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Abstract In this paper, we propose a new numerical algorithm for the approximate solution of
non-homogeneous fractional differential equation. Using this algorithm the fractional

differential equations are transformed into a system of algebraic linear equations

by operational matrices of block-pulse and hybrid functions. Based on our new
algorithm, this system of algebraic linear equations can be solved by a proposed (TSI)

method. Further, some numerical examples are given to illustrate and establish the

accuracy and reliability of the proposed algorithm.
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1. Introduction

Fractional differential equations (FDE)s are generalized from integer order ones,
which are achieved by replacing the integer order derivatives by fractional ones.
Recently, fractional derivatives have been used to new applications in differential
equation [5, 14, 15, 16, 17]; also the interested readers may refer to other sources
[3, 4, 6, 14, 23] for the underlying theory and applications of fractional calculus. In
this paper we consider a FDE in the following form,

n∑
i=0

ai(aD
αi
t y(t)) = u(t), (1.1)
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subject to the initial conditions

y(i)(a) = di, i = 0, ..., n, (1.2)

where ai ∈ R,n < α ≤ n+ 1, 0 < α1 < α2 < ... < αn < α and aD
αn
t y(t) denotes the

Caputo fractional derivative of order α. We can see the conditions of existence and
uniqueness of solutions to the FDE in [14]. However, many of the existing numerical
methods transform the FDE into an algebraic equation and then solve it [1, 2, 11, 18].

In this study, first, we use the orthogonal functions such as block-pulse wavelet to
transform a non-homogeneous fractional differential equation into an algebraic linear
equation and then we investigate the two-stage iterative method (TSI) for solving this
linear systems which is an iterative method for solving a linear algebraic equation
based on two inner and outer splitting of a matrix. According to this process, which
denoted by TSI-Wavelet, we can create an extremely effective and practical algorithm.
This paper is organized as follows. In Section 2, we present a number of definitions
about fractional calculus, block-pulse wavelets, hybrid functions and their properties.
After reviewing the two-stage iterative (TSI) method and introducing some related
essential concepts and results in Section 3, we further set up our new numerical
algorithm for the approximate solution of non-homogeneous fractional differential
equation in this section. In Section 4, we examine the advantages of our results by
carrying out numerical computations. The conclusions are presented in Section 5.

2. Elementary Definitions and Operational Matrices

Here and in this part of the study, we present some basic definitions and properties
of fractional calculus, wavelets and operational matrices [8, 14, 19, 24].

Definition 2.1. The Riemann-Liouville fractional integral of order α is

Iα(f(x)) =
1

Γ(α)

∫ x

a

(x− τ)α−1f(τ)dτ, alpha > 0. (2.1)

A real function f(x), x ≥ 0 is said to be in space Cµ, µ ∈ R if there exists a real
number p > µ, such that f(x) = xpf1(x) where f1(x) ∈ [0,∞), and it is said to be in
the space Cmµ if fm ∈ Cµ,m ∈ N .

Definition 2.2. The fractional derivative of f(x) in the Caputo sense is defined as

aD
α
xf(x) =

1

Γ(n− α)

∫ x

a

(x− τ)n−α−1f (n)(τ)dτ, (2.2)

where n− 1 < α ≤ n, n ∈ N, x > 0, f ∈ Cn−1.

For the Caputo’s derivative, we have Dα
t C = 0, which C is a constant and

Dα
xx

n =

{
0 n ∈ N,n < dαe,

Γ(n+1)
Γ(n+1−α)x

n−α n ∈ N,n > bαc. (2.3)

The relation between the Riemann-Liouville operator and the Caputo operator is
given by the following expressions [26]:

aD
α
x I

αf(x) = f(x), (2.4)
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IαaD
α
xf(x) = f(x)−

n−1∑
k=0

f (k)(0+)
(x− a)k

k!
, x > 0. (2.5)

Definition 2.3. The m-set of Block-Pulse functions on [0, η) is defined as:

bi(t) =

{
1 ηi

m ≤ t <
η(i+1)
m ,

0 otherwise.
(2.6)

where i = 0, 1, 2, · · · ,m− 1.

The functions bi are disjoint and orthogonal [8], that is∫ η

0

bi(t)bj(t)dt = δi,j ,

where δi,j = 0 for i 6= j and δi,j is the constant for i = j.

Definition 2.4. The shifted Legendre polynomials are defined on the interval [0, 1]
and can be determined with the aid of the following recurrence formulae [18]:

Pi+1(x) =
(2i+ 1)(2x− 1)

i+ 1
Pi(x)− i

i+ 1
Pi−1(x), i = 1, 2, ...,

where P0(x) = 1 and P1(x) = 2x − 1. The analytic form of the shifted Legendre
polynomial Pi(x) of degree i given by

Pi(x) =

i∑
k=0

(−1)i+k
(i+ k)!xk

(i− k)(k!)2
,

where Pi(0) = (−1)i and Pi(1) = 1.

Theorem 2.5. A function f(x) ∈ L2([0, T )) may be expanded by the block-puls func-
tions as

f(x) '
m1∑
i=1

fibi(t) = FTBm(x), (2.7)

where

F =
(
f1 · · · fm

)
, Bm(x) =

(
b1(x) · · · bm(x)

)
.

The block-pulse coefficients fi are obtained as

fi =
T

h

∫ ih

(i−1)h

f(x)dx. (2.8)

Proof. See [8]. �

Definition 2.6. Hybrid functions hyi,j(x) , i = 0, ...m − 1 and j = 0, ..., n − 1 are
defined on the interval [0, T ) as

hyi,j(x) =

{
Pj(

m
T x− i)

iT
m ≤ x <

(i+1)T
m ,

0 otherwise,
(2.9)

where Pj(t) is the jth shifted Legendre polynomials on [0, 1).
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Now for approximating the function f(x), we can set [13, 25]

f(x) ' CTHyn,m(x), (2.10)

where

CT =
(
c0,0 · · · c0,n−1 c(m−1),(n−1) ),

Hyn,m(x) =
(
hy0,0(x) · · · hy0,n−1(x) · · · hy(m−1),(n−1)(x) ),

(2.11)

and

ci,j =
< f(x), hyi,j >

< hyi,j , hyi,j >
,

where

< u(x), v(x) >=

∫ T

0

u(x)v(x)dx.

Now, we introduce the operational matrix methods based on Block-Pulse and hybrid
functions of Block-Pulse and shifted Legendre polynomials.

Fractional integration of the Block-Pulse function vector is given as

(IαBm)(t) = F (α)Bm(t), (2.12)

where F (α) is the block-pulse operational matrix of the fractional order integration
[26]

F (α) = ( Tm )α 1
Γ(α+2)


1 ξ1 ξ2 · · · ξm−1

0 1 ξ1 · · · ξm−2

0 0 1 · · · ξm−3

· · · · · · · · · · · · · · ·
0 0 0 · · · 1

 ,
(2.13)

where ξk = (k + 1)α+1 − 2kα+1 + (k − 1)α+1.
Now let Hyn,m ' ΦBmn(x) and IαHyn,m(x) = Q(α)Hyn,m(x), then we can con-

struct the operational matrix of fractional order integration for hybrid functions as:

Q(α) = ΦF (α)Φ−1. (2.14)

According to the results of the operational matrices in this section we can transport
(1.1) under the conditions (1.2) to an linear algebraic equations which drawn in Sec-
tion 5. Since, buy increasing m and n the size of such linear algebraic equations to
be large, we need a good numerical method for solving an algebraic liner equation
with large size. So in the next section we will propose two stage iterative method for
solving large sparse linear algebraic equations.
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3. TSI method

In this section, we are going to present a new numerical algorithm for solving an
algebraic linear equations.
The spectral radius ρ(A) of a matrix A with eigenvalues λ1, λ2, ... ,λn is defined to
be the number

ρ(A) = max{|λ1|, |λ2|, ..., |λn|}.

Thus ρ(A) is the largest absolute value of the eigenvalues of matrix A.
There are many numerical method for solving linear equations [20, 21, 22]. Consider
the linear system

Ax = b. (3.1)

For any splitting A = M−N with det(M) 6= 0, the basic iterative methods for solving
(3.1) is

xi = M−1Nxi−1 +M−1b, i = 1, 2, ... (3.2)

with outer splitting A = M −N and inner splitting M = F −G. Then the algorithm
of TSI method for solving (3.1) is as follows.

Algorithm 1.

Step 1. Choose an initial vector x0, a prescribed tolerance, number of outer iteration
m and a sequence of number of inner iterations, s(k), k = 1, ...,m.
Step 2. For i = 1, ...,m do
y0 = xi−1,
For j = 1, ..., s(k) do
Fyj = Gyj−1 +Nyi−1 + b
xi = ys(k).
Step 3. If ||b−Axi|| ≤ tol, then stop.

When the number of inner iterations is fixed in each outer step, i.e., s(k) = s, s ≥ 1,
it is said that the method is stationary, while a non-stationary two-stage method
is such that the number of inner iterations may change with the outer iterations.
Throughout the paper, it is assumed that s(k) = s, s ≥ 1. By replacing the loop over
j and by (3.2), TSI methods for solving the system of linear equations (3.1) have the
following form

xi = (F−1G)sxi−1 +

s−1∑
j=0

(F−1G)jF−1(Nxi−1 + b), i = 1, 2, ... . (3.3)

Clearly, the iteration matrix corresponding to the relation (3.3) is

Ts = (F−1G)s +

s−1∑
j=0

(F−1G)jF−11N = I − (I − (F−1G)s)(I −M−1N), (3.4)
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where I denotes the n × n identity matrix. If ρ(F−1G) < 1, then I − (F−1G)s is
nonsingular. Then there exists a unique pair of matrices [9], Bs and Cs, such that
M = Bs − Cs and R = (F−1G)s = B−1

s Cs where

Bs = M(I −R)−1, (3.5)

Cs = M(I −R)−1R, (3.6)

so

Ts = B−1
s (Cs +N). (3.7)

Now we present a new theorem under suitable conditions. Based on this theorem,
we can find which double splitting is more efficient compared to the other ones. We
should begin with some basic notations and preliminary results first.

Definition 3.1. Let A be a real matrix. The splitting A = M −N is called
(a) convergent if ρ(M−1N) < 1,
(b) regular if M−1 ≥ 0 and N ≥ 0, and
(c) weak regular if M−1 ≥ 0 and M−1N ≥ 0.

Lemma 3.2. Let A = M − N be a convergent regular splitting, and let R ≥ 0,
ρ(R) < 1. If the unique splitting be as M = Bs −Cs such that R = B−1

s Cs be a weak
regular splitting, then the two-stage iterative method for any nonnegative s of inner
iterations will be convergent.

Proof. See [9]. �

Lemma 3.3. Let A = M − N be regular or a weak regular splitting of A. Then
ρ(M−1N) < 1 if and only if A−1 ≥ 0.

Proof. See [7]. �

Lemma 3.4. Let A = M − N Let A = M1 − N1 = M2 − N2 be two weak regular
splitting of A, where A−1 ≥ 0. If M−1

1 ≥M−1
2 , then ρ(M−1

1 N1) ≤ ρ(M−1
2 N2).

Proof. See [12]. �

Now, we establish new results in the following theorem.

Theorem 3.5. Let A−1 ≥ 0, A = M1 − N1 = M2 − N2 be regular splitting and
let M1 = F1 − G1, M2 = F2 − G2 be weak regular splitting. If M−1

2 ≥ αM−1
1 then

ρ(Ts(M2 − N2)) ≤ ρ(Ts(M1 − N1)) < 1 where α = 1−ρ1
1−ρ2 with ρi = ρ(F−1

i Gi) for
i = 1, 2.

Proof. By Lemma 3.2, it is easy to show that ρ(Ts(M1 −N1)) < 1. But by two-stage
iterative method (Algorithm1), for i = 1, 2 we have A = Mi − Ni, Mi = Fi − Gi =
Bi,s − Ci,s and Ri = (F−1

i Gi)
s = B−1

i,s Ci,s, so we get A = Mi,T − Ni,T , where

Mi,T = Bi,s = Mi(I −Ri)−1 and Ni,T = (Ci,s +Ni) = Mi(I −Ri)−1Ri +Ni.
Since A = Mi−Ni are regular splitting, Mi = Fi−Gi is the weak regular splitting.

By Lemma 3.3 we have ρ1, ρ2 < 1. Furthermore, it can be shown that A = Mi,T−Ni,T
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is the weak regular splitting. Therefore, to apply Lemma 3.4, it is only necessary to
show that M−1

2,T ≥M
−1
1,T . Since M−1

2 ≥ αM−1
1 , we have

(1− ρ(F−1
2 G2))M1 ≥M2(1− ρ(F−1

1 G1)).

Since GF−1 = F (F−1G)F−1, we have ρ(GF−1) = ρ(F−1G), so

(I − (G2F
−1
2 ))M1 ≥M2(I − (F−1

1 G1))

⇒M−1
2 −M−1

2 (G2F
−1
2 )s ≥ (I −R1)M−1

1 .

Since M(F−1G)s = (GF−1)sM , we have (I − (F−1
2 G2)s)M−1

2 ≥ (I − R1)M−1
1 , and

the proof is completed. �

According to the operational matrices described in Section 2, by integrating from
(1.1) of order αn, we can change (1.1) to a linear algebraic equations and then by
using Algorithm 1 solve it. So we have the following algorithm.

Algorithm 2(TSI-wavelets).

Step 1. Compute Ax = b related to the relation (1.1), choose initial vectors x0, tol,
number of outer iteration m and sequence of number of inner iterations, s(k), k =
1, ...,m.
Step 2. For i = 1, ...,m do
y0 = xi−1,
For j = 1, ..., s(k) do
Fyj = Gyj−1 +Nyi−1 + b
xi = ys(k).
Step 3. If ||b−Axi|| ≤ tol, then stop.

In order to show the efficiency of our new algorithm for solving initial value problem
(1.1), we apply it to solve different types of FDEs whose exact solutions are known.

4. Illustrative Examples

In this section, we use EMaW for the absolute error generated by the Matlab com-
mand linsolve(A, b) and ETsW for the absolute error generated by the Algorithm 2,
which W is the block-pulse wavelet Bm or the hybrid functions Hym,n.

Example 4.1. Consider the Bagley-Torvik equation with initial value as

0D
2
xy(x) +0 D

3
2
x y(x) + y(x) = 1 + x ; y(0) = 1, y′(0) = 1. (4.1)

The exact solution is y(x) = 1 + x, [18]. The integral representation of (4.1) is given
by

y(x)− x− 1 + I
1
2 (y(x)) + I

1
2 (−x− 1) + I2(y(x)) = I2(1 + x). (4.2)

In this example, we use the operational matrix of fractional order integration with
respect to the Block-Pulse wavelet. By applying Theorem 2.5 , we can approximate
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solution y(x) and 1 + x as follows

y(x) = CTb Bm(x), 1 + x = CT1 Bm(x), (4.3)

by substituting (4.3) into (4.2) and using operational matrices we have

CTb (Im + F ( 1
2 ) + F (2)) = CT1 (Im + F ( 1

2 ) + F (2)). (4.4)

From (2.13), we can see that the entries of principal diagonal of upper triangu-

lar matrix Im + F ( 1
2 ) + F (2) are positive and, thus the matrix Im + F ( 1

2 ) + F (2)

is nonsingular. This shows that (4.4) has a unique solution as Cb = C1. Since
y(x) = CTb Bm(x) = CT1 Bm(x) ' 1 + x, Theorem 2.5 shows that CT1 Bm(x) → 1 + x
as m→∞. Therefore, the numerical solution can be regarded as 1 + x, which is the
exact solution here.

Table 1. Absolute error for α = 1.5, a = 12 for example 4.2, case 1.

x 0.2 0.5 0.8 1.1 1.4
EMaB32 9.1× 10−3 8.1× 10−4 8.6× 10−4 6.0× 10−4 5.2× 10−4

EMaHy8,3 1.4× 10−3 7.6× 10−4 1.2× 10−3 1.4× 10−4 5.0× 10−4

ETsB32 5.6× 10−6 4.9× 10−7 1.3× 10−7 2.1× 10−8 1.3× 10−7

ETsHy8,3 3.2× 10−6 2.5× 10−7 9.1× 10−6 7.2× 10−7 5.2× 10−8

Example 4.2. Consider

0D
α
xy(x) + ay(x) = f(x), (t > 0),

yk(0) = ak, (k = 0, 1, · · · , n− 1),

(4.5)

where n−1 < α ≤ n. For 0 < α ≤ 2 and ak = 0, this equation is called the relaxation-
oscillation equation [14].

Table 2. Absolute error for α = 1, by B32(x) and Hy8,3(x), for
example 4.2, case 2.

x 0.2 0.5 0.8 1.1 1.4
EMaB32 2.6× 10−2 9.0× 10−3 1.6× 10−3 7.5× 10−3 1.0× 10−2

EMaHy8,3 8.5× 10−4 3.9× 10−4 1.1× 10−4 4.3× 10−5 1.2× 10−4

ETsB32 1.3× 10−5 6.2× 10−6 5.1× 10−7 5.6× 10−6 1.1× 10−5

ETsHy8,3 7.6× 10−8 1.3× 10−7 5.8× 10−7 6.7× 10−8 7.2× 10−9

Case 1. Consider ak = 0 and f(x) ≡ H(x), where H(x) is the Heaviside func-
tion. In this case the analytical solution [14] is y(x) =

∫ x
0
G(x − τ)f(τ), G(x) =

xα−1Eα,α(−atα) and

Eβ,γ(z) =

∞∑
n=0

1

Γ(βn+ γ)n!
zn,
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Figure 1. Comparison of the exact solution with numerical solution
for a = 8, 12 and α = 1.5, by B32(x) and Hy8,3(x), for example 4.2,
case 1.
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Figure 2. Numerical solution of example 4.2, case 2, by B32(x) and
Hy8,3(x) with α = 1, 0.9, 0.7.

where β > 0, γ > 0 and z is in complex number. The integral representation of (4.5)
for 1 < α < 2 is

y(x) + aIα(y(x)) = Iα(f(x)), (4.6)

we, by applying Algorithm 2 described in the previous sections on [0, 3) for α = 1.5,
solve the problem. The algebraic equations corresponding to (4.6) are of the form

C(I + aOα) = CfO
α, (4.7)

Figure. 1 shows the numerical results generated by the block-pulse (B32 ) and hybrid
functions (Hy8,3) for a = 12 and 8 with α = 1.5. The absolute error for a = 12 are
shown in Table 1. From Table 1, we see that the operational matrix methods achieve
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a good approximation with the exact solution. Moreover from Table 1, we found
that if we use Algorithm 2, the errors are less than the errors generated by Matlab
command linsolve(A, b).

Case 2. In this case, we consider f(x) = 0, 0 ≤ α ≤ 1 and a0 = 1 , a1 = 0,

the analytical solution is [18], y(x) =
∑∞
k=0

(−xα)k

Γ(αk+1) . For α = 1 we have, y(x) =

exp(−x). The exact solution exp(−x), with α = 1 and numerical solution by block-
pulse wavelets and hybrid function for α = 1, 0.9 and 0.7 are shown in Figure. 2 .
From Figure. 2 we can see that the numerical solution converges to exact solution as
α −→ 1. Also, the absolute errors generated buy the Matlab command linsolve(A, b)
and two stage iterative method for α = 1 are shown in Table 2. From Table 2, we
can see that if we use Algorithm 2 then we found more efficient numerical solutions.
Moreover from Table 2 we can see that the hybrid operational matrix method gives
an efficient numerical solution for α = 1.

5. Conclusion

In this paper, a fractional differential equation has been solved by a new numer-
ical algorithm based on operational matrices and two stage iterative method. This
algorithm transforms a fractional differential equation with initial conditions into a
system of algebraic linear equations and then solve it by TSI method. Figures and
tables show that this method is extremely effective and practical. Moreover, the ab-
solute error shows that the two stage iterative method for solving system of algebraic
equations, is more efficient than the Matlab command linsolve(A, b).
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