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Abstract In this work a numerical scheme is constructed to approximate the Volterra integro-

differential equations of convolution type. The proposed numerical scheme is based
on Laplace transform, inverse Laplace transform and integration. The solution of

the problem is represented in the form of contour integral in the complex plane.
This integral is approximated along optimal contour using trapezoidal rule with

equal step size. The solution accuracy depends on optimal contour which is needed

for accurate approximation of the inverse Laplace transform. For better accuracy
two types of contours, parabolic and hyperbolic, are used which are available in the

literature. The performance of the numerical scheme is tested for different examples.

The actual error well agree with the corresponding error estimates of the proposed
numerical scheme for both parabolic as well as hyperbolic contours.

Keywords. Volterra Integro-differential equation, Hyperbolic and parabolic contours, Laplace Transforms,

Trapezoidal rule.
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1. Introduction

The Volterra integro-differential equation was developed by Volterra while studying
the population growth model [25]. The Volterra integro-differential equations have
applications in fluid dynamics, electrostatics [6], diffusion problems [2], and some
special problem of mechanics etc. As the analytical solutions of VIDEs are difficult
in many cases, so numerical methods are used to find the solution of such types of
VIDEs. Some of the effective numerical methods which are available in the litera-
ture for the solution of VIDEs include operational matrix approach for integration
with block pulse functions [3, 4], Lagrange interpolation for integrals and integro-
differential equation [18], the homotopy perturbation and finite difference methods
[8, 10], the Elzaki transform method [7], and the power series method [20] etc. A

Received: 11 June 2018 ; Accepted: 14 May 2019.
∗ Corresponding author.

305



306 M. UDDIN AND M. UDDIN

stability and convergence analysis for solving VIDEs are discussed for some numeri-
cal methods in [5, 19]. Some real life problems using VIDEs are solved using various
analytical and numerical solutions [1, 9, 12]. In the present work we used Laplace
transform to approximate Volterra integro-differential equations and construct a nu-
merical algorithm for the solution of inverse Laplace transform which is the extension
of some earlier work [22, 23, 24] for VIDEs.

2. Description of the method

The Laplace transform of an arbitrary function f(t) of a real variable t > 0 [15,
p.449] is defined by

f(z) = L[f(t), z] =

∫ ∞
0

e−ztf(t)dt, (2.1)

where z = s + ia is a complex variable. The Laplace transform is valid for any
continuous or piecewise-continuous functions satisfying the condition |f(t)| < Mea0t

with some M > 0 and a0 ≥ 0. The inverse Laplace transform is given by the following
formula [15, p.450]

f(t) =
1

2π i

∫ C+i∞

C−i∞
f(z)eztdz, (2.2)

here the integration path is parallel to the imaginary axis and lies to the right of
all singularities of f(z), which corresponds to C > a0. The general form of Volterra
integro-differential equation is given by[25, p.162]

u(n)(t) = f(t) +

∫ t

0

k(t, s)u(s)ds, (2.3)

where u(m)(0) = bm, 0 ≤ m ≤ n− 1, and u(n)(t) indicates the nth derivative of
u(t), and bm are constant which denote the initial conditions. The Volterra integro-
differential equation of first kind is given by [25, p.181]∫ t

0

k1(t, s)u(s)ds+

∫ t

0

k(t, s)u(n)(s)ds = f(t). (2.4)

In the present work, we consider the case in which k1(t, s) = 0, the above equation
becomes∫ t

0

k(t, s)u(n)(s)ds = f(t). (2.5)

Since we are concerned only with convolution type of equations, so the kernel will be
of the form k(t, s) = k(t− s), and the equations (2.3)-(2.5) become

u(n)(t) = f(t) +

∫ t

0

k(t− s)u(s)ds, (2.6)
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and ∫ t

0

k(t− s)u(n)(s)ds = f(t). (2.7)

Applying the Laplace transform to equation (2.7) we have

L
[∫ t

0

k(t− s)u(n)(s)ds

]
= L{f(t)}, (2.8)

and using the convolution theorem we have

L{k(t)}L{u(n)(t)} = L{f(t)}. (2.9)

If we denote

L{k(t)} = K(z),L{u(t)} = U(z), and L{f(t)} = F (z),

and

L{u(n)(t)} = znU(z)− zn−1u(0)− zn−2u′(0)− ...− u(n−1)(0), (2.10)

using these values in equation (2.9), we get

U(z) =
F (z)

znK(z)
+
zn−1u(0) + zn−2u′(0) + ...+ u(n−1)(0)

zn
. (2.11)

Apply Laplace transform to (2.6) we have

U(z) =
F (z)

zn −K(z)
+
zn−1u(0) + zn−2u′(0) + ...+ u(n−1)(0)

zn −K(z)
. (2.12)

Hence the solution of the problem is represented as an integral in the complex plane

u(t) =
1

2π i

∫ C+i∞

C−i∞
U(z)eztdz. (2.13)

Now we need to select the contour of integration to approximate the path from C−i∞
to C+ i∞, here we consider two such contours namely the parabolic contour [22] and
the hyperbolic contour [14] respectively.

The parametric equation of parabolic contour is given by

z = µ((1− c)2 − η2) + 2iµη(1− c),−∞ < η <∞, (C1) (2.14)

while that of hyperbolic contour is given by

z = µ(1−sin(α+c) cosh(η))+iµ cos(α+c) sinh(η), −∞ < η <∞, (C2) (2.15)

where µ, c, and α are parameters and need to be optimized for better accuracy.

u(t) =
1

2πi

∫
Γ

U(z)eztdz. (2.16)
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The numerical solution can be represented in the following form incorporating either
of the two contours C1 or C2

u(t) =
1

2π i

∫
Γ

U(z(η))ez(η)tz′(η)dη. (2.17)

If we use equal weight quadrature rule, i.e trapezoidal rule with step size h, then
zj = z(ηj), z

′
j = z′(ηj) the equation (2.17) can be approximated as

uN (t) =
h

2π i

N∑
j=−N

U(zj)e
zjtz′j . (2.18)

3. Application of the method to numerical experiments

Here we apply the present numerical scheme for solving some problems, where the
following optimal parameters for better accuracy are used (see for example [14, 22]
). We used the following parameters for all our numerical experiments t = 0.1,
T = 1, t0 = 0.01, for the path C1 we used c = 0.3, h = 3/N , µ = πN/(12t), while
for the path C2, the parameters c = 0.3, α = 1.1721, Aα = cosh−1( 2α

(4α−π) sin(α)) ,

h = Aα/N , µ = ((4πα − π2)N)/(Aαt) are used. Here the error estimate of the
method is l(ρN)e−νN .

3.1. Problem 1. We apply the present numerical scheme to solve the following prob-
lem [18]∫ t

0

cos(t− s)u′′(s)ds = 2 sin(t), (3.1)

with u(0) = 0, and u′(0) = 0, application of the Laplace transform to equation (3.1)
and using convolution theorem we have

L{cos(t) ∗ u′′(t)} = L{2 sin(t)}, (3.2)

and hence we have

L{cos(t)} =
z

z2 + 1
,L{sin(t)} =

1

z2 + 1
,L{u′′(t)} = z2U(z)− zu(0)− u′(0).

(3.3)

Using the above values we have

U(z) =
2

z3
. (3.4)

The approximate solution can be obtained from (2.18) using (3.4), where the exact
solution of the above problem is u(t) = t2. We obtained the results of the above
problem using both contours C1 and C2 in form of absolute error, and compared with
the error estimate of the numerical method. The results are compared with other
methods and are shown in the Table 1.
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Table 1. Problem 1: Solution of Volterra integro-differential using
our numerical scheme and both contours C1 and C2.

N Absolute error (C1) Absolute error (C2) l(ρN)e−νN

32 5.2493e− 018 6.4591e− 008 2.8175e− 004
48 1.0500e− 017 1.4780e− 012 1.8711e− 006
64 3.4993e− 017 2.1086e− 016 1.2658e− 08
66 6.6180e− 015 1.0432e− 016 6.7847e− 009
67 4.7624e− 015 6.8084e− 017 4.9674e− 009
80 1.2457e− 014 1.1312e− 015 8.6551e− 011
88 6.8617e− 014 5.7250e− 017 7.1766e− 012
89 9.0819e− 014 1.4521e− 015 5.2577e− 012
96 3.4870e− 016 1.8844e− 016 5.9593e− 013
109 8.5166e− 013 4.7709e− 017 1.0474e− 014
112 1.4810e− 012 2.0766e− 016 4.1235e− 015
122 1.7977e− 012 1.0531e− 015 1.8457e− 016
128 3.1323e− 014 1.4592e− 015 2.8639e− 017
158 2.7697e− 010 3.1509e− 015 2.5902e− 021
179 4.2485e− 009 4.4829e− 017 3.8429e− 024

Method 1 [18] 9.9000e− 016
Method 2 [18] 5.3000e− 016

[4] 1.7000e− 014

3.2. Problem 2. Here we used the present numerical scheme to solve the following
problem (see [3])

u′(t) + u(t) =

∫ t

0

e(s−t)u(s)ds. (3.5)

Applying the Laplace transform to equation (3.5) and using the convolution theorem
we get

L{u′(t)}+ L{u(t)} = L{e−t ∗ u(t)}. (3.6)

Simplify we get

L{u′(t)}+ L{u(t)} = L{e−t}L{u(t)}. (3.7)

These values may be calculated as

L{e−t} =
1

z + 1
,L{u′(t)} = zU(z)− u(0), L{u(t)} = U(z). (3.8)

Using the above result we have

U(z) =
z + 1

z2 + 2z
. (3.9)

The approximate solution can be obtained from (2.18) using (3.9), where the exact
solution is u(t) = e−t cosht. The results of the present method in term of absolute
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error and error estimate and comparison with an other method for the same model
are shown in Table 2.

Table 2. Problem 2: Solution of Volterra integro-differential by the
present method with two contours C1 and C2.

N Absolute error (C1) Absolute error (C2) l(ρN)e−νN

12 3.5213e− 008 2.2844E − 004 1.5920e− 001
16 4.8442e− 011 4.4124e− 006 4.4300e− 002
32 1.5462e− 015 1.8282e− 010 2.8175e− 004
48 6.6553e− 015 2.0334e− 014 1.8711e− 006
64 2.2519e− 014 2.3120e− 014 1.2658e− 08
80 1.7172e− 010 2.6291e− 013 8.6551e− 011
96 5.6308e− 012 5.8978e− 014 5.9593e− 013
112 1.0731e− 008 1.5174e− 014 4.123e− 015
128 3.0271e− 010 8.0386e− 013 2.8639e− 017
144 1.2774e− 006 3.0109e− 012 1.9948e− 019
160 2.1435e− 005 6.8549e− 012 1.3928e− 021
176 8.1798e− 005 1.0315e− 011 9.7926e− 024
192 2.9887e− 006 8.4420e− 012 6.8262e− 026
[16] 3.2717e− 003

3.3. Problem 3. We solve the following problem by the present method

u′′(t) = t+

∫ t

0

(t− s)u(s)ds, (3.10)

as discussed in [3], where u(0) = 0 and u′(0) = 1, apply the Laplace transform to
equation (3.10), and using convolution theorem we have

L{u′′(t)} = L{t}+ L{t ∗ u(t)}, (3.11)

or

L{u′′(t)} = L{t}+ L{t}.L{u(t)}, (3.12)

where

L{t} =
1

z2
, L{u(t)} = U(z), L{u′′(t)} = z2U(z)− zu(0)− u′(0). (3.13)

Using the above result we have

U(z) =
1

z2 − 1
. (3.14)

The use of equation (3.14) in equation (2.18), we obtained the approximate solution,
where the exact solution of the problem is given by u(t) = sinh t. The results are
shown in Table 3.
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Table 3. Problem 3: Solution of Volterra integral-equation by the
present method using C1 and C2, t = 1

8 .

N Absolute error C1 Absolute error C2 l(ρN)e−νN

16 1.1971e− 008 2.7000e− 003 4.43e− 002
32 2.8905e− 017 3.4800e− 007 2.8175e− 004
48 6.5608e− 017 2.5026e− 011 1.8711e− 006
64 9.7942e− 016 1.4754e− 015 2.5757e− 008
80 1.3746e− 012 1.5375e− 014 8.6551e− 011
96 2.5609e− 014 3.4867e− 015 5.9593e− 013
112 1.1470e− 010 2.0595e− 015 4.123e− 015
128 2.0707e− 012 3.0714e− 014 2.8639e− 017
144 8.3449e− 009 9.7298e− 014 1.9948e− 019
160 1.2514e− 007 2.0166e− 013 9.7926e− 024
176 3.7030e− 007 2.3259e− 013 9.7926e− 024
[3] 1.6000e− 004

3.4. Problem 4. Lastly we consider the following problem

u(t) = a sin(t) + 2

∫ t

0

u′(s) sin(t− s)ds. (3.15)

Applying the Laplace transform to equation (3.15), and using convolution theorem
we have

L{u(t)} = L{a sin(t)}+ 2L{sin(t) ∗ u′(t)}, (3.16)

Performing the following computations

L{sin(t)} =
1

z2 + 1
,L{u′(t)} = zU(z)− u(0), L{u(t)} = U(z), u(0) = 0

(3.17)

and using the above results we have

U(z) =
a

(z − 1)2
. (3.18)

Use this value in equation (2.18) we get the numerical solution by the present method,
where the exact solution of the current problem is u(t) = atet with a = 1. The results
are given in Table 4

4. Conclusion

In this paper we constructed a numerical scheme for approximating Volterra integro-
differential equations. The proposed numerical scheme is based on Laplace transform
and quadrature rule with high order accuracy. The proposed numerical scheme recov-
ered the results with much better accuracy as compared to the available methods, e.g
the Lagrange interpolation method, the integral expansion method, the operational
matrix method, the optimal homotopy asymptotic method for solving the Volterra
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Table 4. Problem 4: Solution of Problem 4 by the current method
using C1 and C2 at t = 1

8 .

N Absolute error C1 Absolute error C2 l(ρN)e−νN

15 2.5372e− 007 2.7600e− 002 6.0900e− 002
25 7.1277e− 013 1.5338e− 004 2.600e− 003
35 1.0496e− 014 5.5997e− 007 1.0981e− 004
45 1.2823e− 014 1.6229e− 009 4.7825e− 006
55 8.7341e− 016 4.0392e− 012 2.0995e− 007
65 4.5596e− 013 1.2181e− 014 9.2672e− 009
75 1.2082e− 012 1.4281e− 015 4.1067e− 010
85 3.0601e− 012 4.2221e− 014 1.8254e− 011
95 1.1794e− 011 1.4797e− 014 8.1331e− 013
105 1.2802e− 011 3.5085e− 014 3.6309e− 014

integro-differential equations of convolution types. The proposed method is a very
well alternative for solving such types of problems in science and engineering.
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