, a mixed reproducing kernel function (RKF) is introduced. The kernel
function consists of piecewise polynomial kernels and polynomial kernels. On the

basis of the mixed RKF, a new numerical technique is put forward for solving non-

linear boundary value problems (BVPs) with nonlocal conditions. Compared with
the classical RKF-based methods, our method is simpler since it is unnecessary to

convert the original equation to an equivalent equation with homogeneous boundary
conditions. Also, it is not required to satisfy the homogeneous boundary conditions

for the used RKF. Finally, the higher accuracy of the method is shown via several

numerical tests.
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1. Introduction

In this paper, we take into account the nonlinear BVPs with nonlocal conditions:{
u′′(x) + p(x)u′(x) + q(x)u(x) = f(x, u), 0 < x < 1,
B1(u) = µ1, B2(u) = µ2,

(1.1)

where B1(u) and B2(u) are boundary operators.
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A wide variety of problems from physics, chemistry and engineering are modelled
by BVPs with nonlocal conditions. It is interesting to develop effective technique for
obtaining the accurate approximate solutions of nonlocal BVPs. The theory of the
reproducing kernel Hilbert space (RKHS) and its RKF have significant application
in quantum mechanics, signal analysis, statistical learning theory and pattern recog-
nition. RKHS is a ideal space for function approximation since the approximation
of a function in a RKHS leads to the uniform approximation. In RKHSs, by em-
ploying the related theory, the authors in [8,11] developed a new numerical approach
called the reproducing kernel method (RKM) for solving linear and nonlinear operator
equations. The approach and related improvement have been successfully employed
to many different fields by some researchers [1–5, 7, 9, 10, 12–20, 22, 23, 25, 26]. On
the basis of the Sobolev RKF, the authors developed some numerical techniques for
some BVPs with nonlocal conditions [9,10,12,13,16,17,22,26]. In [13], by employing
Sobolev RKF and polynomial RKF, combined with idea of optimization, Geng and
Qian presented an optical RKM to solve linear BVPs with nonlocal conditions. The
approximate solutions yielded via the method have higher accuracy when compared
with classical RKM. However, the method is difficult to handle nonlinear cases.

In this paper, based on the mixed RKF which consist of piecewise polynomial
kernels and polynomial kernels, we present a new iterative RKM for nonlinear nonlocal
problem (1.1).

2. Reproducing kernel theory

In this section, we firstly introduce some theory on RKHS and RKF, then introduce
the RKF with the form of combination of piecewise polynomial kernels and polynomial
kernels, which will be employed for the approximate solutions of BVPs (1.1). Let I
be a nonempty abstract set.

Definition 2.1. A function G : I × I → R is said to be a RKF of the Hilbert space
H if and only if

1)∀ s ∈ Ω, G(·, s) ∈ H,
2)∀ s ∈ Ω,∀ φ ∈ H, (φ(·), G(·, s)) = φ(s).

If there exists a RKF in a Hilbert space, then the space is a RKHS.

Definition 2.2. For a symmetric functionG : I×I → R, for any n ∈ N , x1, x2, . . . , xn ∈
I, c1, c2, . . . , cn ∈ R, we have

n∑
i,j=1

cicjG(xi, xj) ≥ 0.

Then function G is a positive definite kernel function (PDKF) on I.

Theorem 2.3. [6] The RKF is positive definite, and every PDKF defines a unique
RKHS, of which it is the unique RKF.

From Theorem 2.3, we can see that there is a one-to-one correspondence between
the RKF and RKHS.
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Definition 2.4. The space W 4[0, 1] consists of functions v(x) such that v(3)(x) is
absolutely continuous and v(4)(x) ∈ L2[0, 1]. The inner product of this space is given
by

(v1, v2)4 =

3∑
i=0

v
(i)
1 (0)v

(i)
2 (0) +

∫ 1

0

v
(4)
1 (x)v

(4)
2 (s)ds.

Theorem 2.5. [8] W 4[0, 1] is a RKHS and its RKF K1(x, y) is provided by

K1(x, y) =

{
τ(x, y), y ≤ x,
τ(y, x), y > x,

(2.1)

where τ(x, y) =
35x3(y+4)y3−21x2(y3−60)y2+7x(y5+720)y−y7+5040

5040 .

Theorem 2.6. [24] For c > 0,m ∈ N , K2(s, t) = (st+ c)m is a PDKF.

By employing Theorem 2.3, there exists an associated RKHS Qm with K2 as a
RKF.

Theorem 2.7. [6] If F1(s, t) and F2(s, t) are PDKFs defined in the same set, then
F (s, t) = F1(s, t) + F2(s, t) is also a PDKF.

Define

K(x, y) = K1(x, y) +K2(x, y),

where K1(x, y) is given in (2.1) and K2(x, y) is a polynomial RKF.
From Theorem 2.7, K(x, y) is a PDKF and there exists an associated RKHS Q

with K as a RKF.

3. Iterative RKM for (1.1)

Put ψi(x) = LsK(x, s)|s=xi
, (i = 1, 2, ..., N), ψ−1(x) = B1sK(x, s), ψ0(x) =

B2sK(x, s). Denote by UN the space generated by {ψi(x)}Ni=−1. Application of

Gram-Schmidt orthogonalization to {ψi(x)}Ni=−1 yields orthonormal basis functions

{ψi(x)}Ni=−1,

ψi(x) =

i∑
k=1

βikψk(x), (3.1)

for i = −1, 2, ..., N.

Theorem 3.1. For equation (1.1), its solution can be approximated by

uN (x) =

N∑
i=−1

i∑
k=−1

βikFkψi, (3.2)

where

Fk =

 f(xk, u(xk)), 1 ≤ k ≤ N,
µ1, k = −1,
µ2, k = 0.

Also, it is the best approximation in space UN .
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Proof. Due to the fact that {ψi(x)}Ni=−1 are orthonormal basis functions in space UN ,
we can get the best approximation to the solution to equation (1.1)

uN (x) =

N∑
i=−1

(u(x), ψi(x))ψi(x) =

N∑
i=−1

i∑
k=−1

βik(u(x), ψk(x))ψi(x).

The application of reproducing property of the RKF K(x, s) yields

uN (x) =

N∑
i=−1

i∑
k=−1

βikFkψi,

where

Fk =

 f(xk, u(xk)), 1 ≤ k ≤ N,
µ1, k = −1,
µ2, k = 0.

�

Suppose that {xi}∞i=1 is dense on [0, 1]. Put

u(x) =

∞∑
i=−1

Aiψi,

where

Ai =

i∑
k=−1

βikFk.

Since space RKHS Q is a Hilbert space, therefore, uN (x) converges to u(x) uniformly.
Remark:
If f(x, u) is independent of u, uN (x) gives the approximated solution of (1.1) directly.
If f(x, u) is dependent on u, uN (x) is not known, we will give the approximation to
the solution of (1.1) by an iterative way.

Theorem 3.2. If {xi}∞i=1 is dense on [0, 1], then u(x) is a solution of (1.1), in other
words, u(x) = L−1f(x, u).

Proof. Put Lu(x) = u′′(x) + p(x)u′(x) + q(x)u(x). From [13], we get

Lu(xj) = f(xj , u(xj)), B1u(x) = µ1, B2u(x) = µ2. (3.3)

From the fact that {xi}∞i=1 is dense on [0,1], it follows that, for ∀x ∈ [0, 1], there exists
a subsequence {xnj

}∞j=1 satisfying

xnj → x(j →∞).

Letting j →∞, one obtains

Lu(x) = f(x, u(x)). (3.4)

The combination of (3.3) and (3.4) show that u(x) satisfies equation (1.1) and its
boundary conditions, and therefore the proof is complete. �
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If equation (1.1) is linear, then Fk in (3.2) is known and the approximate solution
of (1.1) is given by (3.2) directly.

For nonlinear equation (1.1) , we give the approximation to solution of (1.1) by
the following iterative way.

First, choosing an appropriate initial approximation u0(x).
Put

un,N (x) =

N∑
i=−1

i∑
k=−1

βikGkψi (3.5)

and

un(x) =

∞∑
i=−1

i∑
k=−1

βikGkψi, (3.6)

where

Gk =

 f(xk, un−1,N (xk)), 1 ≤ k ≤ N,
µ1, k = −1,
µ2, k = 0,

Gk =

 f(xk, un−1(xk)), 1 ≤ k ≤ N,
µ1, k = −1,
µ2, k = 0.

Note that un(x) is the iterative solution, while un,N is the iterative approximate
solution.
Put

u(x) = L−1f(x, u) = g(u).

Clearly, un(x) = g(un−1(x)).

Theorem 3.3. Suppose that ‖g(v1)− g(v2)‖ ≤ ρ‖v1 − v2‖ and ρ < 1. Then un,N (x)
converges to u(x).

Proof. In view of ‖g(v1)− g(v2)‖ ≤ ρ‖v1 − v2‖, one gets

‖un(x)− u(x)‖ = ‖g(un−1)− g(u)‖ ≤ ρ‖un−1 − u‖ (3.7)

and

‖un(x)− un−1(x)‖ = ‖g(un−1)− g(un−2)‖ ≤ ρ‖un−1 − un−2‖. (3.8)

We can use formula (3.7) and (3.8) and obtain

‖un(x)− u(x)‖ ≤ ρ‖un−1 − u‖
= ρ‖un − u− (un − un−1)‖
≤ ρ‖un − u‖+ ρ‖un − un−1‖.

(3.9)

From (3.9), we have

‖un(x)− u(x)‖ ≤ ρ
1−ρ‖un − un−1‖

≤ ρn

1−ρ‖u1 − u0‖.
(3.10)

Clearly,
‖ un(x)− u(x) ‖→ 0, n→∞,
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and
‖ un,N (x)− un(x) ‖→ 0, N →∞.

Note that

‖ un,N (x)− u(x) ‖ =‖ un,N (x)− un(x) + un(x)− u(x) ‖
≤‖ un,N (x)− un(x) ‖ + ‖ un(x)− u(x) ‖ .

Therefore,
‖ un,N (x)− u(x) ‖→ 0, N →∞, n→∞.

�

Theorem 3.4. If p(x), q(x), f(x) ∈ C2[0, 1], ‖g(u) − g(v)‖ ≤ ρ‖u − v‖ and ρ < 1,
then

‖ un,N (x)− u(x) ‖≤ ch2 + d ρn,

where c and d are constants, h = max
1≤j≤n−1

| xj+1 − xj |.

Proof. The use of Theorem 3.3 gives

‖ un(x)− u(x) ‖≤ ρn

1− ρ
‖u1 − u0‖ = d ρn.

From [21], we have the following estimate

‖ un,N (x)− un(x) ‖≤ c h2,
where c is a positive real number. Hence,

‖ un,N (x)− u(x) ‖ =‖ un,N (x)− un(x) + un(x)− u(x) ‖
≤‖ un,N (x)− un(x) ‖ + ‖ un(x)− u(x) ‖
≤ c h2 + d ρn.

�

4. Numerical examples

Test 4.1
We apply the present method(PM) to a two points BVPs in [21]

u′′(x) + 200exu′(x) + 300 sin(x)u(x) = f(x), x ∈ (0, 1)

with two points boundary conditions u(0) = 1 and u(1) =
√
3
2 , where f(x) is se-

lected such that its true solution is u(x) = sinh(x). Take m = 10, N = 10, xi =
i−1
N−1 , i = 1, 2, . . . , N when we use the PM. Figure 1 show the absolute errors of our
new approach.

Test 4.2
We apply the PM to a three points BVPs in [9, 12]

x(1− x)u′′(x) + (1− x)u′(x) + u(x) = f(x), x ∈ (0, 1)

with three points boundary conditions u(0) = 0 and u(1) + 1
2u( 4

5 ) =
sinh 4

5

2 + sinh 1,
where f(x) is selected such that its true solution is u(x) = sinhx.

Take m = 12, N = 10, xi = i−1
N−1 , i = 1, 2, . . . , N in our method. The numerical

results yielded by the PM and the methods in [9, 12] are listed in Table 1.
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1.×10-11

2.×10-11

3.×10-11

4.×10-11

5.×10-11

6.×10-11

7.×10-11

Figure 1. Absolute errors yielded by our method.

Table 1. Relative errors of different numerical techniques for Test 4.2

Nodes x Relative error(PM) Relative error in [9] Relative error in [12]

0.08 5.8E-10 3.6E-04 8.9E-05
0.16 5.2E-10 2.0E-04 5.2E-05
0.24 4.1E-10 1.4E-04 3.1E-05
0.40 2.7E-10 9.5E-05 1.7E-05
0.48 2.2E-10 7.5E-05 2.4E-05
0.56 1.8E-10 5.5E-05 1.6E-05
0.64 1.5E-10 3.6E-05 1.1E-05
0.72 1.2E-10 1.9E-05 6.2E-06
0.80 9.8E-11 1.8E-15 5.7E-13
0.88 8.0E-11 4.2E-04 2.6E-07
0.96 5.2E-11 5.2E-04 2.0E-06

Test 4.3
We apply the PM to a nonlinear nonlocal BVP in [9, 10]{

x(1− x)u′′(x) + 6u′(x) + 2u(x) + u2(x) = g(x), 0 ≤ x ≤ 1,

u(0) + u( 2
3 ) = sinh 2

3 , u(1) + 1
2u( 4

5 ) =
sinh 4

5

2 + sinh 1,
(4.1)

where g(x) = 6 coshx + sinhx
(
2 + x− x2 + sinhx

)
and the true solution is u(x) =

sinhx.
When we use our method, we take n = 5,m = 12, xi = i−1

N−1 , i = 1, 2, · · ·, N, N =

10 and choose u0(x) = 1
54 ((−45 sinh( 2

3 ) + 30(sinh( 4
5 ) + 2 sinh(1)))x − 10(sinh( 4

5 ) +

2 sinh(1)) + 42 sinh( 2
3 )). The numerical results obtained by different numerical ap-

proaches are listed in Table 2. The absolute errors for iteration times n = 5, 7 are
shown in Figures 2,3.
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Table 2. Numerical results obtained by different numerical tech-
niques for Test 4.3.

x Exact solution Relative error( [10]) Relative error( [9]) Relative error (PM)

0.08 0.080085 7.9E-05 3.0E-08 1.4E-09
0.24 0.242311 1.9E-05 2.6E-07 8.3E-11
0.40 0.410752 7.0E-06 3.1E-07 5.6E-10
0.48 0.498646 3.6E-06 4.0E-07 6.4E-10
0.64 0.684594 6.6E-07 3.0E-07 4.8E-10
0.72 0.783840 1.7E-06 5.2E-09 1.5E-10
0.80 0.888106 2.2E-06 1.8E-06 1.2E-10
0.88 0.998058 2.2E-06 2.7E-06 2.0E-11
0.96 1.114400 2.8E-06 2.2E-05 1.8E-11

0.2 0.4 0.6 0.8 1.0

1.×10-10

2.×10-10

3.×10-10

Figure 2. Absolute errors yielded by the PM for n = 5.

5. Conclusion

In this paper, a mixed RKF-based iterative method is proposed for nonlinear BVPs
with nonlocal conditions. The new approach has two advantages. The first one is that
it is not required to construct the RKF satisfying homogeneous boundary conditions.
The second one is that it can gives higher accurate approximate solutions by taking
fewer nodes.
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Figure 3. Absolute errors yielded by the PM for n = 7.
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