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Abstract In this paper, an efficient symbolic-numerical procedure based on the power series

method is presented for solving a system of differential equations. The basic idea is to

substitute power series into the differential equations and to find a polynomial system
of coefficients, where a powerful symbolic computation technique (i.e., Gröbner

basis) is used to solve the system. In fact, the proposed method is an excellent

bridge between symbolic and numeric computation and specially, enables us to find
the solution of linear and non-linear stiff systems. Numerical experiments were

performed to justify our new approach.
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1. Introduction

Technically, problems with solutions changing quickly over a short period of time
are called Stiff. The stiff problems have been studied in various fields of science
such as physics, chemistry, and engineering. Solving such problems numerically is
considerably hard because they are unstable. Curtiss and Hirschfelder [12] were the
first who discussed stiff equations. These researchers used a numerical method for
solving stiff initial value problems of the form

y′ = f(x, y), y(x0) = y0, y ∈ RS .
Since then, many studies have been conducted for the analysis of stiff problem. As
a result, many numerical methods with acceptable accuracy have made afterward
to solve this problem and continued so far. A few examples in this regard include
homotopy perturbation method [13], variational iteration method [14], power series
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method [22], differential transformation method [23], and Taylor series method [3],
which are based on the series solution.

The Taylor series is a high accuracy method for solving different types of differential
equations. For instance, ordinary differential equations [4, 11], partial differential
equations [8, 21], integral equations [24, 26], and other equations such as [3, 25, 28].
Rational Homotopy Perturbation Method (RHPM) [5] is a semi-analytic method that
is expressed as the quotient of two power series.

Problems coming from applications typically have polynomial systems. Numer-
ous standard techniques have been utilized to study solutions of polynomial systems.
Among them, Gröbner bases have shown a great capability in recent decades. These
bases were introduced by Bruno Buchberger [7] in 1965. He also produced the fun-
damental algorithms to compute them in his Ph.D. thesis. The Gröbner basis is one
of the strongest tools for solving nonlinear system of equations in computer algebra.
There are many applications of Gröbner bases such as graph coloring problems [15],
robotics [10], coding theory [27], solving Diophantine equations (Pell) [9], solving
fuzzy systems [1], and so on. A Görbner basis for an ideal generated by the equations
is a finite set of polynomials that has a triangular structure that successively elimi-
nates the variables in a proper way. With the advantages of computers and computing
resources, Gröbner basis algorithms have been thoroughly improved; in particular,
F4 and F5 algorithms by Jean-Charles Faugère [18, 19] have been sucessfully used to
compute efficiently Gröbner bases for ideals in polynomial rings. These algorithms
are used nowadays to solve systems of equations. These bases generalize Euclid’s
algorithm for computing polynomial greatest common divisors to multivariate, and
Gaussian elimination for linear systems to non-linear. The solution can be deduced
easily from a triangular form of Gröbner basis.

The present study was conducted to solve the linear and non-linear stiff systems
via Gröbner basis techniques. For this purpose, we derive the solutions to form
a power series in one variable with unknown coefficients and then substitute that
variable by the appropriate step-size. By substituting this power series into a given
problem, we obtain a system of polynomial equations. Next, Gröbner basis provides
a system of the triangular form that is equivalent to the corresponding system of
polynomial equations. From this form, it is easier to find the coefficients by the
backward substitution.

We present an algorithm that gives the particular solution that will converge to
the solution of the system of differential equations. Next, we compare the proposed
approach with the RHPM and Taylor series methods. We will show that the proposed
approach has the same accuracy of the Taylor series of Maple (TS Maple) with less
computing time and more accuracy in larger intervals than RHPM.

The remainder of the paper is structured as follows: Section 2.1 introduces some
basic definitions about the Gröbner basis. A new approach for solving a differential
equation system using Gröbner basis is presented in section 2.2. The paper concludes
in Section 3, with some numerical examples to compare the proposed method with
the RHPM and Taylor series methods.
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2. Symbolic - Numerical Method

2.1. Basic definitions. In this section, we present briefly the basic concepts of
Gröbner basis. For a more detailed discussion, we refer the reader to [7, 10]. Us-
ing the method of Gröbner bases, we can solve systems of polynomial equations in a
very nice fashion.

Let the ring of all polynomials in x1, x2, · · · , xn, with coefficients in field K is
denoted by R = K[x1, x2, · · · , xn]. An expression of the form xi11 x

i2
2 · · ·xinn ∈ R with

non-negative exponents is called a term. In order to define Gröbner basis, we need
to define the term order.

One the most important of a term order will be lexicographical order(or Lex order
for short). We now introduce that as follows:
Definition 2.1. [10] Let α = (α1, . . . , αn) and β = (β1, . . . , βn) ∈ Zn>0, We say
α >lex β if, in the vector difference α−β ∈ Zn, the leftmost nonzero entry is positive.

We will write xα1
1 xα2

2 · · ·xαn
n >lex x

β1

1 xβ2

2 · · ·xβn
n if α >lex β.

Suppose > be an arbitrary term order on R. For any non-zero polynomial f , the
maximum term appearing in f with respect to > is denoted by LT (f), and is called
the leading term of f . The coefficient of LT (f) is the leading coefficient of f is denoted
by LC(f).

Now, we can define a Gröbner basis for an ideal in R as follows:
Definition 2.2. [10] Fix a monomial order >. A Gröbner basis of an ideal I in
R with respect to > is a finite set of polynomials G = {g1, . . . , gm} ⊂ I with the
property that for every nonzero f ∈ I, LT (f) is divisible by LT (gi) for some i. A
Gröbner basis G is called a reduced Gröbner basis for I if for any gi ∈ G, LC(gi) = 1
and no term of gi lies in the ideal generated by {LT (gj)|1 ≤ j 6= i ≤ m}.

The following theorem points out the essential properties of Gröbner basis.

Theorem 2.3. Let I be the ideal generated by {h1, · · · , hm} in K[x] and K ⊂ C.
For a given monomial order,

(1) I has a unique reduced Gröbner basis G.
(2) Every Gröbner basis G generates its ideal I.
(3) The equations h1 = 0, · · · , hm = 0 have no solutions in any extending field of

K if and only if G = {1}.
(4) The variety V (I) ⊂ Cn is a finite set if and only if for each variable xi, there

is a polynomial g ∈ G such that LT (g) is a power of xi (the dimension of I is
zero).

(5) V (G) = V (h1, . . . , hm)

Proof. See [7, 10] �

In modern computer algebra packages, some versions of improvements of Gröbner
basis have been applied. For example, package FGb by Jean-Charles Faugère [20] has
been implemented in C.

2.2. Solving a differential equation system using Gröbner basis. In this
subsection, we describe a new method for solving a differential equation system using
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Gröbner basis. Let fi be a polynomial in K[y1, y2, · · · , ym] for i = 1, 2, · · · ,m, where
our aim is to solve the following differential equation system:

dy1
dt = f1(y1, y2, · · · , ym)
dy2
dt = f2(y1, y2, · · · , ym)

...
dym
dt = fm(y1, y2, · · · , ym)

(2.1)

with initial conditions yj(0) = cj for j = 1, · · · ,m. We use the power series in a
neighborhood of zero for each yj , so:

yj = cj +

n∑
i=1

ai,jt
i for j = 1, · · · ,m. (2.2)

Then, for a given n, t is substituted by l ∗ h for l = 1, · · · , n, where h is a step-size,
we obtain a polynomial system of mn equations

yj(l) = cj +

n∑
i=1

ai,j l
ihi for j = 1, · · · ,m. (2.3)

and mn unknowns ai,j for i = 1, · · · , n and j = 1, · · · ,m. Next, substitute (2.3) and
its derivatives in ideal are generated by

〈dy1

dt
−f1(y1, y2, · · · , ym), dy2dt − f2(y1, y2, · · · , ym), . . . , dymdt − fm(y1, y2, · · · , ym)〉.(2.4)

In 1989, Deuflhard [16] presented uniqueness theorems for stiff ODE initial value
problems, which indicate the existence and uniqueness of the solution of the ODE.
Therefore, the ideal generated by (2.4) is zero- dimensional. Then, a Gröbner basis
for the ideal generated by (2.4) in K[ai,j | i = 1 · · ·n, j = 1 · · ·m] with respect to lex
order can be computed. The Gröbner basis w.r.t Lex order has the upper triangular
structure; i.e., it has the following form:

g1,1(t1) ∈ K[t1]
g2,1(t1, t2), g2,p2(t1, t2) ∈ K[t1, t2]
...
gn,1(t1, . . . , tn), . . . , gn,pn(t1, . . . , tn) ∈ K[t1, . . . , tn]

(2.5)

So, we can find the solutions of equation (2.5) by the backward substitution. The
main algorithm for solving a differential equation system is presented here. We now
illustrate the algorithm with an example as follows:

Example 2.4. ([13, 14]) Consider the following non-linear stiff system:{
y′1(t) = −1002y1(t) + 1000y2

2(t)
y′2(t) = y1(t)− y2(t)(1 + y2(t))

(2.6)

with initial condition y1(0) = 1 and y2(0) = 1. The exact solution is y1(t) = e−2t and
y2(t) = e−t.
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Algorithm 1 (Main Algorithm)

Input: IVP systems of ODEs and n.
Output: a solution for problem.

• 1. Compute power series expansion (2.2) to order n in one variable.
• 2. Substitute the variable by the appropriate step-size (2.3).
• 3. Substitute the solution obtained from the step 2 and its derivatives in the

ideal generated by (2.4).
• 4. Compute the Gröbner basis for the ideal generated by (2.4) in K[ai,j | i =

1 · · ·n, j = 1 · · ·m] with respect to the lexicographical order.
• 5. Find the solutions of the system in Step 4 with the forward substitution.

We put n = 7 and c1 = 1, c2 = 1. Power series expansion yj ’s (2.2) to order n = 7
in one variable is as follows:

yj(l) = cj +

7∑
i=1

ai,j l
i(h)i for j = 1, 2, (2.7)

where we concider a step-size of h = 10−7 in Step 2. Now, we substitute solution (2.7)
and its derivatives in ideal generated by 〈y′1(t) + 1002y1(t)−1000y2

2(t), y′2(t)− y1(t) +
y2(t)(1 + y2(t))〉. We obtain a polynomial system of 14 equations with 14 unknowns
ai,j for i = 1, · · · , 7 and j = 1, 2. Then, Gröbner basis for the mentioned ideal with
respect to the lex order is computed, which gives the following solutions for (2.7):

y1 = 1− 2t+ 2t2 − 4

3
t3 +

2

3
t4 − 4

15
t5 +

4

45
t6 − 8

315
t7 + . . . ,

y2 = 1− t+
1

2
t2 − 1

6
t3 +

1

24
t4 − 1

120
t5 +

1

720
t6 − 1

5040
t7 + . . . .

The power series solution of Example 2.4 coincides with the exact solution. Figure
1 presents a comparison between SNM with the exact solution.
Proposition 2.5. [10] Let I ⊂ C[x1, . . . , xn] be an ideal such that for each i, some
power xmi

i ∈< LT (I) >. Then the number of points of V (I) is at most m1 ·m2 · · ·mn.

Proof. This follows by the Theorem 2.3. �

According to the above, several classes of the power series coefficient are calculated
by the Gröbner basis. After substituting these roots in the system, we choose the
minimum error as a special class coefficient. Let yj,n be the nth degree power series
for the corresponding component of yj . We estimate the error ‖yj,n+1 − yj,n‖,

‖yj,n+1 − yj,n‖ = ‖
n+1∑
i=1

ai,jt
i −

n∑
i=1

αi,jt
i‖ = ‖an+1,jt

n+1 +

n∑
i=1

(ai,j − αi,j)ti‖

≤ ‖an+1,jt
n+1‖+ ‖

n∑
i=1

(ai,j − αi,j)ti‖ ≤ ‖an+1,jt
n+1‖

≤ f (n)(y(t), 0)tn+1

(n+ 1)!
.
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Figure 1. Comparison of SNM with exact solution.

Where the limit of the second sum goes to zero, because Gröbner basis finds the
special class coefficient in yj,n and yj,n+1, which is a minimum error with the original
solution of the system.
Now, let yj be the exact solution of the differential equation system (2.1),

‖yj − yj,n‖ ≤
K|tn+1|
(n+ 1)!

where K is a constant such that:

‖f (n)(y(t), 0)‖ ≤ K.

Theorem 2.6. The main algorithm finds the particular solution that will converge
to the solution of the differential equation.

Proof. We are looking for the coefficients of the power series that is the same variety
ideal (2.4). Thus, ideal (2.4), according to the Theorem 2.3, has a unique reduced
Gröbner basis G, where G generates its ideal (2.4) and variety of the mentioned ideal
equal V (G). In the above Proposition, we show that the number of points of V (G) is
at most m1 ·m2 · · ·mn. Thus, by solving the upper triangular system from (2.5), we
can find all the series solutions to the differential equations. The particular solution
can be selected among the series solutions by substituting in the differential equation
that has the minimum error.

�

3. Numerical examples

In this section, three numerical examples are given to illustrate the performance
and accuracy of solving stiff systems by the proposed method.

Remark. We received the Maple implementation of RHPM algorithm from the au-
thors to compare an approximation of stiff systems.
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Remark. Execution time of the proposed method is compared with RHPM and
Taylor series methods in Table 4.
Example 3.1. [17, 2] Consider the following differential equation system:

y
′

= Ay, where

A=


−104 100 −10 1

0 −1000 10 −10
0 0 −1 10
0 0 0 −0.1

 y, y(0) = (1, 1, 1, 1)T , 0 ≤ t ≤ 20.

Using eigenvalue-eigenvector method from [6], exact solution would be as follows:

y1(t) =
818090

89901009
e−t+

9989911

899010090
e−1000t+

89071119179

89990100090
e−10000t− 89990090

8999010009
e−0.1t

y2(t) = − 910

8991
e−t +

9989911

9989001
e−1000t +

9100

89991
e−0.1t

y3(t) = −91

9
e−t +

100

9
e−0.1t

y4(t) = e−0.1t.

In the power series of yj ’s (2.2), we put n = 20 and c1 = 1, c2 = 1, c3 = 1 and c4 = 1
and substitute x by `× h for l = 1, · · · , 20. Then, we obtain a polynomial system of
80 equations and 80 unknowns as follows:

yj(l) = 1 +

20∑
i=1

ai,j l
i(h)i for j = 1, · · · , 4. (3.1)

where ai,j for i = 1, · · · , 20 and j = 1, · · · , 4. Now, we substitute solution (3.1) and
its derivatives in ideal generated by

〈y
′

1 + 104y1− 100y2 + 10y3− y4, y
′

2 + 1000y2− 10y3 + 10y4, y
′

3 + y3− 10y4, y
′

4 + 0.1y4〉.

Then, we compute a Gröbner basis for the ideal generated with respect to lex order and
we obtain the ai,j for i = 1, · · · , 20 and j = 1, · · · , 4. Figure 2 shows the comparison
between absolute error for the SNM and RHPM and exact solutions. As can be seen,
at the beginning of the interval, the error is high but error tends to zero in the larger
intervals. The numerical results and execution time of the proposed method, RHPM,
and Taylor series method are displayed in Tables 1 and 4.
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Figure 2. Comparison between absolute error for the SNM and RHPM.

Table 1. Absolute error on [0,20] for Example 3.1

t Method y1 y2 y3 y4

SNM 1.8694e-01 1.8503e-01 1.6696e-01 0.0000e+00
1 RHPM 3.0273e-01 7.2098e-03 1.7752e-03 1.6396e-04

SNM 1.7983e-04 1.3953e-04 3.6011e-03 0.0000e+00
5 RHPM 4.7867e-02 1.1578e-02 1.0876e-02 1.6638e-03

SNM 7.6890e-06 6.1252e-06 2.2164e-05 1.0000e-010
10 RHPM 2.9990e-02 3.4665e-04 1.2035e-02 4.7161e-03

SNM 1.0412e-05 1.1339e-05 2.6333e-05 0.0000e+00
15 RHPM 5.0370e-02 2.3100e-03 1.5157e-02 2.9430e-03

SNM 4.0963e-05 9.8658e-06 2.7533e-05 9.0000e-10
20 RHPM 1.4874e-01 7.2612e-04 2.9615e-02 9.1540e-03
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Example 3.2. [17, 2] Consider the following non-linear stiff problem:
y

′

1 = −0.013y1 − 1000y1y3 y1(0) = 1

y
′

2 = −2500y2y3 y2(0) = 1

y
′

3 = −0.013y1 − 1000y1y3 − 2500y2y3 y3(0) = 0.

First, we assume the power series expansion yj ’s (2.2) to order n = 4 in one variable
as follows:

yj(l) = cj +

4∑
i=1

ai,j l
i(h)i for j = 1, . . . , 3, (3.2)

where cj is as c1 = 1, c2 = 1 and c3 = 0. We obtain a polynomial system of 12
equations and 12 unknowns ai,j for i = 1, · · · , 4 and j = 1, . . . , 3. Next, we substitute

Figure 3. Comparison between absolute error for the SNM and RHPM.

the solution (3.2) and its derivatives in ideal generated by

〈y
′

1 + 0.013y1 + 1000y1y3, y
′

2 + 2500y2y3, y
′

3 + 0.013y1 + 1000y1y3 + 2500y2y3〉.
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Then, a Gröbner basis for the above ideal with respect to lex order is computed to
obtain these unknown coefficients. Figure 3 shows the comparison between absolute
error for the SNM and RHPM and exact solutions is given by the Taylor series. We
describe the numerical results on [0, 50] in Table 2 and present the execution time of
these methods in Table 4.

Table 2. Results for Example 3.2 on [0,50]

t yi TS(Maple) SNM RHPM

y1 0.9907319 0.9907284 0.9902109
1 y2 1.0092644 1.0092708 1.00938416

y3 -0.000003665 -0.000000672 -0.001322989
y1 0.9091683 .9091519 0.9076808

10 y2 1.0908284 1.0908448 1.0932356
y3 -0.000003250 -0.000003250 0.00007710
y1 0.8229907 0.8229766 0.8228569

20 y2 1.1770063 1.177020549 1.1768228
y3 -0.000002841 -0.000002841 0.00009464
y1 0.7421287 0.7421148 0.7432978

30 y2 1.2578687 1.2578827 1.2556842
y3 -0.000002482 -0.000002482 -0.00002960
y1 0.6669652 0.6669536 0.6676638

40 y2 1.3330326 1.3330442 1.3320474
y3 -0.000002167 -0.000002167 -0.0001913
y1 0.5976546 0.5976263 0.59503493

50 y2 1.4023434 1.4023754 1.40693084
y3 -0.000001893 -0.000001821 -0.0003683

Example 3.3. [17] Consider the initial value problem
y

′

1 = −y1 + 108y3(1− y1) y1(0) = 1

y
′

2 = −10y2 + 3.107y3(1− y2) y2(0) = 1 0 ≤ t ≤ 1.

y
′

3 = −y′

1 − y
′

2 y3(0) = 0
Like the previous examples, we consider the solutions as a power series expansion to
order n = 4 in one variable. We substitute these solutions and its derivatives in ideal
generated by

〈y
′

1 + y1 − 108.y3(1− y1), y
′

2 + 10y2 − 3.107y3(1− y2), y
′

3 + y
′

1 + y
′

2〉.

Then, a Gröbner basis for the mentioned ideal with respect to lex order is computed.
The numerical results and execution time of these methods are presented in Tables 3
and 4.
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Table 3. Results for Example 3.3

Method y1 y2 y3

TS (Maple) 0.9999829 0.9994312 0.0005857
SNM 0.99998332 0.9994446 0.00057205
RHPM 1.3253315 0.70307088 0.00058218531

Table 4. Execution time at final state of examples

Method Example 3.1 Example 3.2 Example 3.3

SNM 1.096 8.492 9.325
RHPM 90.262 56.909 24.648
TS(Maple) 68.500 118.560 22.480

4. Conclusion

The symbolic-numerical method is an excellent method that allows finding ap-
proximate solutions for stiff problems using Maple software. We implemented our
algorithm in Maple 13 on Linux. Combining a Gröbner basis technique with power
series method, we obtained a conceptually simple method to solve stiff systems of
linear and non-linear differential equations. The simulation results showed the effec-
tiveness of the proposed method. The results obtained using SNM and RHPM show
that SNM can solve stiff systems more accurately and in the larger intervals than
RHPM. Also, we see that the series solution obtained by Gröbner basis requires less
execution time than the Taylor series method with an accuracy close to the same
results.
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