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Abstract A cusp, bright breathers, dark breathers, kink, bright rogue waves and some soliton
waves solutions are obtained by using the exp(—¢(€))-expansion method for the
fourth order Benjamin-Ono equation and BBM equations. The obtained solutions
might be indicated and meaningful for narrating the physical phenomena in the real-
world. For compatible values of the arbitrary parameter included in the solution,
we plot the 3D surface of the all obtained solutions which are shown in Figure 1 to
Figure 10.

Keywords. The exp(—¢(€))-expansion method, The fourth order Benjamin-Ono equation, BBM equation,
Traveling wave solutions, Nonlinear evolution equation.

2010 Mathematics Subject Classification. 35C07, 35C08, 35P99.

1. INTRODUCTION

Finding the exact and analytical solutions to nonlinear partial differential equa-
tions (NLPDESs) play fundamental and imperative problems in mathematical physics,
applied sciences and engineering. As a result, various groups of physicist and math-
ematicians have been working tirelessly to improve useful methods for providing dif-
ferent types soliton form solutions to NLPDEs. For this reason, several methods have
been developed to search the analytical solutions, such as the novel (G'/G)-expansion
method [2, 3, 4, 6, 8, 9, 10], the extended exp-function method [26, 28, 29], the
modified exp-function method [27, 30], the sine-Gordon expansion method [13, 14],
the homogeneous balance method [16, 25], the simplest equation method [23], the
inverse scattering transform method [1, 33], the Hirotaj s bilinear method [38], the
tanh-function method [37], Bell-polynomial method [41], the extended tanh-function
method [17, 34, 40], the Exp-function method [20], the sine-cosine method [36], the

Received: 07 February 2019 ; Accepted: 28 April 2019.
* corresponding.

597



598 M. N. ALAM AND X. LI

Backlund transformation method [22],the modified Exp-function method [32], the Ja-
cobi elliptic function expansion method [21], the exp(—¢(€))-expansion method [5, 7]
and so on.

The objective of this article is to derive some fresh and wide-applicable a cusp,
bright breathers, dark breathers, kink, bright rogue waves and some soliton waves
solutions to the fourth order Benjamin-Ono equation and BBM equations through
the exp(—¢(&))-expansion method which are discussed in section 3. The new ana-
lytical solutions performed in this paper are characterized by exponent, trigonomet-
ric,rational, and hyperbolic functions. However, we observe that a cusp, bright bright
breathers, dark breathers, kink, bright rogue waves and some soliton waves solutions
are obtained to the fourth order Benjamin-Ono equation and BBM equations have
not been reported previously.

The synopsis of this paper as follows: In Section 2, we give the algorithm of
the exp(—¢(&))-expansion method. In Section 3, new solutions of the fourth order
Benjamin-Ono equation and BBM equations are formulated through the exp(—¢(€))-
expansion method. In Section 4, graphical representations and numerical experiments
of the derived solutions are depicted. Finally, the conclusion of our study is given.

2. ALGORITHM OF exp(—@(§))-EXPANSION METHOD

The following is given as the general nonlinear PDEs (the fourth order Benjamin-
Ono equation and BBM equations) with two variables x and ¢ as

P(v, v, Ve, Vit, Vg, Uty -...) = 0, (2.1)

where v(z,t) is an unknown function and P is a polynomial in v(z,t).

Step 1: The traveling wave variable
v(z,t) =v(§),f =x+ Vi, (2.2)

where V is the speed of the traveling wave and the traveling wave variable ( 2.2)
converts equation ( 2.1) into the ordinary differential equation

R('U;_VU/711/70/71}/71}”70//71}’/,‘/2””, """" ):0 (23)

where R is a polynomial in v and its derivatives and the superscripts indicate the
ordinary derivatives with respect to &.
Step 2: Suppose that the traveling wave solution of equation ( 2.3) can be expressed
as

N

v(©) =D Aileap(—0(8)))", (24)

i=0
where A;(i =0, ...,n) are constants to be determined, such that Ay # 0 and ¢ = ¢(&)
satisfies the following ordinary differential equation:

(0(£)) = exp(=0(£)) + pexp(d(£)) + A, (2.5)
where Ay ....... , V. A\, i are constants to be determined latter.
Step 3: For a given ansatz equation (for example, the ansatz equation is (¢(§))/ =
c[v)
EE
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exp(—d(€)) + pexp(d(§)) + A in this paper), the form of v is decided and the homo-
geneous balance method is used on equation ( 2.3) to find the coefficients of v.
Step 4: The homogeneous balance method is used to solve the ansatz equation.
Step 5: Finally, the solitary wave solutions of equation ( 2.1) are obtained by com-
bining steps 3 and 4.

Next, we have five solutions including trigonometric, hyperbolic, exponent and
rational function structure of equation ( 2.5).

When p # 0, A2 — 4 > 0,, the solution of equation ( 2.5) is

— — 4putan Ve —
(9(e)) = tn( YA JEL T 2 (26)

When p # 0, A2 — 4y < 0, the solution of equation ( 2.5) is

A — Ntan(VE22) ¢ 4 B) - A

2

(6(€)) = In( )- (2.7)

2p
When p =0, XA # 0, A2 — 4 > 0,, the solution of equation ( 2.5) is
A
=1 . 2.8
(00 = Il =) (28)

When p # 0, A # 0, A2 — 4 = 0,, the solution of equation ( 2.5) is

(0(6)) = tn(- ZAE L), (29)

When p =0, A =0, A2 — 4 = 0,, the solution of equation ( 2.5) is
(0(£)) = In({ + E). (2.10)

3. FORMULATION OF SOLUTIONS

In this section, the method is used to construct a cusp, bright breathers, dark
breathers, kink, bright rogue waves and some soliton waves solutions for the fourth
order Benjamin-Ono equation and BBM equations which are very important nonlinear
evolution equations in the field of nonlinear dynamics.

3.1. The fourth order Benjamin-Ono equation. In this subsection, we will present
the exp(—¢(&))-expansion method to construct bright breathers, dark breathers, bright
rogue waves and multiple soliton waves solutions of the fourth order Benjamin-Ono
equation which are illustrated in Figure 1 to Figure 5. The fourth order Benjamin-Ono
equation is of the form,

Vi + a(vz)ww + ﬁvwwww = 07 (31)

where a and (8 are real non-zero parameters and (1}2)M is the nonlinear term and v, ;44
is dispersion term. In mathematics, the fourth order Benjamin-Ono equation is an
significant nonlinear partial integro differential equation that derives one-dimensional
internal waves in deep water and it plays a important problem in many scientific
applications, such as fluid dynamics, nonlinear optics, plasma physics [18, 35, 19, 15,
39].

ao
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By using traveling wave variable v(§) = v(z,t), £ = © — Vit , Equation ( 3.1)
converts into a nonlinear ordinary differential equation

VZurr + a(v?)rn + Bt = 0. (3.2)
Performing the first and second integrations of equation ( 3.2), we get
K+ V20 + a(v?) + purr = 0, (3.3)

where K is constant. Making the homogeneous balance between v? and v/, we get
N =2 . Putting the value of N in equation ( 3.3) our solution is of the form

v(§) = Ao + Ax(exp(—¢(8)) + Az(exp(—9(¢))), (34)

where the coefficients Ay, A1 and A, are constants to be evaluated.
Putting the values of equation ( 3.4) into equation ( 3.3) and then equating each
coefficients of exp(—¢(€) to zero, we get

684 + aA3 =0, (3.5)
10842\ + 204, Ay + 264, =0, (3.6)
VZAy + aA? + 3BA1\ + 20 A0 Ay + 8B A + 434202 = 0, (3.7)
VZA; + 20A 1 + 68Asu) + BAIN? 4+ 2040 A1 = 0, (3.8)
VZAg + 20 A2 + 2BAop* + K + BA A\ = 0, (3.9)

Using algebraic software Maple, we solve the equation ( 3.5) to equation ( 3.9)
 A§a? + 126717 + 682N+ 8AgauB + AgaX?f

K
8]
V = /(— (2ado + 88u+ BA?)),
Ao = Ag, Ay = =X 4, = 95,
8] [0

where \ and p are constants. Now setting the values of V, Ay, A1, A5 into equation
( 3.4), we have

v(©) = 40— Pean(—o(6)) ~ L (ean(-())” (3.10)

where ¢ = 2 — (/( — (2a4o + 88 + BA2)))t. A substitution of the equation ( 2.6)
to equation ( 2.10) into equation ( 3.10), leads to the following five traveling wave
solutions of the fourth order Benjamin-Ono equation.

(=)l

[EE
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When p # 0, A2 — 4y > 0, the solution of equation ( 3.1) is

65 24
n(€) = Ao+ 2 : )
C N —dptanh(Y (6 + E) + A 5.1
_ %( 2p )2, .
@ e 4ptanh(7~)\2274#)(f +E)+ A
When p # 0, A2 — 4p < 0, the solution of equation ( 3.1) is
65\ 20
(&) = Ao — —( — )
@ 4p — Ntan( 4/;_/\ WE+E)— A (3.12)
_ %( 2p )2, .
A= Ntanh(YE20) (6 4+ B) - A
When p =0, XA # 0, A2 — 4 > 0, the solution of equation ( 3.1) is
RV SN Y S
v3(8) = Ao a (exp()\(f +E)) - 1) a (exp()\(f +F))— 1) ' (3.13)
When p # 0, A # 0, A2 — 4 = 0, the solution of equation ( 3.1) is
_ L LB, N4 E) 68, NE+E)
WO = At rGRE B 12 @ B0E+ B) +2) (3:14)
when 1 =0, A = 0, A2 — 4y = 0, the solution of equation ( 3.1) is
vs(€) = Ao — (L P (315)

(E+E) o (E+E)

3.2. The BBM equation. In this subsection, we will present the exp(—¢(§)) -
expansion method to construct a cusp, bright breathers, dark breathers, kink and
multiple soliton waves solutions of the Benjamin-Bona-Mahony equation which are

shown in Figure 6 to Figure 10. The Benjamin-Bona-Mahony equation is of the
form [12, 24, 31]

(67

Vi + Vg + avV; — bugy: = 0. (3.16)

where a and b are constants and v(x, t) is the function of the space variables x for the
displacement of the water surface at location in the context of shallow water waves
and time variable t. It was establised as a model for the unidirectional propagation of
small amplitude long waves on the surface of water in a channel in nonlinear dispersive
media [11]. According to the shallow water waves, it is applicable to the study of drift
waves in the Rossby waves or plasma waves in rotating fluids and also the acoustic-
gravity waves in compressible fluids, the acoustic waves in an harmonic crystals and
the hydromagnetic waves in cold plasma [11].

By using traveling wave variable £ = x — [t carries equation ( 3.16) into a nonlinear
ordinary differential equation

(1- B+ gvﬂ — bBur+ K = 0. (3.17)

(Elim)
EE
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Performing the first and second integrations of equation ( 3.17) and making the ho-
mogeneous balance between v? and v/, we get N = 2 . Putting the value of N in
equation ( 3.17). Our solution is of the form

v(§) = Ao + Ax(exp(—¢(S)) + Az(exp(—9(§))) (3.18)

where the coefficients Ay, A; and A, are constants to be evaluated.
Putting the values of equation ( 3.18)into equation ( 3.17) and then equating each
coefficients of exp(—¢(§) to zero, we get

-68bAs + %aA% =0, (3.19)
-108bA\ + aA; Ay — 28bA; =0, (3.20)
-BAy 4+ Ay + %aAf — 3BbAI N+ aAgAs — 8BbAsp — 4B8bAN% = 0, (3.21)
A — BA; — 2BbA i — 68bAsu\ — BbAIN? 4+ aAgA, =0, (3.22)
Ao — BbA N — BAy + K + %aA% — 2BbAyu® =0, (3.23)

Using algebraic software Maple, we solve the equation ( 3.19) to equation ( 3.23)

_2ﬂ 1= 8B2b2)\2u7ﬂ2 +/\4b262 4 16#262,62

K = ,
2a
A2bB 4 8ubB + B —1
/8:/87‘40: /8 ’uaﬂ ﬂ ’
A = 12bﬂ)\,A2: 12bﬂ7
a

where A and p are constants.
Now setting the values of V, Ag, A1, Ay into equation ( 3.18), we have

_ A2bB + 8ubB + B — 1
a (3.24)
(cxp(~0(€))) + T2 (eap(~H(E)*

v(&)

12056\
| 1268

where £ = x — [t.
A substitution of the equation ( 2.6) to equation ( 2.10) into equation ( 3.24), leads
to the following five traveling wave solutions of the Benjamin-Bona-Mahony equation.

(=)l
[EE
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When p # 0, A2 — 44 > 0, the solution of equation ( 3.16) is
CNB+8ubB+ -1

v(§) .
_ 1208 2 )
@ /N = aptanh (Y )‘22_4”)(5 +E)+ A (3.25)
n 1205 2u 2.

@ N dptanh(YEEM €+ B) + A
When p # 0, A2 — 4u < 0, the solution of equation ( 3.16) is
CNB+8ubf+ -1

v7(§) .
L1208 2 )
“ 4p — Ntan( @)(f +E)— A (3.26)
128, 2 -

C A= Ntanh(YE2) €+ B) - A
When p =0, XA # 0, A2 — 4 > 0, the solution of equation ( 3.16) is

CN2B+8ubB+B— 1 1268A A
vs(§) = a + a (ea:p()\(f +E)) - 1) (3.27)
1205, A . '
a exp(AM§+E) -1~
When p # 0, A # 0, A2 — 4 = 0, the solution of equation ( 3.16) is
(5)_/\2b6+8ub6+ﬂ—1_12bﬂ/\( A (E+E) )
VoSS = a a 2M+E)+2)
2 (3.28)
1208 A €+ E) ¢
a 2ME+E)+2)"
When p =0, A = 0, A2 — 4 = 0, the solution of equation ( 3.16) is
B +8ubB+B—1  126BA, 1 1208 1
vio(§) = . +— ((“E) . CTER (3.29)

4. GRAPHICAL REPRESENTATIONS AND NUMERICAL EXPERIMENTS

In this section, we will provide the physical meaning of the obtained solutions of
the equation ( 3.1) and equation ( 3.16) by using the mathematical software Maple,
which are represented in Figure 1 to Figure 10. For further understanding the physical
meaning of the solutions, we depicted 3D plot of visualize phenomena. We observe
that in the numerical experimentations of the obtained solutions, Figure 1 is bright
breather solutions, Figure 2 is the bark breather solutions, Figure 3 is bright rogue
waves solutions, Figure 4 is also bright breather solutions, Figure 5 is multiple soli-
ton solutions, Figure 6 is also bright breather solutions, Figure 7 is also multiple

(Elim)
EE



604 M. N. ALAM AND X. LI

FIGURE 1. Bright breathers solution v1(§) of equation ( 3.1) with
a=-1,=-1,u=1,A=3, F=1and 4y = 1.

FIGURE 2. Dark breathers solution v2(€) of equation ( 3.1) with
a=-50=-2,p=3,A =1, F=1and 4y =5.

FIGURE 3. Bright rogue waves solution vs(§) of equation ( 3.1) with
a=-9,=-8 u=0,A=2 F=1and 4y = 12.

0.8

soliton solutions, Figure 8 is cuspon waves solitons, Figure 9 is Singular kink waves
solutions,and Figure 10 is soliton solutions.
an
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FIGURE 4. Bright breathers solution v4(§) of equation ( 3.1) with
a=-3,=-3, u=1,A=2 F=5and 4y =4.

SN

FIGURE 5. Multiple Soliton solution vs(§) of equation ( 3.1) with
a=-8,8=-9,u=0,A=0, F=1and 4y = 4.

1
! \
05
2 4 6
x

FIGURE 6. Bright breathers solution vg(§) of equation ( 3.16) with
a=1b=1Lpu=1,A=3, E=1and §=5.

5. CONCLUSION

In summary, applying the exp(—¢(€))-expansion method to the fourth order Benjamin-
Ono equation and BBM equation, we have successfully obtained a special kinds of

(Elim)
EE
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FIGURE 7. Multiple bright Soliton solition v7(§) of equation ( 3.16)
witha=1,b=1,u=3,A=1, F=1and f=1.

WMNL

[k

FIGURE 8. Cusp waves solution vg(&) of equation ( 3.16) with a = 2,
b=2, p=0,A=2, E=1and g =1.

FIGURE 9. Singular kink waves solution vg(§) of equation ( 3.16)
witha=1,0=1,u=1,A=2, FE=1and §=1.

waves solutions such as bright bright breathers waves, dark breathers waves, a cusp
wave, kink waves, bright rogue waves and some soliton solutions.
oo
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FIGURE 10. Soliton solution v1o(&) of equation ( 3.16) with a = 5,
b=8, u=0,A=0,EF=1and g=1.
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