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Abstract In this paper, the issue of distribution of zeros of the solutions of linear homoge-

nous differential equations (LHDE) have been investigated in terms of semi-critical

intervals. We shall follow a geometric approach to state and prove some properties
of LHDEs of the sixth order with (2, 3, 4, and 5 points) boundary conditions and

with measurable coefficients. Moreover, the relations between semi-critical intervals

of the LHDEs have been explored. Also, the obtained results have been generalized
for the 5th order differential equations.
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1. Introduction

In the 60s of the last century laws of distribution of zeros of solutions began to
emerge in some studies. It was dealt with in one package with the question of research
interval of applicability of theorems on differential inequalities, considering not only
one differential equation and multi-point boundary value problems for the given equa-
tion, but more generally, multi-point boundary value problems for any given equation.
This field of study attracts many researchers and it gains much more interest for its
applications to functional equations [14], neutral differential equations [13, 15], differ-
ential equations with delay constant [21, 25, 26], and variable delay [24, 27].
The question of the laws of distribution of zeros of solutions of a linear differential
equation touches upon many studies on the theory and practice of differential equa-
tions.
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In I. Mikusinsky[22], the following analogue of the Sturm theorem is obtained: If the
solutions u(t) and v(t) of the equation x(n) + g(t)x = 0 satisfy the conditions

u(α) = u
′
(α) = ... = u(n−2)(α) = 0, u(n−1)(α) = 1, u(β) = 0,

v(γ) = v
′
(γ) = ... = v(n−2)(γ) = 0, v(n−1)(γ) = 1, α ≤ γ ≤ β,

then the solution v(t) does not have zeros in (γ, β]. Also, A. K. Kondratiev[19],
considering the same equation x(n) + g(t)x = 0 for values of n = 3 and n = 4
at constant coefficient g(t), proved the following theorem on alternation of zeros of
solutions:

• if n = 3, then between two consecutive zeros of one solution there are at most
two zeros of the other;

• if n = 4 and g(t) ≥ 0, then between two consecutive zeros of one solution lies
not more than four zeros of the other, where four zeros can lie;

• if n = 4 and g(t) ≥ 0, then between two successive zeros of one solution lie
not more than three zeros of the other.

M. Akhundov. and A. T. Toraev[1], found a generalization of the result of Kon-

dratiev for the equation x
′′′

+ g1(t)x
′
+ g2(t)x = 0, where g1(t) and g2(t) is constant-

sign. U. Levin[20], showed that the theorem of A. K. Kondratiev is also valid for

equations of the form x
′′′

+ g1(t)x
′′

+ g2(t)x
′

= 0 and x(IV ) + (g(t)x
′
)
′

= 0.
After the publication of [12], where the laws of distribution of zeros of solutions for a
LHDE of the third order of the general form for n = 3 in terms of semi-critical inter-
vals established, a large number of papers have appeared [2, 3, 4, 12, 16, 23]. They
studied with one or other degrees of completeness of the problem of the distribution
of zeros of solutions of equations of nth order at n ≥ 4 with summable coefficients
besides the continuous ones.
The authors of [5, 6, 7, 8, 9, 10, 11, 17, 18] investigated LHDEs of the (fifth, sixth)
order, they used the analytic approach to prove the properties of the distribution
zeros of their solutions.
In this paper, we shall rather use the geometric approach to state and prove some
properties of LHDE of the sixth order with (2, 3, 4, and 5 points) boundary condi-
tions. Main results in this study are;
r51(s) ≥ r111111(s), r312(s) ≥ r111111(s), r2121(s) ≥ r111111(s) and r21111(s) ≥ r111111(s).

2. Concepts and Terminology

Consider the equation

L [y] = y(6) − g5 (x) y(5) − g4(x) y
(4) − g3 (x) y

′′′
− g2 (x) y

′′
− g1 (x) y

′
−

g0 (x) y = 0. (2.1)
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Assume that the coefficients gk (x) are measurable and continues on [a, b] satisfying
the conditions

y(kj) (ξj) = Aj,kj , kj = 0, . . . , pj − 1, j = 1, 2, . . . , m,

m∑
j=0

pj = 6,

m ≤ 6 (2.2)

where m is the number of points ξj , pj is the number of conditions at the points ξj .
Problem (2.1) and (2.2) is called � ( p1p2 . . . pm – problem ) �.

Definition 2.1. [10] For each fixed point α ∈ [a, b), there exists a nonzero interval
[α, β), in which any non-trivial solution of equation (2.1) has no more than 5 zero,
taking into account their multiplicities. This interval is called the semi-oscillation for
equation (2.1). The maximum intervals of semi-oscillation with a common origin in
α is denoted by [α, r(α)).

Definition 2.2. [9] The interval [α, µ), in which the given problem has a unique
solution, is called the semi-critical interval of this problem. The maximum intervals
of semi - critical with a common origin in α is denoted by [α, rp1p2....pk(α)), k =2,
3, 4, 5.

The concept of the semi-critical interval is directly related to the distribution of
zeros of the solution of equation (2.1).

We decipher the definitions of the maximal semi-critical intervals of some boundary
value problems.

The interval [s, r51(s)) is called such an interval in which any non-trivial solution
(for the equation (1)) that has a zero at ξ1 of multiplicity five and has no more zeros
to the right of ξ1, where s ≤ ξ1 < r51 (s) < ξ2.

In the interval [s, r42(s)), non-trivial solution (for the equation (1)) that has a
zero at ξ1 of multiplicity four, can not have a double zero to the right of ξ1, where
s ≤ ξ1 < r42 (s) < ξ2.

A non-trivial solution (for the equation (1)) that has a zero at ξ1of multiplicity
three and zero ξ2 > ξ1 can not have a zero ξ3 > ξ2 of multiplicity higher than the
second in the interval [s, r312(s)), where s ≤ ξ1 < ξ2< r312 (s) < ξ3.

A non-trivial solution (for equation (1)) that has zeros ξ1, ξ3 of at least multiplicity
of two and a simple zero ξ2 where ξ3 > ξ2 > ξ1 of any multiplicity, can not have in
the interval [s, r2121(s)) zeros ξ4 > ξ3, where s ≤ ξ1 < ξ2< ξ3 < r2121 (s) < ξ4.

A non-trivial solution (for the equation (1)) that has zero ξ1 not lower second
multiplicity and three simple zeroes ξ2, ξ3, ξ4, where ξ4 > ξ3 > ξ2 > ξ1 of any
multiplicity, can not have in [s, r21111(s)) zeros ξ5 > ξ4.

In the interval [s, r111111(s)) a nontrivial solution can not have six different simple
zeros.

Let us clarify justifications of listed assertions. On the example of the problem
�( 51 − problem ) � to have a unique solution, It is necessary and sufficient that

the determinant
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4(ξ1, ξ2) =

∣∣∣∣∣∣∣∣∣∣∣∣∣
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′′′

5 (ξ1)

u
(4)
5 (ξ1)
u5(ξ2)

∣∣∣∣∣∣∣∣∣∣∣∣∣
6= 0,

where ui (ξ1) , i = 0, 1, 2, 3, 4, 5 is the fundamental system of solutions of
equation (2.1), was different from zero. But ∆ (ξ1, x) is a solution of equation (2.1)
and at the point ξ1 this solution has a five-multiple zero. Thus, the condition does
not vanish (is not vanishing) at x ∈ [ξ1, ω).

The Function ∆ (ξ1, x) is a condition for the existence and uniqueness of the solu-
tion of problem (2.1), (2.2) for any ξ2 ∈ [ξ1, ω).

In a similar way, one can make sure of other cases.
The present paper considers the laws of the distribution of zeros. The main results

of the distribution of zeros are the following:
The interval [s, r111111(s)) is the intersection of intervals

[s, r51(s)), [s, r42(s)), [s, r33(s)), [s , r24(s)), [s, r15(s)), [s, r312(s)),
[s, r411 (s)), [s, r321 (s)), [s, r231 (s)), [s, r213 (s)), [s, r141 (s) , (s)),
[s, r114 (s)), [s, r123 (s)), [s, r132 (s)), [s, r2121(s)), [s, r3111 (s)),
[s, r2112 (s)), [s, r2211 (s)), [s, r1113 (s)), [s, r1131 (s)), [s, r1311 (s)),
[s, r1221 (s)), [s, r1212 (s)), [s, r1122 (s)), [s, r21111(s)),
[s, r12111 (s)), [s, r11211 (s)), [s, r11121 (s)), [s, r11112 (s)).
and is equal to the smallest of the intervals
r111111 (s) ≤ min [r51 (s) , r42 (s) , r33 (s) , r24 (s) , r15 (s) , r411 (s) , r312 (s) ,
r321 (s) , r231 (s) , r213 (s) , r141 (s) , r114 (s) , r123 (s) , r132 (s) , r3111 (s) , r2112 (s) ,
r2121 (s) , r2211 (s) , r1113 (s) , r1131 (s) , r1311 (s) , r1221 (s) , r1212 (s) , r1122 (s) ,
r21111 (s) , r12111 (s) , r11211 (s) , r11121 (s) , r11112 (s)].

To prove the assertions formulated above, consider the following auxiliary lemmas.

Lemma 2.3. [7] Let v1 (x) , v2 (x) be a pair of not identically equal to zero, twice
continuously differentiable functions such that
v1 (x) 6= cv2 (x) , (c = const), v1 (α) = v1 (β) = 0, v2 (x) 6= 0 in [α, β] .
Then there exists a linear combination

u (x) = c1v1 (x) + c2v2 (x) ,
(
c21 + c22 > 0

)
,

for which the point ξ is a zero of multiplicity two, that is

u (ξ) = u′ (ξ) = 0,where ξ ∈ (α, β) .

Lemma 2.4. [7] Let v1 (x) , v2 (x) be a pair of not identically equal to zero, twice
continuously differentiable functions such that,

v1 (x) 6= cv2 (x) , (c = const), v
(k)
1 (ξ) = v

(k)
2 (ξ) = 0, k = 0, 1.

Then, there exists a linear combination

u (x) = c1v1 (x) + c2v2 (x) ,
(
c21 + c22 > 0

)
,
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for which the point ξ is a zero of multiplicity three, that is

u(i) (ξ) = 0, i= 0, 1, 2.

Lemma 2.5. [7] Let v1 (x) , v2 (x) – be twice continuously differentiable functions,

satisfying the conditions v1 (x) .v2 (x) > 0, α < x < β, v
(k)
1 (ξ) = v

(k)
2 (ξ) , k= 0, 1;

v
′′

1 (ξ) 6= v
′′

2 (ξ) , ξ ∈ (α, β) ; v1 (x) 6= v2 (x) (x = ξ) ; then for any ε > 0 there is a
linear combination

u(x) = v1 (x)− cv2 (x) , (c = const),
such that
u (ξ1) = u (ξ2) = 0, where α < ξ1 < ξ < ξ2 < β and max [|ξ − ξ1| , |ξ − ξ2|] < ε.

Lemma 2.6. [8] Non-trivial solutions v1 (x) and v2 (x) of equation (2.1) are linearly

dependent if v
(k)
i (ξ) = 0, k = 0, 1, 2; i= 1, 2.

Lemma 2.7. [8] Let u(x), v(x) – be a pair of non-trivial solutions of equation (2.1)
such that u(k) (α) = 0, k= 0, 1, 2, 3, 4; v (α) = 0. If u(x) 6= 0 in (α, β + ε), then
for any ε > 0 and for some constant c, the difference cu(x)− v(x) vanishes (goes to
zero) at the points βi ∈ (α, β + ε) , whose number is equal to p + q, where p is the
number of odd zeros of the solution v(x) in (α, β] and q is the number of those αi ∈
(α, β], that

v (αi) = v
′
( αi) = 0, u

′′′
(α) v

′′
(αi) > 0.

3. Main Results

In this section, according to the mentioned conditions in the definitions above, we
will prove the following
r111111 (s) ≤ min [r51 (s) , r42 (s) , r33 (s) , r24 (s) , r15 (s) , r411 (s) , r312 (s) ,
r321 (s) , r231 (s) , r213 (s) , r141 (s) , r114 (s) , r123 (s) , r132 (s) , r3111 (s) , r2112 (s) ,
r2121 (s) , r2211 (s) , r1113 (s) , r1131 (s) , r1311 (s) , r1221 (s) , r1212 (s) , r1122 (s) ,
r21111 (s) , r12111 (s) , r11211 (s) , r11121 (s) , r11112 (s)].

Theorem 3.1. r51 (s) ≥ r111111 (s) .

Proof. Assume that r51 (s) < r111111 (s). Thus, two points are existed, α, β ∈
[s, r111111 (s)),and a solution u(x ) of equation (2.1) which obeys

u (α) = u
′
(α) = u

′′
(α) = u

′′′
(α) = u(IV ) (α) = u (β) = 0, u(x) > 0 in (α, β), where

s ≤ α < r51 (s) < β < r111111 (s)

and either u
′
(β) 6= 0, u

′
(β) = u

′′
(β) = 0 or u

′
(β) = 0, u

′′
(β) > 0,

Accordingly, we consider two cases:
Case 1: Assume β is a zero of odd multiplicity. We can assume that α > s. Then,

there exists a unique solution v(x ) of equation (2.1) in the interval [s, r111111(s)) such
that

v (ξi) = u (ξi) , i = 0, 1, 2, 3, 4, v (ξ5) < 0,
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where

s < ξ0 < α = ξ1 < ξ2 < ξ3 < ξ4 < r51 (s) < β = ξ5 < r111111 (s)

. Now by Lemma (2.5), the curves u(x ), v(x ) have no tangencies of even order in
points with abscissas ξ0, ξ2, ξ3, ξ4. So that either, u′(ξ0) < v′(ξ0), or u′(ξ0) > v′(ξ0),
since by the condition r51(s) < β, the curves u(x ) and v(x ) have no five fold tangency
at the point with abscissa ξ0.

If u′(ξ0) < v′(ξ0), v′(ξ1) 6= 0, v (ξi) = u (ξi) , i = 0, 1, 2, 3, 4, then u′(ξ3) >
v′(ξ3),

where s < ξ0 < α = ξ1 < ξ2 < ξ3 < ξ4 < ξ5 < r51 (s) < β = ξ6 < r111111 (s) , v (ξ6) <
0.
We note that the curves u(x) and v(x ) have no tangencies of even order at points with
abscissas ξ0, ξ2, ξ3, ξ4,ξ5 , but the difference u(x ) − v(x ) has six zeros ξ0, ξ1, ξ2, ξ3, ξ4,
and ξ5, in the interval [s, r111111(s)) , which is impossible.

If

u′(ξ0) < v′(ξ0), v′(ξ0) 6= 0

, then, u′(ξ4) < v′(ξ4), hence v(x ) > u(x ) in some right half - neighborhood point
ξ4. But, since v(ξ5)<0, then the difference u(x ) − v(x ) has a zero at some point
ξ ∈ (ξ4, ξ5) , which is impossible, because this difference already has zeros at the fifth
points ξ0 , ξ1, ξ2, ξ3, ξ4, in the interval [s, r111111(s)) .

If u′(ξ0) > v′(ξ0), or v′(ξ0) < 0, v (ξi) = u (ξi) , i = 0, 1, 2, 3, 4, v (ξ5) < 0
then the curves u (x) and v (x) do not have a common point in the interval

[ β, r111111(s)), which means u (x) − v (x) 6= 0 in the interval [ β, r111111(s)). Now,
choosing a point ξ ∈ (β, r111111(s)) such that u(ξ) < 0, yields that the linear combi-
nation

y (x) = u (x)− u(ξ)

v(ξ)
v(x)

, has a zero at the point ξ and five points ‘ξ0, ‘ξ1, ‘ξ2, ‘ξ3, ‘ξ4, in interval
[s, r111111 (s)), which is impossible.

Finally, if

v
′
(α) = 0, v

′′
(α) < 0,

then the difference u (x)− v (x) has zeros at the points with abscissas ξ0, ξ2, ξ3, ξ4,
and a double zero at the point α = ξ1.

But, since the solution w(x ) has five-multiple zero at the point ξ0, and has no zeros
in the interval (ξ0, ξ4 + ε), ε < r51− ξ4, then, by Lemma (2.5) the linear combination

cw(x) − [u(x) − v(x)] (for some constant value c) has six zeros in the interval
(ξ0, ξ4 + ε) ⊂ [s, r111111(s)) , which is impossible.

So, the case β being a zero of odd multiplicity of the solution u(x ) leads to the
desired result, r51 (s) ≥ r111111 (s) .

Case 2: Assume β is a zero of an even multiplicity. Then, there exist two points
α, β ∈ [s, r111111 (s)) and a solution u(x ) of equation (2.1) such that

u (α) = u
′
(α) = u

′′
(α) = u

′′′
(α) = u (β) = u

′
(β) = 0, u(x) > 0, in (α, β),
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where

s ≤ α < r51 (s) < β < r111111 (s) , u
′′
(α) > 0, u

′′
(β) > 0.

Consider the solution v(x ) satisfying boundary conditions

u (ξi) =v (ξi) , i = 0, 1, 2, 3, 4,v
′
(α) > 0, v(β) > 0,

where

s < ξ0 < α = ξ1 < ξ2 < ξ3 < ξ4 < r51 (s) < β = ξ5 < r111111 (s) ,

and the curves u (x) and v (x) do not have a common points in the interval [ β, r111111(s)),
it means u (x) − v (x) 6= 0 in the interval [ β, r111111(s)). Then, choosing the point
ξ ∈ ( β, r111111 (s)), where v(ξ) > 0, the difference

y (x) = u (x)− u (ξ)

v (ξ)
v (x)

, has a zero at the point ξ and five zeros in points ξ0, ‘ξ1, ‘ξ2, ‘ξ3, ‘ξ4 , where‘ξ1, ‘ξ2,

‘ξ3, ‘ξ4, are the shifted positions of the points ξ1, ξ2, ξ3, ξ4, for c → u(ξ)
v(ξ) , which is

impossible.
Consider the solution v(x) such that

u (ξi) = v (ξi) , i = 0, 1, 2, 3, 4, v (ξ5) > 0,

where

s < ξ0 < α = ξ1 < ξ2 < ξ3 < ξ4 < r51 (s) < β = ξ5 < r111111 (s) .

As mentioned above via Lemma (2.5) the curves u(x) and v(x ) have no tangencies

at the abscissa points ξ1, ξ2, ξ3, ξ4. Therefore, if v
′
(α) < 0 or v

′
(α) = 0, and

v
′′

(α) < 0,

then the contradiction with the assumption is obvious, for then u
′
(ξ4) > v

′
(ξ4) .

Hence, the difference u(x)−v(x) has zero at some point η ∈ (ξ4, ξ5), since by
construction v(ξ5)> 0, which is impossible, because this difference already has five
zeros at the points ξ0, ξ1, ξ2, ξ3, ξ4 ∈ [s, r111111(s)).

If u (ξi) = v (ξi) , i = 0, 1, 2, 3, 4, v (ξ5) > 0, v (α) = v
′
(α) = 0, v

′′
(α) < 0,

then the difference u(x)−v(x) has zeros at the abscissas ξ0, ξ2, ξ3, ξ4 points and a
double zero at the point α = ξ1.

But, since the solution w(x) has three-multiple zero at the point ξ0 and no zeros
in the region (ξ0, ξ4 + ε) , ε < r51 − ξ4.

Thereby, depending on Lemma (2.5), there would be a linear combination cw (x)−
[u (x)− v (x)] for some constant value c, associated with six zeros in the region

(ξ0, ξ4 + ε) ⊂ [s, r111111 (s)), which is impossible. This leads to r51 (s) ≥ r111111 (s).
Hence, the theorem is proved. �

Theorem 3.2. r312 (s) ≥ r111111 (s)

Proof. Assume that, r312 (s) < r111111 (s), which means the existence of a solution
u(x ) of equation (2.1) having three zeros α, β, γ in the interval [s, r111111(s)) such
that

u (α) = u
′
(α) = u

′′
(α) = u (β) = u (γ) = u

′
(γ) ,
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where

u
′′′

(α)u
′′
(γ) 6= 0.

Since u (x) 6= 0 in the interval (α, β) ∪ (β, γ).
Since u(x ) < 0 in the interval (γ, r1111111(s)), consider the solution v(x ) satisfying

the boundary conditions u (ξi) =v (ξi) , i=0, 1, 2, 3, 4, v(ξ5)< 0,
where
s< ξ0 < α = ξ1 < ξ2 < β < ξ3 < ξ4 < r3121 (s) < γ = ξ5 < r111111 (s) . By virtue

of Lemma (2.3) and Theorem (3.1), the curves u(x ), v(x ) have no tangencies at the
points ξ1, ξ2, ξ3, ξ4, with abscissas in the interval [s, r111111(s)).

Therefore, if v
′
(α) < 0 and v(ξ5)< 0, then putting c = u(ξ)

v(ξ) where γ < ξ <

r111111 (s) it is easy to see that the difference u(x) −v(x) has six zeros ξ0, ‘ξ1, ‘ξ2, ‘ξ3,
‘ξ4 , and ξ, in the interval [s, r111111(s)) where ‘ξ1, ‘ξ2, ‘ξ3, ‘ξ4, are the shifted

position of the points ξ1, ξ2, ξ3, ξ4, for c = u(ξ)
v(ξ) , which is impossible.

The impossibility of the inequality v
′
(α) > 0 is almost obvious.

If

v
′
(α) = 0, v

′′
(α) > u

′′
(α) .

, then, v
′
(ξ4 ) > u

′
(ξ4 ) , consequently, by virtue of the condition v (ξ5)< 0, the

difference u(x)−v(x) has a zero ξ ∈ (ξ4, ξ5), which is impossible, because the solution
of the form

y (x) = u (x)− v (x)

has six zeros ξ0, ξ1, ξ2, ξ3, ξ4, ξ, in the interval [s, r111111(s)).
Similarly, contradiction can be obtained in case of the following condition

v (α) = v
′
(α) = v

′′
(α) = v

′′′
(α) = v(IV ) (α) = 0.

Finally, if v
′
(α) = 0 and v

′′
(α) < u

′′
(α) , then, by virtue of Lemma (2.2) the linear

combination u(x) − v(x) (at some constant c ) having three-multiple zero at the point
ξ0 and zeros ‘ξ1, ‘ξ2, ‘ξ3, which are the shifted positions of the points ξ1, ξ2, ξ3,

for c→ u
′′

(ξ0)

v′′ (ξ0)
. This contradicts Theorem (3.1). The theorem is proved. �

Theorem 3.3. r2121 (s) ≥ r111111(s).

Proof. Assume that

r2121 (s) < r111111(s),

then, there is a pair of non-trivial solutions u(x ) and v(x ) of equation (2.1) such that

u (a1) = u
′
(a1) = u (a2) = u(a3) = u

′
(a3) = u(a4) = 0,

and

u(k) (a1) = 0, k = 0, 1, 2, sgn v
′′′

(a1) = sgn u
′′

(a3) , v(a4) > 0,

where s < a1 < a2 < a3 < r2121(s) < a4 < r111111(s).
Owing to Lemma (2.7) and Theorem (3.1),

u
′′
(a3) 6= 0, sgnu

′′
(a1) = −sgnu

′′
(a3), u

′
(a2)u

′
(a4) < 0
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which means that u
′
(a2) = −sgnu′

(a4), v(x ) 6= 0 in the interval (a1, a4+ε).
It is easy to check that the difference

u (x) − u (ξ)

v (ξ)
v (x) , (a3 < ξ < a4),

has six zeroes in the interval [s,r111111(s)), which is impossible. This contradiction
proves the theorem, r2121 (s) ≥ r111111 (s) . �

Theorem 3.4. r21111 (s) ≥ r111111(s).

Proof. We obtain the validity of the assertion of the Theorem, using Lemma (2.3)
and Theorem (3.3). Indeed, if one assumes that

r21111 (s) < r111111(s),

then some solution u(x ) of the equation (2.1) has in the interval [s, r111111(s)) five
consecutive zeros a1, a2, a3, a4, a5, the first of which double zero, such that

u (a1) = u
′
(a1) = u (a2) = u(a3) = u (a4) = u(a5) = 0,

note that u
′
(a5) > 0, means that sgn u

′
(a2) = −sgn u

′
(a5).

If v(x ) is a solution of equation (2.1) such that
v(k) (a1) = 0, k = 0, 1, 2, u (ξi) = v (ξi) , i= 1, 2, 3,
where

s < a1 = ξ1 < ξ2 < a2 < a3 < ξ3 < a4 < r211111(s) < a5 < r111111(s),

sgn v
′′′

(a1) = sgn u
′′
(a1), v

′
(ξ2) < u

′
(ξ2) and v

′
(ξ3) > u

′
(ξ3) ,

then, by virtue of Lemma (2.1) there exists a linear combination z (x ) = c1u(x ) +
c2v(x ), ( c21 + c22 > 0) that has zeros at the points with abscissas ‘ξ2, ‘ξ3, where
‘ξ2, ‘ξ3 are the shifted positions of the points ξ2, ξ3, and a double zero at the point
η, ( where η ∈ (a2, a3) ) and also has a double zero at the point a1. This means
that

z (a1) = z
′
(a1) = z ( ‘ξ2) = z (η) = z

′
(η) = z ( ‘ξ3) = 0.

Then, we have arrived to a contradiction with theorem (3.3) �(2121 − problem) �.
This contradiction proves the theorem of r21111 (s) ≥ r111111(s). In the same way,

we could prove the remaining formulates, thereby, we extracted the following results
r111111 (s) = min [ r51 (s) , r42 (s) , r33 (s) , r24 (s) , r15 (s) , r411 (s) , r312 (s) ,
r321 (s) , r231 (s) , r213 (s) , r141 (s) , r114 (s) , r123 (s) , r132 (s) , r3111 (s) , r2112 (s) ,
r2121 (s) , r2211 (s) , r1113 (s) , r1131 (s) , r1311 (s) , r1221 (s) , r1212 (s) , r1122 (s) ,
r21111 (s) , r12111 (s) , r11211 (s) , r11121 (s) , r11112 (s)].

�

4. Conclusion

This study is an investigation of the distribution of zeros of non-trivial solutions
of a linear homogeneous differential equation of sixth order in terms of semi-critical
intervals of boundary value problems. It also includes the description of the behavior
trend of the estimated intervals of uniqueness of the solutions. Basically, we have
obtained new results (Theorems 3.1, 3.2, 3.3, 3.4 ). Using these theorems, we have
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established the limiting relations between the lengths of semi - critical intervals of the
uniqueness of solutions of (two, three, four and five points) boundary value problems
with fixed points and the description of their estimated behavior. Further, we proved
that the interval [s, r111111 (s)) is the intersection of the following intervals

[s, r51 (s)),[s, r312 (s)), [s, r2121 (s)) , [s, r21111 (s)) .
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