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Abstract In this paper, we first construct Alpert wavelet system and propose a computa-

tional method for solving a fractional nonlinear Fredholm integro-differential equa-
tion. Then we create an operational matrix of fractional integration and use it to

simplify the equation to a system of algebraic equations. By using Newtons iter-
ative method, this system is solved, and then solution of the fractional nonlinear

Fredholm integro-differential equations is achieved. Thresholding parameter is used

to increase the sparsity of matrix coefficients and the speed of computations. Fi-
nally, the method is demonstrated by examples and the compared results with CAS

wavelet method show that our proposed method is more effective and accurate.

Keywords. Alpert wavelet system, Fredholm integro-differential equation, Operational matrix, Fractional
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1. Introduction

Fractional calculus which deals with derivatives and integrals of arbitrary order has
a significant role in modeling physical and engineering processes. Many authors have
used fractional calculus to model the physical phenomenon like nonlinear oscillation
of earthquakes [5] fluid-dynamic traffic [6] colored noise [12] solid machines [21] signal
processing [19]. The reason of using fractional calculus is that many mathematical
formulations contain nonlinear integro-differential equations with fractional order.
The fractional integro-differential equations are solved by different methods by several
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authors. For example, Momani and et. al. solved this equation by Adomian decom-
position [13, 20]. Variationed iteration method and homotopy perturbation method
are presented by Nawaz in [14]. Saeedi and et. al. proposed CAS wavelet method
in [23]. Among these methods, the wavelet method is more accurate and fast, since
wavelets simplify these problems to a system of algebraic equations by making the
operational matrix and using it in the equation. Many kinds of wavelets like CAS
wavelet [25], Haar wavelet [7], Legendre wavelet [11, 26], Chebyshev wavelet [3, 27],
have been used to find a numerical solution of linear and nonlinear integral equations
and differential equations. Also, we refer the interested reader in fractional integro-
differential equations to see [8, 9, 15, 16, 17, 18, 22] for some recent works in the
subject.
In this paper, our study focuses on a class of nonlinear Fredholm fractional integro-
differential equation

Dαf(x)− λ
∫ 1

0

k(x, t)[f(t)]qdt = g(x), q > 1, (1.1)

subject to the initial conditions

f (i)(0) = δi, i = 0, 1, ..., r − 1, r − 1 < α ≤ r, r ∈ N,

where g ∈ L2([0, 1]) and k ∈ L2([0, 1])2 are given functions, f(x) is the solution to
be determined, Dα is the fractional derivative in the Caputo sense and q is a positive
integer. We find a numerical solution of this problem by Alpert multiwavelet system.
The wavelet numerical method has several advantages as follows:

• In classic bases like Chebyshev polynomials in spectral methods, as the degree
of polynomials increases, the computational complexity increases, and these
bases don’t give good results for large numbers of the bases, but in this paper
we can take large values for J to obtain better results.

• The solution is of multiresolution type.
• The main advantage is that after discretizing, the coefficient matrix of alge-

braic equations is sparse (We have shown this fact in the related Figures).
Hence the method is easy to implement.

In this method the properties of Alpert multiwavelets are first given. The Riemann–
Liouville fractional integral operator for Alpert multiwavelets is utilized to reduce the
solution of nonlinear fractional Fredholm integro-differential equations to a system of
algebraic equations. In order to save the memory requirement and computation time,
a threshold procedure is applied to obtain sparse algebraic equations. The method is
computationally very attractive and gives accurate results.

2. Preliminaries

In this section, we give some necessary preliminary definitions and preliminaries of
the fractional calculus theory which will be used in this paper.
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Definition 2.1. The Riemann- Liouville fractional integral operator Iα of order α
on the usual Lebesgue space L1[a, b] is given by [24]

(Iαf)(t) =
1

Γ(α)

∫ t

0

(t− τ)α−1f(τ)dτ, α > 0, (I0f)(t) = f(t),

which Iα has the following properties:

(i) IαIβ = IβIα = Iα+β ,

(ii) Iα(t− a)v = Γ(v+1)
Γ(α+v+1) (t− a)(α+v),

where f ∈ L1[a, b], α, β ≥ 0 and v > −1.

Definition 2.2. The Caputo definition of fractional differential operator Dα is given
by [24]

(Dαf)(t) =
1

Γ(n− α)

∫ t

0

(t− τ)n−α−1f (n)(τ)dτ, n− 1 < α ≤ n,

where t > 0, n is an integer. The operator Dα has the following properties for
n− 1 < α ≤ n and f ∈ L1[a, b],

(DαIαf)(t) = f(t)

and

(IαDαf)(t) = f(t)−
n−1∑
k=0

f (k)(0)
tk

k!
, t > 0. (2.1)

Definition 2.3. (MRA) A Multiresolution analysis of the Lebesgue space L2(R)
consists of a sequence of nested subspaces {V rj }j∈Z ⊂ L2(R) such that satisfies in the
following conditions:

(i) ...V r−1 ⊂ V r0 ⊂ V r1 ⊂ ....,
(ii) span(∪j∈ZV rj ) = L2(R).
(iii) ∩j∈ZV rj = {0}.
(iv) f(x) ∈ V rj ⇐⇒ f(x+ 2j) ∈ V rj ⇐⇒ f(2x) ∈ V rj+1,

(v) There exist orthogonal functions {φk}k=0,1,...,r−1 ∈ L2(R) such that

V r0 = span{φk; 0 ≤ k ≤ r − 1}.

3. Construction of Scaling Functions, Wavelets and Wavelet
transform matrix

Suppose that Pr is the Legendre polynomial of order r where r is a fixed nonnegative
integer number. Let τk for k = 0, 1, ..., r−1 denote the roots of Pr. The interpolating
scaling function (ISF ), for k = 0, 1, ...r − 1 is given in [11]

φk(t) =



√
2

ωk
Lk(2t− 1), t ∈ [0, 1],

0, otherwise,
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where ωk, are the Gauss-Legendre quadrature weights as [4]

ωk =
2

rP ′r(τk)Pr−1(τk)
,

and Lk(t) are the lagrange interpolating polynomials as

Lk(t) =

r−1∏
i=0,i6=k

(
t− τi
τk − τi

),

that they have characterized by Kronecker property,

Lk(τi) = δik =

{
1 i = k,
0 i 6= k.

By Considering V r1 = V r0 ⊕ W r
0 and V r0 ⊂ V r1 in (MRA), there exist sequences of

coefficients {gi,j} and {hi,j} in L2(R) such that for k = 0, 1, ..., r − 1,

φk(x) =

r−1∑
j=0

(g0
k+1,j+1φ

j(2x) + g1
k+1,j+1φ

j(2x− 1)),

and

ψk(x) =

r−1∑
j=0

(h0
k+1,j+1φ

j(2x) + h1
k+1,j+1φ

j(2x− 1)).

The above relations are called two scale relations for scaling functions and wavelets,
respectively and the coefficients gli,j and hli,j , l = 0, 1, are called filter coefficients. To
show the filter coefficients in above representations, we use four r × r matrices as

G0 =

g
0
11 · · · g0

1r
...

...
g0
r1 · · · g0

rr

 G1 =

g
1
11 · · · g1

1r
...

...
g1
r1 · · · g1

rr



H0 =

h
0
11 · · · h0

1r
...

...
h0
r1 · · · h0

rr

 H1 =

h
1
11 · · · h1

1r
...

...
h1
r1 · · · h1

rr


The matrices G0 and G1 are called filter coefficient matrix for scaling functions and H0

and H1 are called filter coefficient matrix for Alpert wavelets, which their coefficients
are given by interpolating property of scaling functions as

g0
k,k′ =

√
ωk′

2
φk(

1 + τk′

4
) g1

k,k′ =

√
ωk′

2
φk(

3 + τk′

4
)

h0
k,k′ =

√
ωk′

2
ψk(

1 + τk′

4
) h1

k,k′ =

√
ωk′

2
ψk(

3 + τk′

4
).

In general, the two scale relation for the sequent spaces VJ and VJ+1 is given by

ΦrJ(x) = GJΦrJ+1(x),
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where ΦrJ(x) consists of r2J × 1 bases of the space V rJ and GJ is called the trans-
form matrix between scaling functions in two sequent spaces that is obtained in the
following form:

GJ =

G · · · 0
...

. . .
...

0 · · · G


r2J ,r2J+1

where G = [G0G1].
In the same way the two scale relation between the spaces WJ and VJ+1 is obtained
by

Ψr
J(x) = TJΦrJ+1(x), (3.1)

where Ψr
J(x) consists of r2J × 1 bases of the space W r

J and TJ is called the wavelet
transform matrix [1, 2, 10].
Consider

HJ =

H · · · 0
...

. . .
...

0 · · · H


r2J ,r2J+1

where H = [H0H1]. By using above matrices, we get the wavelet transform matrix

TJ =



G0 ×G1 × · · · ×GJ−1

H0 ×G1 × · · · ×GJ−1

H1 ×G2 × · · · ×GJ−1

...
HJ−2 ×GJ−1

HJ−1


r2J ,r2J

.

We will use this matrix to solve the fractional nonlinear integro-differential equations
using wavelets.

4. Construction of operational matrix of fractional integration

The Riemann-Liouville fractional integral of scaling function φk is of the form

Iαt φ
k(x) =

1

Γ(α)

∫ x

0

(x− t)α−1φk(t) dt. (4.1)

For 0 < x < 1, (4.1) can be written as

a(x) = Iαt φ
k(x) =

1

Γ(α)

∫ x

0

(x− t)α−1φk(t), (4.2)

and for x ≥ 1 it can be written as

b(x) =
1

Γ(α)

∫ 1

0

(x− t)α−1φk(t) dt. (4.3)
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By (4.2) and (4.3), the Riemann-Liouville fractional integral of the scaling function
is obtained as follows:

Iαt φ
k(x) = Ωk(x) =



a(x), 0 < x < 1,

b(x), x ≥ 1,

0, otherwise.

(4.4)

Now, by using (4.4) the Riemann-Liouville fractional integral of ΦJ is of the form

Iαt ΦJ(x) =



Ω0(2Jx)
Ω1(2Jx)

...
Ωr−1(2Jx)

...
Ω0(2Jx− 2J + 1)

...
Ωr−1(2Jx− 2J + 1)


r2J ,1

= L(x) = Iα,φΦJ(x), (4.5)

where Iα,φ is the Riemann-Liouville fractional integral operator matrix for the scaling
function with dimension r2J × r2J and its coefficients are given by interpolation
property as

[Iα,φ]i+1,rl+(k+1) = 2−J−2

√
ωk
2
Li+1,1(

τk + 2l + 1

2J+1
),

where

i = 0, 1, ..., r2J − 1, l = 0, 1, ..., 2J − 1, k = 0, 1, ..., r − 1.

Also, the Riemann-Liouville fractional integral of wavelet is obtained by (3.1) and
(4.5) as

Iαt ΨJ(x) ≈ Iα,ψΨJ(x), (4.6)

in which

Iαt ΨJ(x) =
1

Γ(α)

∫ x

0

(x− t)α−1ΨJ(t) dt = TJ
1

Γ(α)

∫ x

0

(x− t)α−1ΦJ(t) dt

= TJIα,φΦJ(x)

= TJIα,φT
−1
J ΨJ(x). (4.7)

So by (4.6) and (4.7) we have

Iα,ψ = TJIα,φT
−1
J .
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4.1. Numerical method. Here, the numerical solution is proposed to solve the frac-
tional nonlinear Fredholm integro-differential equation using the Alpert wavelet sys-
tem. By the wavelet compression property, it is shown that the usage of Alpert
wavelets will increase the speed of calculations by transforming the equation to a sys-
tem of algebraic equations. Using the larger thresholding parameter will increase the
sparsity of the coefficient matrix in the Alpert wavelet system. Consider the fractional
nonlinear-Fredholm integro-differential equation given in (1.1). If we approximate the
function Dαf(x) with the Alpert wavelets, we have

Dαf(x) ≈ FTΨr
J(x), (4.8)

where FT is an unknown vector of order 1×r2J . Now, by Riemann-Liouville fractional
integrating of the equation (4.8) and using (4.6), we have

Iαt D
αf(x) ≈ Iαt (FTΨr

J(x)) = FT Iα,ψΨr
J(x). (4.9)

Applying (2.1) we can approximate f(t) as

f(t) = FT Iα,ψΨr
J(t) +

n−1∑
i=0

f i(0)
ti

i!
. (4.10)

On the other hand, we have

m(t) =

n−1∑
i=0

f i(0)
ti

i!
≈ M̂TΦrJ(t) = M̂TT−1

J︸ ︷︷ ︸
MT

Ψr
J(t) = MTΨr

J(t). (4.11)

Now by (4.9), (4.10), and (4.11), we have

f(t) = (FT Iα,ψ +MT )Ψr
J(t). (4.12)

Therefore

n(t) = [f(t)]q = ((FT Iα,ψ +MT )Ψr
J(t))q ' NTΨr

J(t), (4.13)

where N is an unknown vector of order r2J × 1.
Also, known functions g(x) and k(x, t) in (1.1) can be approximated in terms of the
basic functions of the space VJ in the form

k(x, t) ≈ ΦrJ
T (x)K̂ΦrJ(t) = Ψr

J
T (t)T−1

J

T
K̂T−1

J︸ ︷︷ ︸
K

Ψr
J(x) (4.14)

= Ψr
J
T (t)KΨr

J(x),

and

g(x) ≈ ĜTΦrJ(x) = ĜTT−1
J︸ ︷︷ ︸

GT

Ψr
J(x) = GTΨr

J(x), (4.15)

where K is a matrix of order r2J × r2J and G is a vector of order r2J × 1, which can
be obtained as

Kij = 2−J
√
wk
2
. (4.16)
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Considering the orthogonality property of Alpert wavelets, we have

I =

∫ 1

0

ΨrT
J (x)Ψr

J(x) dx, (4.17)

where I is the identity matrix of order of r2J × r2J .
Now, by (4.17) and putting (4.12)-(4.15) in (1.1), we have

FTΨJ(x)− λNT IKTΨr
J(x) = GTΨJ(x),

From the above equation, we have

(FT − λNTKT −GT )Ψr
J(x) = 0,

Because of independency of entries of vector Ψ(x), we get the nonlinear system of
algebraic equations as

FT − λNTKT −GT = 0,

which can be solved by iterative Newton method.

5. Illustrative examples

To show the efficiency and the accuracy of the proposed method based on Alpert
multiwavelets, we consider the following two examples chosen from the [23, 27] and
compare our method with the CAS wavelet method and second kind Chebyshev
wavelet. To increase the computational speed, we use the thresholding method, based
on the compression property of the wavelets. For this purpose, the parameter ε is
chosen as the thresholding parameter, so that all elements of the coefficient matrix
which are smaller than ε are considered to be zero. This work increases the sparsity
of the coefficient matrix and also increases the computational speed.

Example 1. Consider the fractional nonlinear Fredholm integro-differential equa-
tion with α = 1

2

D1/2f(x)−
∫ 1

0

xt[f(t)]4 dt =
1

Γ( 1
2 )

(
8

3
x3/2 − 2x1/2)− x

1260
0 < x < 1,

with exact solution f(x) = x2 − x.
In Table 1, the L2 error reported by the proposed method and CAS wavelet bases [23]
together with CPU time for different numbers of bases are listed. From this Table,
we can observe the convergence of numerical solutions as J increases.
In order to demonstrate the validity of our numerical findings, we show the values
of L2 error with J = 5, 6, r = 2 and different values of thresholding parameter ε,
using the method presented in the previous section by multiwavelets, in Table 2.
Example 2. Consider the fractional nonlinear Fredholm integro-differential equation
with α = 5/6

D5/6f(x)−
∫ 1

0

xet[f(t)]2 dt =
3

Γ(1/6)
(2x1/6 − 432

91
x13/6) + x(248e− 674),

with exact solution f(x) = x− x3.
For the purpose of comparison in Table 3, we compare the L2 error of our method
with J = 5, 6 and r = 3, 4 together with CAS wavelet method given in [23] and
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Table 1. Computational results for Example 1.

Methods L2 Error CPU times
CAS wavelet [23]
k = 2,M = 1 7.711e− 04 3.911
k = 3,M = 1 2.0755e− 05 5.962

Alpert multiwavelets
r = 3, J = 5 4.1661e− 04 7.863
r = 3, J = 6 1.2463e− 04 9.041
r = 4, J = 6 1.7295e− 05 10.151

Table 2. Compression percentage and L2 error with the use of Alpert
wavelets. Example 1.

Parameter Compression Error
States(ε) Sε L2

0 % 0 0.001429705

J = 5 10−4 % 78.24 0.001429721

10−3 % 78.90 0.001429878

10−2 % 83.59 0.001512517

0 % 0 0.00071406

J = 6 10−4 % 87.56 0.00071452

10−3 % 88.34 0.00071729

10−2 % 91.61 0.000961306

second kind Chebyshev wavelet method [27]. Figures 1, shows the plots of the matrix
elements for r = 2 and J = 5 with ε = 10−4, 10−3.
Table 4 shows the sparsity and L2 error for r = 2, J = 5, 6 and different values of
thresholding parameter, using the method presented in the previous section.

6. Conclusion

In this manuscript, the Alpert wavelet system is constructed and its operational
matrix of the fractional integration is derived. We use this system to solve a class
of nonlinear Fredholm integro-differential equation of fractional order numerically by
simplifying the equation to an algebraic one.
The main advantage of the wavelet method for solving the equation is that after
discreting the coefficients matrix of algebraic equations is sparse. The solution is
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Figure 1. Compression matrices after thresholding with ε = 10−4

(right) and ε = 10−3 (left) using Alpert wavelets.

Table 3. Computational results for Example 2.

Methods L2 Error
CAS wavelet [23]
k = 2,M = 1 2.0862e− 03
k = 3,M = 1 6.3440e− 04

Chebyshev wavelet [27]
k = 3,M = 2 6.0313e− 05

Alpert multiwavelets
r = 3, J = 5 1.4297e− 03
r = 3, J = 6 5.0795e− 04
r = 4, J = 6 5.8041e− 05

convergent, even though the size of the increment may be large.
CAS wavelet [23] is constructed from the trigonometric polynomials and has period-
icity. It is more suitable for solving the periodic problem. However, the problems we
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Table 4. The percentage of compression and L2 error with the use
of Alpert wavelet system. Example 2.

Parameter Compression error
States (ε) Sε L2

0 % 0 0.00216373

J = 5 10−4 % 78.17 0.00216179

10−3 % 81.37 0.00216369

10−2 % 83.88 0.00235226

0 % 0 0.00107926

J = 6 10−4 % 88.28 0.00107954

10−3 % 89.30 0.00107989

10−2 % 91.61 0.00147190

usually deal with are non-periodic, and the examples considered here are also non-
periodic. Compared with the CAS wavelet, the Alpert multiwavelets are constructed
from the Lagrange interpolating polynomials. When solving the non-periodic prob-
lems, the Alpert wavelet has the superiorities (the calculation is easy implementation,
and the approximation effect is better or our method is comparable to CAS wavelets).
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