Local existence and blow up of solutions for a logarithmic nonlinear viscoelastic wave equation with delay

Erhan Pişkin
Dicle University, Department of Mathematics, Diyarbakir, Turkey.
E-mail: episkin@dicle.edu.tr

Hazal Yüksekkaya
Dicle University, Department of Mathematics, Diyarbakir, Turkey.
E-mail: hazally.kaya@gmail.com

Abstract
In this work, we consider a logarithmic nonlinear viscoelastic wave equation with a delay term in a bounded domain. We obtain the local existence of solution by using the Faedo-Galerkin approximation. Then, under suitable conditions, we prove the blow up of solutions in finite time.

Keywords. Local existence, Blow-up, Logarithmic nonlinearity, Delay term.

2010 Mathematics Subject Classification. 35B44, 35L05, 35L70.

1. INTRODUCTION

In this paper, we are concerned with the following the logarithmic nonlinear viscoelastic wave equation with delay term

\[
\begin{aligned}
& u_{tt} - \Delta u + \int_0^t g(t-s) \Delta u(s) \, ds + \mu_1 u_t(x, t) + \mu_2 u_t(x, t-\tau) \\
& = u|u|^{p-2} \ln |u|^k, \quad x \in \Omega, \quad t > 0, \\
& u(x, t) = 0, \quad x \in \partial \Omega, \\
& u_t(x, t-\tau) - f_0(x, t-\tau), \quad \text{in } (0, \tau), \\
& u(x, 0) = u_0(x), \quad u_t(x, 0) = u_1(x), \quad x \in \Omega,
\end{aligned}
\]

(1.1)

where \(\Omega \) is a bounded domain of \(\mathbb{R}^n \), with a smooth boundary \(\partial \Omega \). \(p \geq 2, \ k, \ \mu_1 \) are positive constants, \(\mu_2 \) is a real number, \(\tau > 0 \) represents the time delay and the functions \(u_0, u_1, f_0 \) are the initial data to be specified later. This type of source term \((u|u|^{p-2} \ln |u|^k) \) appears naturally in nuclear physics, optics, geophysics, supersymmetric and inflation cosmology (see [1, 3]).

In the absence of the source term \((u|u|^{p-2} \ln |u|^k) \), the equation (1.1) reduces to the following viscoelastic wave equation

\[
u_{tt} - \Delta u + \int_0^t g(t-s) \Delta u(s) \, ds + \mu_1 u_t(x, t) + \mu_2 u_t(x, t-\tau) = 0.
\]

(1.2)
Kirane and Houari [5] studied the equation (1.2) with suitable initial-boundary value conditions. They obtained the well-posedness and the energy decay of solutions for the concerned problem, under the restriction $0 < \mu_2 < \mu_1$. Later, Dai and Yang [2] improved the result of [5] under weaker conditions.

In the absence of the viscoelastic term ($g = 0$), the equation (1.1) reduces to the following logarithmic nonlinear wave equation

$$u_{tt} - \Delta u + \mu_1 u_t(x, t) + \mu_2 u_t(x, t - \tau) = u |u|^{p-2} \ln |u|^k. \quad (1.3)$$

In [4], Kafini and Messaoudi studied the local existence and the blow up result of the equation (1.3). In [6], Nicaise and Pignotti considered the following wave equation with a linear damping and delay term inside the domain

$$u_{tt} - \Delta u + \mu_1 u_t(x, t) + \mu_2 u_t(x, t - \tau) = 0.$$

They obtained some stability results in the case $0 < \mu_2 < \mu_1$.

Yang et al. [9] introduced the following equation

$$u_{tt} - \Delta u + \int_0^t g(t - s) \Delta u(x, s) \, ds + \mu_1 u_t(x, t) + \mu_2 u_t(x, t - \tau(t)) = h(x), \quad (1.4)$$

to prove the global well-posedness and stability which generates a gradient system. Moreover, they presented the effect and balance between damping and time-varying delay.

The main purpose of this paper is to establish the local existence of solution by using the Faedo-Galerkin method and the sufficient conditions for the blow up to the logarithmic nonlinear viscoelastic wave equation with delay term.

This paper is organized as follows: In section 2, we recall some notations and hypotheses. In section 3 and 4, we state and prove our main result.

2. Preliminaries

In this section, we present some material for the proof of our result. As usual, (\ldots) and $\|\ldots\|_p$ show the inner product in the space $L^2(\Omega)$ and the norm of the space $L^p(\Omega)$, respectively. For brevity, we denote $\|\ldots\|_2$ by $\|\ldots\|$.

The memory kernel $g(t) : [0, \infty) \to [0, \infty)$ is a nonincreasing and differentiable C^1 function satisfying

$$1 - \int_0^\infty g(s) \, ds = l > 0, \quad (2.1)$$

and that μ_1 and μ_2 satisfy

$$\tau |\mu_2| < \xi < \tau (2\mu_1 - |\mu_2|), \quad |\mu_2| < \mu_1. \quad (2.2)$$

We make the following extra assumptions on g

$$g(s) \geq 0, \quad g'(s) \leq 0, \quad \int_0^t g(s) \, ds < \frac{C|\mu_2|^2}{4kC_0} + \frac{p(1-a)-2}{2} \frac{2}{1 - \frac{1}{4\eta} - \frac{p(1-a)}{2}} \quad (2.3)$$
Let $B_p > 0$ be the constant satisfying
\[\|v\|_p \leq B_p \|\nabla v\|_p, \quad \text{for } v \in H^1_0(\Omega). \]
(2.4)

By using the direct calculations, we have
\[
\int_0^t g(t-s) \langle \nabla u(s), \nabla u_t(t) \rangle \, ds
= -\frac{1}{2} g(t) \|\nabla u(t)\|^2 + \frac{1}{2} \left(g'(t) + \int_0^t g(s) \, ds \right) \|\nabla u(t)\|^2,
\]
(2.5)

where
\[(g\nabla u)(t) = \int_0^t g(t-s) \|\nabla u(t) - \nabla u(s)\|^2 \, ds. \]

As in [7], let us introduce the function
\[z(x, \rho, t) = u_t(x, t-\tau \rho), \quad x \in \Omega, \ \rho \in (0, 1), \ t > 0. \]

So, we have
\[\tau z_t(x, \rho, t) + z_p(x, \rho, t) = 0, \quad x \in \Omega, \ \rho \in (0, 1), \ t > 0. \]

Then, the problem (1.1) can be transformed as follows
\[
\begin{cases}
 u_{tt}(x, t) - \Delta u(x, t) + \int_0^t g(t-s) \Delta u(x, s) \, ds \\
 \quad + \mu_1 u_t(x, t) + \mu_2 z(x, 1, t) = 0, \quad x \in \Omega \times (0, 1) \\
 \tau z_t(x, \rho, t) + z_p(x, \rho, t) = 0, \quad x \in \Omega \times (0, 1) \\
 z(x, \rho, 0) = f_0(x, -\rho \tau), \quad x \in \Omega \times (0, 1) \\
 u(x, 0) = u_0(x), \quad u_t(x, 0) = u_1(x), \quad x \in \Omega.
\end{cases}
\]
(2.6)

For any regular solution of (2.6), we define the energy as
\[E(t) = \frac{1}{2} \|u_t\|^2 + \frac{k}{p^2} \|u\|_p^p + \frac{1}{2} \left(g\nabla u)(t) + \frac{1}{2} \left(1 - \int_0^t g(s) \, ds \right) \|\nabla u\|^2 \\
+ \frac{\xi}{2} \int_\Omega \int_0^1 |z(x, \rho, t)|^2 \, d\rho dx - \frac{1}{p} \int_\Omega |u|^p \ln |u|^k \, dx, \]
(2.7)

where
\[(g\nabla u)(t) = \int_0^t g(t-\tau) \|v(t) - v(\tau)\|^2 \, d\tau. \]
We also set
\[H(t) = -E(t) = \frac{1}{p} \int_{\Omega} |u|^p \ln |u|^k \, dx - \frac{1}{2} \|u_t\|^2 \]
\[- \frac{1}{2} \left(1 - \int_0^t g(s) \, ds \right) \|\nabla u\|^2 - \frac{k}{p} \|u\|^p_p \]
\[- \frac{1}{2} \left(\frac{1}{2} \frac{1}{2} \int_0^t \int_{1}^{1} z(x, \rho, t)^2 \, d\rho \, dx \right) \]
to prove our main result.

The following lemma shows that the associated energy of the problem under the condition \(\mu_1 > |\mu_2| \) is decreasing.

Lemma 2.1. Let \(u \) be the solution of (2.6). Then, for some \(C_0 \geq 0 \),
\[E'(t) \leq -C_0 \left(\int_{\Omega} \left(|u_t|^2 + |z(x, 1, t)|^2 \right) \, dx - (g' \circ \nabla u) (t) + g(t) \|\nabla u\|^2 \right) \leq 0, \tag{2.8} \]

Proof. Multiplying the first equation in (2.6) by \(u_t \) and integrating over \(\Omega \) and multiplying the second equation in (2.6) by \((\xi/\tau) z \) and integrating over \((0, 1) \times \Omega \) with respect to \(\rho \) and \(x \) summing up, we get
\[\frac{d}{dt} \left(\frac{1}{2} \|u_t\|^2 + \frac{1}{2} \left(1 - \int_0^t g(s) \, ds \right) \|\nabla u\|^2 \right) \]
\[+ \frac{\xi}{2} \int_{\Omega} \int_{0}^{1} z(x, \rho, t)^2 \, d\rho \, dx \]
\[= -\mu_1 \int_{\Omega} |u_t|^2 \, dx + \frac{1}{2} (g' \circ \nabla u) (t) - \frac{1}{2} g(t) \|\nabla u\|^2 \]
\[- \frac{\xi}{\tau} \int_{\Omega} \int_{0}^{1} zz_{\rho}(x, \rho, t) \, d\rho \, dx - \mu_2 \int_{\Omega} u_t z(x, 1, t) \, dx. \tag{2.9} \]

Now, we estimate the last two terms of the right-hand side in (2.9) as follows:
\[-\frac{\xi}{\tau} \int_{\Omega} \int_{0}^{1} zz_{\rho}(x, \rho, t) \, d\rho \, dx = -\frac{\xi}{2\tau} \int_{\Omega} \int_{0}^{1} \frac{\partial}{\partial \rho} z^2 (x, \rho, t) \, d\rho \, dx \]
\[= \frac{\xi}{2\tau} \int_{\Omega} \left(z^2 (x, 0, t) - z^2 (x, 1, t) \right) \, dx \]
\[= \frac{\xi}{2\tau} \left(\int_{\Omega} |u_t|^2 \, dx - \int_{\Omega} z^2 (x, 1, t) \, dx \right) \]
and
\[\mu_2 \int_{\Omega} u_t z(x, 1, t) \, dx \leq \frac{|\mu_2|}{2} \left(\int_{\Omega} |u_t|^2 \, dx + \int_{\Omega} |z(x, 1, t)|^2 \, dx \right). \]
Hence, we get
\[
\frac{dE(t)}{dt} \leq - \left(\mu_1 - \frac{\xi}{2\tau} - \frac{\|\mu_2\|}{2} \right) \int_{\Omega} |u_t|^2 \, dx
\]
\[
- \left(\frac{\xi}{2\tau} - \frac{\|\mu_2\|}{2} \right) \int_{\Omega} |z(x,1,t)|^2 \, dx
\]
\[
+ (g'\varphi u) (t) - g (t) \|\nabla u\|^2 .
\] (2.10)

By (2.2), for some \(C_0 > 0 \), we have
\[
E' (t) \leq - C_0 \left[\int_{\Omega} \left(|u_t|^2 + |z(x,1,t)|^2 \right) \, dx \right] \leq 0.
\]

Lemma 2.2. [4]. There exists a positive constant \(C > 0 \) depending on \(\Omega \) only such that
\[
\left(\int_{\Omega} |u|^p \ln |u|^k \, dx \right)^{s/p} \leq C \left[\int_{\Omega} |u|^p \ln |u|^k \, dx + \|\nabla u\|_2^2 \right],
\]
for any \(u \in \text{L}^{p+1} (\Omega) \) and \(2 \leq s \leq p \), provided that \(\int_{\Omega} |u|^p \ln |u|^k \, dx \geq 0 \).

Lemma 2.3. [4]. There exists a positive constant \(C > 0 \) depending on \(\Omega \) only such that
\[
\|u\|_2^2 \leq C \left[\left(\int_{\Omega} |u|^p \ln |u|^k \, dx \right)^{2/p} + \|\nabla u\|_2^2 \right],
\] (2.11)
provided that \(\int_{\Omega} |u|^p \ln |u|^k \, dx \geq 0 \).

Lemma 2.4. [4]. There exists a positive constant \(C > 0 \) depending on \(\Omega \) only such that
\[
\|u\|_p^s \leq C \left[\|u\|_p^p + \|\nabla u\|_2^2 \right],
\] (2.12)
for any \(u \in \text{L}^p (\Omega) \) and \(2 \leq s \leq p \).

3. Local existence

In this section, we show the following local existence of solution for the problem \((2.6)\).

Theorem 3.1. Assume that
\[
\mu_1 > \|\mu_2\|, u_0 \in H^2 (\Omega) \cap W, v_0 \in W \text{ and } f_0 \in \text{L}^2 (\Omega \times (0,1)),
\]
then there exists a unique solution \((u, z)\) of problem \((2.6)\) defined on \(\Omega \times (0,T) \) for some constant \(T > 0 \) satisfying
\[
u \in L^\infty (0,T; H^2 (\Omega) \cap W), \quad u_t \in L^\infty (0,T; W)
\]
where \((u,v) = \int_{\Omega} u(x) v(x) \, dx\) the scalar product in \(L^2 (\Omega) \) and
\[
W = \{ u \in H^2 (\Omega) ; u (0) = u_t (0) = 0 \}.
\]
We prove this theorem by Faedo-Galerkin’s method. We will give sufficient estimates for the solution of the problem (2.6) by using Faedo-Galerkin procedure. In the next step, we obtain approximate solution of the problem (2.6).

The first estimate: Let \(\{ \phi_y \}_{y=1}^{\infty} \) be a complete orthogonal system of \(W \) and \(W_m = \text{span} \{ \phi_1, \cdots, \phi_n \} \), for each \(m \in N \). Moreover, we define \(V_m = \text{span} \{ \psi_1, \cdots, \psi_m \} \), \(m \in N \) and we can find a set of bases \(\{ \psi_r(x, \rho) \}_{r=1}^{m} \), which is a subset of \(L^2(\Omega \times (0,1)) \) such that

\[
\psi_r(x, 0) = \phi_r(x), \quad 1 \leq r \leq m.
\]

Choosing \(\{ u_m \} \) and \(\{ v_m \} \) in \(W_m \) and \(\{ z_m \} \) in \(V_m \) such that \(u_m \to u_0 \) strongly in \(W \), \(v_m \to v_0 \) strongly in \(W \), and \(z_m \to f_0 \) strongly in \(L^2(\Omega \times (0,1)) \). We will seek approximates solution in the form

\[
u_m(x, t) = \sum_{r=1}^{m} \phi_r(x) g_r(t), \]

\[
z_m(x, \rho, t) = \sum_{r=1}^{m} \psi_k(x, \rho) h_r(t).
\]

We say that \((u_m(t), z_m(t)) \) are solutions of the following problem,

\[
\begin{cases}
\int_{\Omega} u_{mt}(x) \phi_t dx - \int_{\Omega} \Delta u_m \phi_r dx + \int_{\Omega} \int_{0}^{t} g(t-s) \Delta u_m(x, s) \phi_r dsdx \\
+ \int_{\Omega} \mu_1 u_{mt} (x, t) \phi_r dx + \int_{\Omega} \mu_2 z_m(x, t) \phi_r dx \\
= \int_{\Omega} u_m |u_m|^{p-2} \ln |u_m| \phi_r dx, \quad \text{in} \quad \Omega \times (0, T) \\
\int_{\Omega} [\tau z_m(x, \rho, t) + \zeta_m(t)] \phi_r dx = 0, \quad \text{in} \quad \Omega \times (0, 1) \times (0, T) \\
z_m(x, \rho, 0) = f_0m(x, -\rho t), \quad \text{in} \quad \Omega \times (0, 1) \\
u_m(x, t) = 0, \quad \text{on} \quad \partial \Omega \times (0, 1) \\
u_m(x, 0) = u_{0m}(x), \quad u_{mt}(x, 0) = u_{1m}(x), \quad \text{in} \quad \Omega.
\end{cases}
\]

We obtain (3.1) has a unique solution \(g_r(t), h_r(t) \) defined on \((0, T) \) by using the theories of ordinary differential equation. In the next step, we obtain a priori estimates for the solution of the problem (2.6).

The second estimate: Taking into consideration the initial boundary value conditions and multiplying the first equation of (3.1) by \(g'_{rm}(t) \), integrating over \((0, t) \)
and using integration by parts, we get

\[
\frac{1}{2} \int_\Omega |u_{mt}|^2 \, dx + \frac{1}{2} \int_\Omega (g o \nabla u_m) (t) \, dx \\
+ \frac{1}{2} \int_\Omega \left(1 - \int_0^t g (s) \, ds \right) |\nabla u_m|^2 \, dx \\
+ \int \frac{k}{\rho^2} |u_m|^p \, dx - \frac{1}{p} \int_\Omega |u_m|^p \ln |u_m|^k \, dt \\
+ \mu_1 \int_0^t |u_{mt}|^2 \, ds + \mu_2 \int_0^t \int_\Omega z_m (x, 1, s) u_{mt} (x, s) \, ds \, dx \\
- \frac{1}{2} \int_\Omega (g' o \nabla u_m) (t) \, dx + \frac{1}{2} \int_\Omega g (t) |\nabla u_m|^2 \, dx \\
= \frac{1}{2} \|u_{0m}\|^2 + \frac{k}{\rho^2} |u_{1m}|^p + \frac{1}{2} (g o \nabla u_{1m}) (t) \\
+ \frac{1}{2} \left(1 - \int_0^t g (s) \, ds \right) |\nabla u_{1m}|^2 - \frac{1}{p} \int_\Omega |u_{1m}|^p \ln |u_{1m}|^k \, dx.
\] (3.2)

We suppose that the constant $\xi > 0$, multiplying the second equation of (3.1) by $(\xi/\tau) h_{rm} (t)$ and integrating over $(0, t) \times (0, 1)$, we obtain

\[
\frac{\xi}{2} \int_\Omega \int_0^1 |z (x, \rho, t)|^2 \, d\rho dx + \frac{\xi}{2} \int_0^t \int_\Omega \int_0^1 z_{m \rho} z_m (x, \rho, s) \, d\rho dx ds \\
= \frac{\xi}{2} |z_{0m}|^2_{L^2 (\Omega \times (0, 1))}.
\] (3.3)

Using the second term in the left-hand side of (3.3), we have

\[
\int_0^t \int_\Omega \int_0^1 z_{m \rho} z_m (x, \rho, s) \, d\rho dx ds \\
= \frac{1}{2} \int_0^t \int_\Omega \int_0^1 \frac{\partial}{\partial \rho} z_m^2 (x, \rho, s) \, d\rho dx ds \\
= \frac{1}{2} \int_0^t \int_\Omega [z_m^2 (x, 1, s) - z_m^2 (x, 0, s)] \, dx ds.
\] (3.4)

Both (3.2) and (3.3) adding, using (3.4), we get

\[
E_m (0) = E_m (t) + \mu_1 \int_0^t |u_{mt}|^2 \, ds + \mu_2 \int_0^t \int_\Omega z_m (x, 1, s) u_{mt} (x, s) \, ds \, dx \\
- \frac{1}{2} \int_\Omega (g' o \nabla u_m) (t) \, dx + \frac{1}{2} \int_\Omega g (t) |\nabla u_m|^2 \, dx \\
+ \frac{\xi}{2} \int_0^t \int_\Omega [z_m^2 (x, 1, s) - z_m^2 (x, 0, s)] \, dx ds.
\] (3.5)
where
\[E_m(t) = \frac{1}{2} \int_{\Omega} |u_m|^2 \, dx + \frac{1}{2} \int_{\Omega} (g' \nabla u_m) (t) \, dx \]
\[+ \frac{1}{2} \int_{\Omega} \left(1 - \int_0^t g(s) \, ds \right) |\nabla u_m|^2 \, dx \]
\[+ \int_{\Omega} \frac{k}{p} |u_m|^p \, dx - \frac{1}{p} \int_{\Omega} |u_m|^p \ln |u_m|^k \, dx + \frac{\xi}{2} \|z_{0m}\|^2_{L^2(\Omega \times (0,1))}. \] (3.6)

Application the Young inequality and Sobolev Poincare inequality, we get
\[E_m(t) + \left(\mu_1 - \frac{\xi}{2\tau} - \frac{1}{2} |\mu_2| \right) \int_{\Omega} |u_m (x,t)|^2 \, dx \]
\[+ \left(\frac{\xi}{2\tau} - \frac{1}{2} |\mu_2| \right) \int_{\Omega} |z_m (x,1,t)|^2 \, dx \]
\[- \frac{1}{2} (g' \nabla u_m) (t) + \frac{1}{2} g(t) \|\nabla u_m\|^2 \]
\[\leq E_m(0). \]

Moreover by choosing \(\tau |\mu_2| < \xi < \tau (2\mu_1 - |\mu_2|) \), we obtain
\[D_0 = \mu_1 - \frac{\xi}{2\tau} - \frac{1}{2} |\mu_2| > 0, \quad D_1 = \frac{\xi}{2\tau} - \frac{1}{2} |\mu_2| > 0; \]
by this way, we get
\[E_m(t) + D_0 \int_{\Omega} |u_m (x,t)|^2 \, dx + D_1 \int_{\Omega} |z_m (x,1,t)|^2 \, dx \]
\[- \frac{1}{2} (g' \nabla u_m) (t) + \frac{1}{2} g(t) \|\nabla u_m\|^2 \]
\[\leq E_m(0). \] (3.7)

Because of the sequence \(\{u_{0m}\}, \{u_{0m}\}, \) and \(\{z_{0m}\} \) are convergent, we can get some positive constant \(K_\ast \) independent of \(m \) such that
\[E_m(t) \leq K_\ast. \] (3.8)

By combining (3.6) and (3.8), we find
\[\{u_m\} \quad \text{is bounded in} \quad L^\infty (0,T;W), \]
\[\{u_{mt}\} \quad \text{is bounded in} \quad L^\infty (0,T;W), \]
\[\{z_m\} \quad \text{is bounded in} \quad L^\infty (0,T;L^2 (\Omega) \times (0,1)). \]

For this reason, we finalize that
\[\{u_m\} \to u \quad \text{weak star in} \quad L^\infty (0,T;W), \]
\[\{u_{mt}\} \to u_t \quad \text{weak star in} \quad L^\infty (0,T;W), \]
\[\{z_m\} \to z \quad \text{weak star in} \quad L^\infty (0,T;L^2 (\Omega) \times (0,1)). \]
We know that the embeddings $H^2(\Omega) \hookrightarrow H^1(\Omega) \hookrightarrow L^2(\Omega)$ are compact, from Aubin-Lions theorem (see [8]), we arrive that there exists a subsequence $\{u_i\}$ of $\{u_m\}$ such that

$$\{u_i\} \to u \text{ strongly in } L^2(0,T;H^1(\Omega)).$$

So, we get

$$\{u_i\} \to u \text{ strongly and a.e. on } \Omega \times (0,T).$$

Thus, the proof is completed. (For more details see [10]) □

4. Blow up

In this section, we investigate the blow up of the solutions in a finite time for the problem (2.6). For the blow up of solutions, we modified the method of [4].

Theorem 4.1. Assume that (2.2) and (2.3) hold. Let

$$\begin{align*}
2 < p < \frac{2(n-1)}{n-2}, & \quad \text{if } n \geq 3 \\
p > 2, & \quad \text{if } n = 1, 2,
\end{align*}$$

and $\eta < \frac{p(1-a)}{2}$. Suppose further that

$$E(0) = \frac{1}{2} \left(1 - \int_0^t g(s) \, ds \right) \left\| \nabla u_0 \right\|^2 + \frac{1}{2} \left\| u_1 \right\|^2 + \frac{k}{p^2} \left\| u_0 \right\|_p^p - \frac{1}{p} \int_\Omega \left| u_0 \right|^{p \ln \left| u_0 \right|} \, dx$$

$$+ \frac{1}{2} \left(g(\nabla u_0)(t) + \frac{\eta}{2} \int_0^t \int_\Omega f_0^2(x,-\rho \tau) \, d\rho \, dx \right) < 0. \tag{4.1}$$

Then the solution of (2.6) blows up in finite time.

Proof. Recalling (2.8), we obtain

$$E(t) < E(0) < 0.$$

Therefore,

$$H'(t) = -E'(t) \geq C_0 \left[\int_\Omega \left(|u_t|^2 + |z(x,1,t)|^2 \right) \, dx \right]$$

$$- (g'\nabla u)(t) + g(t) \| \nabla u \|^2 \geq C_0 \int_0^1 z^2(x,1,t) \, dx \geq 0, \tag{4.2}$$

and

$$0 < H(0) \leq H(t) \leq \frac{1}{p} \int_\Omega |u|^p \ln |u|^k \, dx \quad \text{for } t \geq 0, \tag{4.3}$$

We set

$$L(t) = H^{1-\alpha}(t) + \varepsilon \int_\Omega uu_t \, dx + \frac{\mu \varepsilon}{2} \int_\Omega u^2 \, dx, \quad t \geq 0,$$
where \(\varepsilon > 0 \) to be specified later and
\[
\frac{2(p-2)}{p^2} < \alpha < \frac{p-2}{2p} < 1.
\] (4.4)

A direct differentiation of \(L(t) \) gives
\[
L'(t) = (1-\alpha)H^{-\alpha}(t)H'(t) + \varepsilon \| u_t \|^2 - \varepsilon \| \nabla u \|^2
\]
\[-\varepsilon \mu_2 \int \Omega uz(x,1,t) \, dx
\]
\[+\varepsilon \left(\int_0^t \int_0^t g(t-s) \nabla u(s) \nabla u(t) \, ds \, dx \right)
\]
\[+\varepsilon \int_0^t \| u_t \|^2 \ln |u|^k \, dx.
\] (4.5)

By \(\forall \delta > 0 \)
\[-\varepsilon \mu_2 \int \Omega uz(x,1,t) \, dx \leq \varepsilon |\mu_2| \left(\delta \int \Omega u^2 \, dx + \frac{1}{4\delta} \int \Omega z^2(x,1,t) \, dx \right),
\] (4.6)

and for some number \(\eta > 0 \),
\[
\int_0^t g(t-s) (\nabla u(s), \nabla u(t)) \, ds
\]
\[= \int_0^t g(t-s) (\nabla u(s) - \nabla u(t), \nabla u(t)) \, ds
\]
\[+ \int_0^t g(t-s) \| \nabla u(t) \|^2 \, ds
\]
\[\geq \left(1 - \frac{1}{4\eta} \right) \int_0^t g(s) \, ds \| \nabla u(t) \|^2 - \eta (g \nabla u)(t),
\] (4.7)

by (4.5), we get
\[
L'(t) \geq \left[(1-\alpha)H^{-\alpha}(t) - \frac{\varepsilon |\mu_2|}{4\delta C_0} \right] H'(t) + \varepsilon \| u_t \|^2
\]
\[-\varepsilon \left(1 - \frac{1}{4\eta} \right) \int_0^t g(s) \, ds \| \nabla u \|^2
\]
\[-\varepsilon \eta (g \nabla u)(t) + \varepsilon \int_\Omega |u|^p \ln |u|^k \, dx - \varepsilon \delta |\mu_2| \| u \|^2.
\] (4.8)

By taking \(\delta \) so that \(|\mu_2|/4\delta C_0 = kH^{-\alpha}(t) \), for large \(k \) to be specified later and substituting in (4.8), we obtain
\[
L'(t) \geq [(1-\alpha) - \varepsilon k] H^{-\alpha}(t) H'(t) + \varepsilon \| u_t \|^2
\]
\[-\varepsilon \left[1 - \left(1 - \frac{1}{4\eta} \right) \int_0^t g(s) \, ds \right] \| \nabla u \|^2
\]
\[-\varepsilon \eta (g \nabla u)(t) - \frac{\varepsilon |\mu_2|^2}{4kC_0} H^{\alpha}(t) \| u \|^2 + \varepsilon \int_\Omega |u|^p \ln |u|^k \, dx.
\]
For $0 < a < 1$, we get

$$L'(t) \geq [(1-a) - \varepsilon k] H^{-\alpha}(t) H'(t) + \varepsilon a \int_{\Omega} |u|^p \ln|u|^k \, dx$$

$$+ \varepsilon \frac{p(1-a)}{2} \|u_t\|^2$$

$$+ \varepsilon \left(\frac{p(1-a) - 2}{2} + \left(1 - \frac{1}{4\eta} - \frac{p(1-a)}{2} \right) \int_0^t g(s) \, ds \right) \|\nabla u\|^2$$

$$+ \frac{\varepsilon k (1-a)}{p} \|u\|^p_p - \frac{\varepsilon |\mu_2|^2}{4kC_0} H^\alpha(t) \|u\|^2 + \varepsilon p(1-a) H(t)$$

$$+ \varepsilon \left(-\eta + \frac{p(1-a)}{2} \right) (g_0 \nabla u)(t)$$

$$+ \frac{\varepsilon (1-a) p \xi}{2} \int_0^1 (x, \rho, t) \, d\rho \, dx. \quad (4.9)$$

Using (2.11), (4.3) and Young’s inequality, we obtain

$$H^\alpha(t) \|u\|^2_2 \leq \left(\int_{\Omega} |u|^p \ln|u|^k \, dx \right)^\alpha \|u\|^2_2$$

$$\leq C \left[\left(\int_{\Omega} |u|^p \ln|u|^k \, dx \right)^{\alpha^2/2/p} + \left(\int_{\Omega} |u|^p \ln|u|^k \, dx \right) \|\nabla u\|^4/2 \right]$$

$$\leq C \left[\left(\int_{\Omega} |u|^p \ln|u|^k \, dx \right)^{(\alpha p + 2)/p} + \|\nabla u\|^2_2 + \left(\int_{\Omega} |u|^p \ln|u|^k \, dx \right)^{\alpha/(p-2)} \right]$$

By (4.4), we get

$$2 < \alpha p + 2 \leq p \text{ and } 2 < \frac{\alpha p^2}{p-2} \leq p.$$
Combining (4.9) and (4.10), we get

\[L'(t) \geq [(1 - \alpha) - \varepsilon k] H^{-\alpha} (t) H'(t) + \varepsilon \left(a - \frac{\varepsilon |\mu_2|^2}{4kC_0} \right) \int_{\Omega} |u|^p \ln |u|^k \ dx \\
+ \varepsilon \left(\frac{p(1-a)}{2} - \frac{C|\mu_2|^2}{4kC_0} + \left(1 - \frac{1}{4\eta} \right) \frac{p(1-a)}{2} \right) \int_{0}^{t} g(s) \ ds \| \nabla u \|^2 \\
+ \varepsilon \left(-\eta + \frac{p(1-a)}{2} \right) (go\nabla u)(t) + \frac{\varepsilon k(1-a)}{p} \| u \|^p_p \\
+ \frac{\varepsilon (1-a)}{2} \| u_t \|^2 + \varepsilon p(1-a) H(t) \\
+ \frac{\varepsilon (1-a) p\xi}{2} \int_{0}^{1} \int_{0}^{1} z^2 (x, \rho, t) \ d\rho dx. \]

(4.11)

Here, we choose \(a > 0 \) so small that

\[\frac{p(1-a)}{2} > 0 \text{ and } \eta < \frac{p(1-a)}{2} \]

and \(k \) so large that

\[\left\{ \begin{array}{l}
\frac{p(1-a)}{2} - \frac{C|\mu_2|^2}{4kC_0} > 0, \\
a - \frac{\varepsilon |\mu_2|^2}{4kC_0} > 0, \\
\int_{0}^{t} g(s) \ ds < \frac{C|\mu_2|^2}{4kC_0 - \frac{p(1-a)}{2}} \end{array} \right\}. \]

Once \(k \) and \(a \) are fixed, we choose \(\varepsilon \) so small so that

\[(1 - \alpha) - \varepsilon k > 0, \]

\[H(0) + \varepsilon \int_{\Omega} u_0 u_1 \ dx > 0. \]

Hence, for some \(\lambda > 0 \), the estimate (4.11) becomes

\[L'(t) \geq \lambda \left[H(t) + \| u \|^2 + \| \nabla u \|^2 + \| u \|^p_p + (go\nabla u)(t) \right] \\
+ \lambda \left[\int_{\Omega} \int_{0}^{1} z^2 (x, \rho, t) \ d\rho dx + \int_{\Omega} |u|^p \ln |u|^k \ dx \right] \]

and

\[L(t) \geq L(0) > 0, \ t \geq 0. \]

(4.13)

Next, using Hölder’s inequality and the embedding \(\| u \|^2 \leq C \| u \|^p \), we get

\[\int_{\Omega} uu_t \ dx \leq \| u \|^2 \| u_t \|^2 \\
\leq C \| u \|^p_p \| u_t \|^2 \]

and exploiting Young’s inequality, we get

\[\left| \int_{\Omega} uu_t \ dx \right|^{1/(1-\alpha)} \leq C \left(\| u \|^p/(1-\alpha) + \| u_t \|^\theta/(1-\alpha) \right), \]

(4.14)
for $1/\mu + 1/\theta = 1$. To be able to use Lemma 2.4, we take $\theta = 2 \left(1 - \alpha \right)$ which satisfies $
mu / \left(1 - \alpha \right) = 2 / \left(1 - 2\alpha \right) \leq p$. Thus, for $s = 2 / \left(1 - 2\alpha \right)$, estimate (4.14) yields

$$\left| \int_{\Omega} uu_t dx \right|^{1/(1-\alpha)} \leq C \left(\|u\|_p^s + \|u_t\|_2^2 \right).$$

Therefore, Lemma 2.4 gives

$$\left| \int_{\Omega} uu_t dx \right|^{1/(1-\alpha)} \leq C \left[\|\nabla u\|_2^2 + \|u_t\|_2^2 + \|u\|_p^p \right]. \tag{4.15}$$

Hence,

$$L^{1/(1-\alpha)}(t) = \left(H^{1-\alpha}(t) + \varepsilon \int_{\Omega} uu_t dx + \frac{H_1\varepsilon}{2} \int_{\Omega} u^2 dx \right)^{1/(1-\alpha)} \leq C \left[H(t) + \left| \int_{\Omega} uu_t dx \right|^{1/(1-\alpha)} + \|u\|_2^{2/(1-\alpha)} \right] \leq C \left[H(t) + \left| \int_{\Omega} uu_t dx \right|^{1/(1-\alpha)} + \|u\|_p^{2/(1-\alpha)} \right] \leq C \left[H(t) + \|\nabla u\|_2^2 + \|u_t\|_2^2 + \|u\|_p^p \right], \tag{4.16}$$

Combining (4.12) and (4.16), we obtain

$$L'(t) \geq \Lambda L^{1/(1-\alpha)}(t), \quad t \geq 0. \tag{4.17}$$

where Λ is a positive constant depending only on λ and C.

A simple integration of (4.17) over $(0, t)$ yields

$$L^{\alpha/(1-\alpha)}(t) \geq \frac{1}{L^{\alpha/(1-\alpha)}(0) - \Lambda \alpha t / (1-\alpha)}.$$

Hence, $L(t)$ blows up in time

$$T \leq T^* = \frac{1 - \alpha}{\Lambda \alpha L^{\alpha/(1-\alpha)}(0)}. \tag{5.1}$$

Consequently, the solution of problem (1.1) blows up in finite time T^* and $T^* \leq \frac{1 - \alpha}{\Lambda \alpha L^{\alpha/(1-\alpha)}(0)}$. \square

5. Conclusions

In recent years, there has been published much work concerning the wave equation with constant delay or time-varying delay. However, to the best of our knowledge, there was no blow-up result for the logarithmic nonlinear viscoelastic wave equation with delay term. Firstly, we have been obtained the local existence result by using the Faedo-Galerkin approximation. Later, we have been proved that blow-up of solutions for problem (1.1) under the sufficient conditions in a bounded domain.
References