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Abstract The numerous methods for solving differential equations exist, every method have

benefits and drawbacks, in this field, the combined methods are very useful, one of
them is the wavelet transform method (WTM). This method based on the wavelets

and corresponding wavelet transform, that dependent on the differential invariants
obtained by the Lie symmetry method. In this paper, we apply the WTM on the

generalized version of FKPP equation (GFKPP) with non-constant coefficient

futt(x, t) + ut(x, t) = uxx(x, t) + u(x, t) − u2(x, t),

where f is a smooth function of either x or t. We will see for suitable wavelets, this
method proposes the interesting solutions.

Keywords. Wavelet, Quasi-wavelet, Mother wavelet, The wavelet transform, Differential invariants, The
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1. Introduction

The theory of Lie symmetry groups of differential equations was developed by So-
phus Lie [3]. Such Lie groups are invertible point transforms of both the dependent
and independent variables of the differential equations. The symmetry group meth-
ods provide an ultimate arsenal for analysis of differential equations and is of great
importance to understand and to construct solutions of differential equations. Sev-
eral applications of Lie groups in the theory of differential equations were discussed
in the literature, the most important ones are: reduction of order of ordinary dif-
ferential equations, construction of invariant solutions, mapping solutions to other
solutions and the detection of linearizing transforms (for many other applications of
Lie symmetries see [7, 8] ).
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In mathematics, Fisher’s equation, also known as the Fisher–Kolmogorov equation
and the Fisher–KPP equation, named after R. A. Fisher and A. N. Kolmogorov, is
the partial differential equation ut = uxx + u− u2. Fisher proposed this equation to
describe the spatial spread of an advantageous allele and explored its travelling wave
solutions and nowadays, this equation proposed as a model of diffusion in biomathe-
matics [15].

The experimental observation of an initially flat liquid-film interface that evolves
with time to a propagating diffusion front with a constant front velocity are specific
characteristics of the Fisher- Kolmogorov- Petrovskii- Piskounov (FKPP) equation
obeying a traveling wave solution [2].

The FKPP equation occurs, e.g., in ecology, physiology, combustion, crystalliza-
tion, plasma physics, and in general phase transition problems, this equation is a well
known and widely applied nonlinear reaction-diffusion equations and is traditionally
applied to model the spread of genes in the population genetics [16].

The generalized version of FKPP equation with function coefficient is

futt + ut = uxx + u− u2, (1.1)

where f is a smooth function of either x or t. So far, this version of equation was
solved with numerical methods and any explicit solution was not found. By the Lie
symmetry method, the generalized FKPP equation will be converted to ODEs & all
symmetries and generalized vector fields will be determined.

The wavelets are important functions in the functional and harmonic analysis.
First wavelet was introduced by Alfred Haar (the Hungarian mathematician) in 1909
[6]. Nowadays, the wavelets have numerous applications in the some fields of science
and technology: seismology, image processing, signal processing, coding theory, bio-
sciences, financial mathematics, fractals and so on [1]. The application of wavelets
for solving differential equations limited to ODEs or PDEs with the numerical solu-
tions in the special conditions [5]. The famous wavelets such as Haar, Daubechie,
Coiflet, Symlet, CDF, Mexican hat and Gaussian are extendible to two or more vari-
ables by tensor product. The wavelets with two or more variables (that in connection
with PDEs are useful) is very important [14]. In this paper, we apply the Wavelet
Transform Method (WTM) on the generalized version of FKPP (GFKPP) and obtain
solutions.

The remainder of the paper is organized as follows. In section 2, we recall some
needed results to construct differential invariants, the mother wavelets and the wavelet
transforms. In section 3, the wavelet transform method is proposed. In sections 4, the
proposed method will be applied on the GFKPP equation. Finally, the conclusions
& future works are presented.

2. Preliminaries

2.1. The Lie symmetry method. In this section, we recall the general procedure
for determining symmetries for any system of partial differential equations (see [3,
7, 11]). To begin, let us consider the general case of a nonlinear system of partial
differential equations of order nth in p independent and q dependent variables is given
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as a system of equations:

∆ν(x, u(n)) = 0, ν = 1, · · · , l, (2.1)

involving x = (x1, · · · , xp), u = (u1, · · · , uq) and the derivatives of u with respect
to x up to n, where u(n) represents all the derivatives of u of all orders from 0 to
n. We consider a one-parameter Lie group of infinitesimal transforms acting on the
independent and dependent variables of the system (2.1):

(x̃i, ũj) = (xi, ui) + s(ξi, ηj) +O(s2), i = 1 · · · , p, j = 1 · · · , q, (2.2)

where s is the parameter of the transform and ξi, ηj are the infinitesimals of the
transforms for the independent and dependent variables, respectively. The infinites-
imal generator v associated with the above group of transforms can be written as
v =

∑p
i=1 ξ

i∂xi +
∑q
j=1 η

j∂uj , A symmetry of a differential equation is a transform
which maps solutions of the equation to other solutions. The invariance of the system
(2.1) under the infinitesimal transforms leads to the invariance conditions (Theorem
2.36 of [7]):

Pr(n)v
[
∆ν(x, u(n))

]
= 0, ∆ν(x, u(n)) = 0, ν = 1, · · · , l, (2.3)

where Pr(n) is called the nth order prolongation of the infinitesimal generator given by

Pr(n)v = v+
∑q
α=1

∑
J φ

α
J (x, u(n))∂uαJ , where J = (j1, · · · , jk), 1 ≤ jk ≤ p, 1 ≤ k ≤ n

and the sum is over all J ’s of order 0 < #J ≤ n. If #J = k, the coefficient φαJ
of ∂uαJ will only depend on k-th and lower order derivatives of u, and φJα(x, u(n)) =

DJ(φα −
∑p
i=1 ξ

iuαi ) +
∑p
i=1 ξ

iuαJ,i, where uαi := ∂uα/∂xi and uαJ,i := ∂uαJ/∂x
i.

One of the most important properties of these infinitesimal symmetries is that
they form a Lie algebra under the usual Lie bracket. The first advantage of symmetry
group methods is to construct new solutions from known solutions. The second is
when a nonlinear system of differential equations admits infinite symmetries, so it is
possible to transform it to a linear system. Neither the first advantage nor the second
will be investigated here, but symmetry group method will be applied to the PDE to
be connected directly to some order differential equations. To do this, a particular
linear combinations of infinitesimals are considered and their corresponding invariants
are determined.

For every vector field, by establishing the characteristics system as follows

dx

ξ
=
dt

τ
=
du

φ
, (2.4)

and solving this system, we can obtain differential invariants corresponding to vector
fields. By expressing the PDE in the coordinates (x, t, u), this equation was reduced,
and the final solution was obtained. These coordinates will be constructed by search-
ing for independent invariants (y, v) corresponding to the infinitesimal generator.
Thus by using the chain rule, the expression of equation in the new coordinate, allows
us to the reduced equation. For more informations and examples, see [7].
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2.2. The wavelets. The wavelets are important functions in the mathematics and
other scientific fields. In this section, we introduce wavelets as functions belong to
L2(R2) (The space of squared integrable functions equipped with integral norm).

Remark 2.1. The function ψ belong to L2(R2) is a wavelet, if it satisfies in the
following admissible condition

Cψ =

∫
R2

|F (ψ)(ω)|2dω
|ω|2

> 0, (2.5)

where F (ψ)(ω) is the Fourier transform of wavelet ψ and defined as follows

F (ψ)(ω) =
1√
2π

∫
R2

exp(−ix.ω)ψ(x)dω, (2.6)

Cψ is called the wavelet coefficient of ψ. Here, ω = (ω1, ω2) and x = (x1, x2) belong
to R2. For further informations and examples, see [2].

Remark 2.2. The wavelet ψ is called mother wavelet, if it satisfies in the following
properties ∫

R2

ψ(x)dx = 0, (2.7)∫
R2

|ψ(x)|2dx <∞, (2.8)

lim
|ω|→∞

F (ψ(ω)) = 0, (2.9)

Note that, the first property equivalents to Cψ > 0 (the admissible condition) for
mother wavelet ψ.

For more details see [6, 9].
Indeed, the mother wavelets have the admissible condition, n-zero moments and

exponential decay properties. The mother wavelet have two parameters: the trans-
lation parameter b = (b1, b2) and scaling parameter a > 0. The mother wavelet
corresponding to (a, b) is

ψa,b(x) = ψ(
x− b
a

) = ψ(
x1 − b1
a

,
x2 − b2
a

) (2.10)

If the function ψ don’t satisfy in the some properties of the mother wavelets, or
approximately satisfies, ψ is called quasi-wavelet. The quasi-wavelets have numerous
applications in the applied mathematics and other scientific fields for solving PDEs,
for more details and examples see [9, 13]. In this paper, we provide the quasi-wavelets
based on the differential invariants of PDEs, and by using them, we will analyze
PDEs.

Remark 2.3. The wavelet transform corresponding to the mother wavelet ψ for the
function f ∈ L2(R2) with parameters (a, b) (that a > 0) defined as follows

Wψ(f)(a, b) =
1√
a.Cψ

∫
R2

ψa,b(x).f(x)dx, (2.11)
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Thus, the wavelet transform depends on the wavelet ψ, the function f , and the
parameters (a, b).

Theorem 2.4. The wavelet transform is an operator from L2(R2) to L2(R3) that
satisfies in the following properties:

1 . Linearity: Wψ[αf(x) + βg(x)] = αWψ[f(x)] + βWψ[g(x)],
2 . Translation: Wψ[f(x− k)] = W (a, b− k), ∀k ∈ R2,

3 . Scaling: Wψ[ 1√
s
f(xs )] = W (as ,

b
s ),

4 . Wavelet shifting: Wψ(x−k)[f(x)] = W (a, b+ ak),
5 . Linear combination: Wαψ1+βψ2 [f(x)] = αWψ1 [f(x)] + βWψ2 [f(x)],
6 . Wavelet scaling: Wψ(x/s)√

(|s|)
[f(x)] = W (as, b).

Proof. For proof and more details see [6].
�

Actually, the wavelet transforms corresponding mother wavelets are isometries [10].
Therefore, In the smooth manifold M, the collection of wavelet tranforms of M denoted
by W(M), is a Lie subgroup of I(M) (the isometry group of M) [2].
The admissible condition implies that the wavelet transform is invertible, on the other
hand, because of the wavelet transform is isometry, it is invertible, the inversion
formula for the wavelet transform Wψ(f) is

f(x) = f(x1, x2) =
1

Cψ

∫
R+×Rn

Wψf(a, b)ψa,b(x)
da db1 db2

a3
(2.12)

In fact, by the inversion formula (also called the synthesis formula), the function f(x)
corresponds to the wavelet transform Wψ(f) will be obtained [12].

3. The wavelet transform method

The wavelet tranform method (WTM) have 4 following steps:

1 . Apply equivalence algorithms (for example, the Lie symmetry method) on
DE, and obtain differential invariants.

2 . Build the suitable quasi-wavelet based on the differential invariants.
3 . Multiply the quasi-wavelet in the both sides of the equation and take the

wavelet transform. Solve the reduced DE, and obtain the wavelet transform.
4 . According to obtained wavelet transform and By the inversion formula,

calculate the analytic solution.

In the following, some WTM formula are proposed.

Theorem 3.1. Assume ∆ν(x, t, u(m)) = 0 is m-th order DE with two independent
variables (x, t), ψ is a mother wavelet based on differential invariants, t is constant
and x is variable. Then, we have:

1) Wψ(∂tu)(x, t) = d
dtWψ(u)(x, t),

2) Wψ(∂nt u)(x, t) = dn

dtnWψ(u)(x, t),
3) Wψ(∂xu)(x, t) = −W∂xψ(u)(x, t),
4) Wψ(∂nxu)(x, t) = (−1)nW∂nxψ(u)(x, t),
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Table 1. The Lie Symmetry Method: exact symmetries, differential
invariants and invariant solutions

f V.F. dim(g) Invariants Invariantsolutions

0
∂t, ∂x,

x∂x + 2t∂t + 2u∂u
3

(x
2

t ,
u
t ),

(x, u), (t, u)

∫ √
3 du√

2u3−3u2+3C1
= |t+ C2|,

u = (1 + F (x) exp(−t))−1,
c ∂x, ∂t 2 (t, u), (x, u) cu′′(t) + u′(t) + u(t)2 = u(t),

f(x) ∂t, F (x, t)∂u ∞ (x, u)
∫ √

3 du√
2u3−3u2+3C1

= |t+ C2|,

f(t)
∂x, x∂u, ∂u,

tx+ x3

6 ∂u, t+ x2

2 ∂u
5 (t, u), (x, t) f(t)u′′(t) + u′(t) = u(t)− u(t)2,

Proof. For proof and more details see [14]. �

In fact, we take the wavelet transform from both side of ∆ν(x, t, u(m)) = 0 by
assuming that t = cte, x = variable, a = 1, b = 0, solve the reduced equation ac-
cording to ũ(x, t) and its t-derivations, and obtain ũ(x, t), here after, for the given
mother wavelet ψ(x, t) and obtained wavelet transform ũ(x, t), calculate u(x, t) from
the following formula (1D-inversion formula)

u(x, t) =

∫
R
ũ(x, t)ψ(x, t), dx (3.1)

where, u(x, t) is a desired analytic solution, in this way, the PDE is solved by WTM
based on ψ (according to the differential invariants). In the following section, we
apply WTM on the GFKPP equation.

4. Apply WTM on the GFKPP

In this section, we implement WTM on the GFKPP equation and obtain solutions,
finally, the WTM results will be proposed. First, apply the Lie symmetry method on
the GFKPP equation futt + ut = uxx + u − u2, and obtain the symmetry groups,
vector fields and differential invariants, for more detailed calculations & results of the
Lie symmetry method implementation on the GFKPP equation, see [15]. The Lie
symmetry method results for the GFKPP equation proposed in Table 1 (for more
details and computation, see [15, 16]):

In table 1, the symmetry groups are translation and scaling. For every differential
invariant and symmetry group, we offer adequate quasi-wavelets as below:

Here, first we apply WTM by quasi-wavelets ψ1, ψ2 on the cutt + ut = uxx with
f = c. At this way, consider quasi-wavelet ψ1 as follows

ψ1 := exp(
−t2

2
) sin(

π(x− 2t)

2
) (4.1)

and, the quasi-wavelet ψ2 as follows

ψ2 := exp(−t2/2) cos(π(x− ct)/2) (4.2)
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Table 2. The Quasi-wavelets: Symmetry groups, differential invari-
ants and quasi-wavelets

Symmetry groups Differential invariants Quasi-wavelets

Translation x− ct, u exp(−t2/2) sin(π(x− ct)/2),
exp(−t2/2) cos(π(x− ct)/2),

Scaling (x/t), (x/
√
t), (u/ta)

exp(−t2/2) sin(x/t),
exp(−t2/2) cos(x/t),

then, by multiplying the both sides of FKPP in ψ1 and taking the wavelet transform,
we get

c
d2

dt2
ũ+

d

dt
ũ = −π

2

4
ũ (4.3)

by solving this equation with characteristics method (for more details about the solv-
ing methods of PDEs, please see [4]), we see that the solution depends on the coeffi-
cient c, indeed,

1 . If c = 1
π2 , then we have double root, and the wavelet transform as follows

ũ(x, t) = {F̃ (x) + G̃(x)t)} exp(−5t), (4.4)

where F̃ (x) and G̃(x) (respectively) are the wavelet transform related to the
functions F,G of x. Thus, the analytic solution from (3.1) is

u(x, t) = {F (x) +G(x)t)} exp(−5t), (4.5)

2 . If c > 1
π2 , we have the complex roots D = α± iβ and the wavelet transform

is

ũ(x, t) = exp(αt){F̃ (x) cos(βt) + G̃(x) sin(βt))}, (4.6)

and the analytic solution from (3.1) obtained as below

u(x, t) = exp(αt){F (x) cos(βt) +G(x) sin(βt))}, (4.7)

3 . If c > 1
π2 , we have two distinct real roots D1,2, therefore

ũ(x, t) = F̃ (x) exp(D1t) + G̃(x) exp(D2t), (4.8)

So, the analytic solution from (3.1) is

u(x, t) = F (x) exp(D1t) +G(x) exp(D2t), (4.9)

For instance, with c = 1, the complex roots D = −0.5± 0.75i are obtained, thus

ũ(x, t) = exp(−0.5t){F̃ (x) cos(0.75t) + G̃(x) sin(0.75t))}, (4.10)

and the analytic solution as follows

u(x, t) = exp(−0.5t){F (x) cos(0.75t) +G(x) sin(0.75t))}, (4.11)
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Table 3. WTM on the FKPP equation: The parameter c, The
wavelet transform, The analytic solution

c The wavelet tranform The analytic solution
1
π2 {F̃ (x) + G̃(x)t)} exp(−5t), {F (x) +G(x)t)} exp(−5t),

> 1
π2 F̃ (x) exp(D1t) + G̃(x) exp(D2t), F (x) exp(D1t) +G(x) exp(D2t),

< 1
π2 exp(αt){F̃ (x) cos(βt) + G̃(x) sin(βt))}, exp(αt){F (x) cos(βt) +G(x) sin(βt))},

The computations and results for ψ2 are similar. Note that, for the generalized version
of FKPP equation, with known f(x) or f(t), by taking the wavelet transform from
function f , the final results will be obtained.

The following table, shows the results of implementing the wavelet transform
method on the FKPP equation:

5. Conclusions and future works

In this paper, we applied the novel method based on the wavelets; wavelet trans-
forms method (WTM) based on the quasi-wavelets on the GFKPP equation. We
proposed the suitable quasi-wavelets based on the Lie symmetry method results; sym-
metry groups, differential invariants and invariant solutions. In fact, we used result
obtained by the equivalence methods like the Lie symmetry method for constructing
the quasi-wavelets and applying WTM with them on the GFKPP equation. Finally,
we proposed results; the analytic solutions. This research shows the power and per-
formance of WTM for analyzing and solving different PDEs, in the future works, we
will try to apply WTM on the PDEs at every order and degree and generalize this
method for solving PDEs at any condition. We will hope that can propose a universal
method for analyzing & solving differential equations.
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