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Abstract In this work, an initial-boundary value problem with a non-classic condition for the
one-dimensional wave equation is presented and the reduced differential transform
method is applied to ascertain the solution of the problem. We will investigate a new
kind of non-local boundary value equations in which are the solution of hyperbolic
partial differential equations with a non-standard boundary characteristic. The ad-
vantage of this method is its simplicity in using, it solves the problem directly and
straightforward without using perturbation, linearization, Adomian’s polynomial or
any other transformation and gives the solution in the form of convergent power
series with simply determinable components. Also, the convergence of the method
is proved and seven examples are tested to shows the competency of our study.
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1. Introduction

In the current study, we will examine the hyperbolic equation with a non-local
constraint in the following boundary condition in which have been investigated in
[21, 24]:

θtt − µ(x, t)θxx = λ(x, t), 0 < x < l, 0 < t ≤ T, (1.1)
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by considering the following initial conditions
θ(x, 0) = α(x), θt(x, 0) = β(x), 0 ≤ x ≤ l, (1.2)

and Dirichlet boundary condition as bellows
θ(0, t) = γ(t), (1.3)

together with the nonlocal condition∫ l

0

θ(x, t)dx = χ(t), 0 < t ≤ T, (1.4)

where λ, α, β, γ, and χ are known functions.
It is worth mentioning that α and β satisfy the compatibility conditions as below:

α(0) = γ(0), β(0) = γ′(0),

∫ l

0

α(x)dx = χ(0),

∫ l

0

β(x)dx = χ′(0). (1.5)

Keskin [17] introduced a reliable and effective method called the reduced differential
transform method (RDTM) to look for exact solutions of partial differential equa-
tions. Keskin and Oturanc [18, 19, 20] improved the reduced differential transform
method (RDTM) and showed that the RDTM procedure is very simple to achieve
the exact solutions for a more class of the linear and nonlinear differential equations.
This suggested technique is very effective and powerful in obtaining the approximate
solutions also analytical solutions of many physical equations arising in applied sci-
ences and engineering. In recent years, this effective method is widely used by many
such as in [1, 23, 26, 28, 29, 31, 32] and by the references therein.
Various powerful numerical and semi-analytical methods for solving linear and non-
linear partial differential equations (PDEs) have proposed, some these methods which
solve PDEs are including: the Adomian decomposition method [33], the homotopy
analysis method [7, 8, 13, 14, 27], the homotopy perturbation method [9], the vari-
ational iteration method [10, 11, 12, 15], the Laplace Adomian decomposition method
[22], the optimal homotopy and differential transform methods [25], the semi-analytical
iterative technique [34], Exp-function method [5, 6, 36], the sine-Gordon expansion
method [2, 3, 4, 16, 30, 35] and so on.
The important goal of this work is to utilize the reduced differential transform method
(RDTM) to deal with the one-dimensional hyperbolic equation with integral condi-
tions.
The rest of this study is presented in the bellow sections: In Section 2, we simply
introduce the reduced differential transform method. In Section 3, we discuss the
convergence of the considered method. In Section 4, the method is used to deal with
the one-dimensional hyperbolic equation with non-local integral conditions. Finally,
we offer some summaries and conclusions in Section 5.

2. Summary of the Method

We present some important definitions and operations of the reduced differential
transform method in which can help to more understand of the stated method in this
section. Now, assume that the function of two variables θ(x, t) will be described as
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a product of two different variable functions, i.e., θ(x, t) = ϕ(x)ψ(t). The function
θ(x, t) can be displayed due to the properties of the differential transform as follows:

θ(x, t) =

( ∞∑
i=0

Φ(i)xi
)( ∞∑

j=0

Ψ(j)tj
)

=

∞∑
k=0

Θk(x)t
k, (2.1)

where Θk(x) is the converted function of the source function θ(x, t).

Definition 2.1. Let θ(x, t) is analytic and differentiated continuously function with
regard to space x and time t, in the domain of interest, then the t-dimensional spec-
trum function is

Θk(x) =
1

k!

[
∂k

∂tk
θ(x, t)

]
t=t0

. (2.2)

Definition 2.2. The reduced differential inverse transform of Θk(x) is determined
as

θ(x, t) =

∞∑
k=0

Θk(x)(t− t0)
k. (2.3)

Then, consolidating Eqs. (2.2) and (2.3) yields

θ(x, t) =

∞∑
k=0

1

k!

[
∂k

∂tk
θ(x, t)

]
t=t0

(t− t0)
k, (2.4)

the help of the upper definitions, it will be discover that the conception of the RDTM
comes from the power series expansion. As an example, the basic ideas of the RDTM,
suppose that we have a nonlinear partial differential equation written in an operator
form

Lθ(x, t) +Rθ(x, t) +Nθ(x, t) = ω(x, t), (2.5)
with considering the following initial condition

θ(x, 0) = α(x), (2.6)
where L = ∂

∂t , R is a linear operator which has partial derivatives, N is a nonlinear
operator and ω(x, t) is an inhomogeneous term.
After applying the RDTM definition, the following iteration formula can be stated as

(k + 1)Θk+1(x) = Ωk(x)−RΘk(x)−NΘk(x), (2.7)

where LΘk(x), RΘk(x), NΘk(x) and Ωk(x) are the reduced differential transform
functions of Lθ(x, t), Rθ(x, t), Nθ(x, t) and ω(x, t) respectively.
From initial condition (2.6), we have

Θ0(x) = α(x). (2.8)
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To discover the remaining iteration, we plugging (2.8) into (2.7) and by simple reiter-
ative calculation, we tend to get the subsequent Θk(x) values. Afterward, the inverse
transformation of the set of values {Θk(x)}nk=0 admits the n-terms approximation
solution as bellows:

θ̃n(x, t) =

n∑
k=0

Θk(x)(t− t0)
k. (2.9)

Thus, the final solution of the considered problem can be gained by

θ(x, t) = lim
n→∞

θ̃n(x, t). (2.10)

Table I contains the basic mathematical operations carried out by RDTM.

3. Convergence of method

The principal main of this section is to survey the convergence of the reduced
differential transform method, according to other methods of RDTM stated in the
previous section, when employed to Eq. (2.5). The sufficient conditions for conver-
gence of the method and the error computation are addressed.
The fundamental point views of RDTM includes of ascertaining power series expan-
sion for the solutions of nonlinear models with the initial time t0,

θ(x, t) =

∞∑
k=0

ak(x)(t− t0)
k, t ∈ l, (3.1)

where l = (t0, t0+r), r > 0. The important results are proposed in the below theorems.

Theorem 3.1. Suppose φk(x, t) = ak(x)(t−t0)k, then the series solution
∑∞

k=0 φk(x, t),
stated in Eq (3.1), converges if ∃ 0 < γ < 1 such that ∥φk+1∥ ≤ γ∥φk∥, ∀k ∈ N∪{0}.

Theorem 3.1 is a specific case of Banach’s fixed point theorem. We summarize the
proof of Theorem 3.1 to investigate the truncation error of the series solution Eq.
(3.1), as follows

Proof. Denote as (C[l], ∥.∥) the Banach space of all continuous functions on l with
the norm ∥φk(x, t)∥ = ∥ak(x)(t− t0)

k∥. Also assume that ∥a0(x)∥ < N0, where N0

is a positive number. Define the sequence of partial sums {Σn}∞n=0 as

Σn = φ0 + φ1 + . . .+ φn. (3.2)

We want to present that {Σn}∞n=0 is a Cauchy sequence in this Banach space. To
reach this goal, we take

∥Σn+1 − Σn∥ = ∥φn+1∥ ≤ γ∥φn∥ ≤ . . . ≤ γn+1∥φ0∥ ≤ γn+1N0. (3.3)
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For every n,m ∈ N, n ≥ m, we get
∥Σn − Σm∥ = ∥(Σn − Σn−1) + (Σn−1 − Σn−2) + . . .+ (Σm+1 − Σm)∥

≤ ∥(Σn − Σn−1)∥+ ∥(Σn−1 − Σn−2)∥+ . . .+ ∥(Σm+1 − Σm)∥

≤ 1− γn−m

1− γ
γm+1∥φ0∥, (3.4)

and because 0 < γ < 1, we achieve
lim

n,m→∞
∥Σn − Σm∥ = 0. (3.5)

Therefore, {Σn}∞n=0 is a Cauchy sequence in the Banach space (C[l], ∥.∥). Afterward
the series solution

∑∞
k=0 φk(x, t), defined in Eq. (3.1), converges and it completes the

proof.
□

If the series
∑∞

k=0 ak(x)(t− t0)
k converges then it is an exact solution of the non-

linear equation (2.5).

Theorem 3.2. Suppose that the series solution
∑∞

k=0 φk(x, t), where φk(x, t) =
ak(x)(t− t0)

k, converges to the solution θ(x, t). If the truncated series
∑m

k=0 φk(x, t)
is used as an approximation to the solution θ(x, t) and then the maximum absolute
truncated error is computed as∥∥∥θ(x, t)− m∑

k=0

φk(x, t)
∥∥∥ ≤ 1

1− γ
γm+1∥φ0∥. (3.6)

Proof. From Theorem 3.1, following inequality Eq. (3.4), we have

∥Σn − Σm∥ ≤ 1− γn−m

1− γ
γm+1∥φ0∥, (3.7)

for n ≥ m. Also, since 0 < γ < 1, we have 1 − γn−m < 1, therefore, the inequality
Eq.(3.7) can be changed to

∥Σn − Σm∥ ≤ 1

1− γ
γm+1∥φ0∥. (3.8)

It is clear when n→ ∞, Σn → θ(x, t). Thus, inequality Eq. (3.6) is obtained and the
Theorem is proved.

□

4. Applications

Here, seven examples are given to show the efficiency of the reduced differential
transform method for solving equation (1.1) with the following conditions
Example 1: We first consider (1.1)-(1.4) with T = 1, l = 1, and

µ(x, t) = 1, λ(x, t) = 0, α(x) = x2, β(x) = 0,

γ(t) = t2, χ(t) = t2 +
1

3
. (4.1)
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According to the operations of differential transformation given in Table I for Eq.
(1.1) we obtain the recurrent relation as bellows

(k + 1)(k + 2)Θk+2(x) =
∂2

∂x2
Θk(x). (4.2)

Taking the initial conditions (4.1), we get
Θ0(x) = x2, Θ1(x) = 0. (4.3)

Substituting the above equation in Eq. (4.2), we drive the following results
Θ2(x) = 1, Θ3(x) = 0, Θ4(x) = 0, · · · .

Hence, the solution in series form is as follow

θ̃n(x, t) =

∞∑
k=0

Θk(x)t
k = Θ0(x) + Θ1(x)t+Θ2(x)t

2 +Θ3(x)t
3 + ... = x2 + t2,

which converges efficiently to the exact solution
θ(x, t) = x2 + t2.

Example 2: We take (1.1)-(1.4) with T = 0.5, l = 1, and
µ(x, t) = 1, λ(x, t) = 0, α(x) = 0, β(x) = π cosπx,

γ(t) = sinπt, χ(t) = 0. (4.4)

According to the operations of differential transformation given in Table I for Eq.
(1.1) and from initial conditions (4.4), we get to the bellow relation

Θ0(x) = 0, Θ1 = π cosπx. (4.5)
Plugging the above equation in Eq. (4.2), we drive the following results

Θ2(x) = 0, Θ3(x) = −π
3

3!
cosπx, Θ4(x) = 0, Θ5(x) =

π5

5!
cosπx, · · · .

Hence, the solution in series form is as follow

θ̃n(x, t) =

∞∑
k=0

Θk(x)t
k = Θ0(x) + Θ1(x)t+Θ2(x)t

2 + ...

= cosπx
(
πt− (πt)3

3!
+

(πt)5

5!
+ ...

)
,

which converges efficiently to the exact solution
θ(x, t) = cosπx sinπt.

Example 3: Taking (1.1)-(1.4) with T = 0.5, l = 1, and
µ(x, t) = 1, λ(x, t) = 0, α(x) = cosπx, β(x) = 0,

γ(t) = 0, χ(t) = 0. (4.6)
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According to the operations of differential transformation given in Table I for Eq.
(1.1) and from initial conditions (4.6), reads as

Θ0(x) = cosπx, Θ1(x) = 0. (4.7)

Putting the above equation in Eq. (4.2), we drive the results as bellow

Θ2(x) = −π
2

2!
cosπx, Θ3(x) = 0, Θ4(x) =

π4

4!
cosπx, · · · .

Hence, the solution in series form is as follow

θ̃n(x, t) =

∞∑
k=0

Θk(x)t
k = Θ0(x) + Θ1(x)t+Θ2(x)t

2 + ...

= cosπx
(
1− (πt)2

2!
+

(πt)4

4!
+ ...

)
,

which converges efficiently to the exact solution

θ(x, t) = cosπx cosπt.

Example 4: We take (1.1)-(1.4) with T = 1, l = 1, and

µ(x, t) = 1, λ(x, t) = 0, α(x) = sinπx, β(x) = π sinπx,

γ(t) = 0, χ(t) =
2

π
(cosπt+ sinπt). (4.8)

According to the operations of differential transformation given in Table I for Eq.
(1.1) and from initial conditions (4.8), will be as

Θ0(x) = sinπx, Θ1(x) = π sinπx. (4.9)

Appending the above equation in Eq. (4.2), we drive the following results

Θ2(x) = −π
2

2!
sinπx, Θ3(x) = −π

3

3!
sinπx, Θ4(x) =

π4

4!
sinπx, · · · .

Hence, the solution in series form is as follow

θ̃n(x, t) =

∞∑
k=0

Θk(x)t
k = Θ0(x) + Θ1(x)t+Θ2(x)t

2 + ...

= sinπx
(
1 + πt− (πt)2

2!
− (πt)3

3!
+

(πt)4

4!
+ ...

)
,

which converges efficiently to the exact solution

θ(x, t) = sinπx(cosπt+ sinπt).

Example 5: We take (1.1)-(1.4) with T = 1, l = 1, and

µ(x, t) = 1, λ(x, t) = (x2 − t2)ext, α(x) = 1, β(x) = x,

γ(t) = 1, χ(t) =
et − 1

t
. (4.10)
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According to the operations of differential transformation given in Table I for Eq.
(1.1) we gain the following recurrent relation

(k + 1)(k + 2)Θk+2(x) =
∂2

∂x2
Θk(x) +Nk(x), (4.11)

and from initial conditions (4.10), we write
Θ0(x) = 1, Θ1(x) = x. (4.12)

Substituting the above equation in Eq. (4.11), we drive the following results

Θ2(x) =
x2

2!
, Θ3(x) =

x3

3!
, Θ4(x) =

x4

4!
, · · · .

Hence, the solution in series form is as follow

θ̃n(x, t) =

∞∑
k=0

Θk(x)t
k = Θ0(x) + Θ1(x)t+Θ2(x)t

2 + ...

= 1 + xt+
(xt)2

2!
+

(xt)3

3!
+ ...,

which converges efficiently to the exact solution
θ(x, t) = ext.

Example 6: Taking (1.1)-(1.4) with T = 1, l = 1, and
µ(x, t) = 1, λ(x, t) = 2(x2 − t2), α(x) = sinhx, β(x) = coshx,

γ(t) = 0, χ(t) =
t2

3
+ cosh(1 + t). (4.13)

According to the operations of differential transformation given in Table I for Eq.
(1.1) we ascertain the following recurrent relation

(k + 1)(k + 2)Θk+2(x) =
∂2

∂x2
Θk(x) + 2x2δ(k)− 2δ(k − 2), (4.14)

and from initial conditions (4.13), we get
Θ0(x) = sinhx, Θ1(x) = coshx. (4.15)

Appending the above equation in Eq. (4.14), we drive the following results

Θ2(x) = x2 +
1

2!
sinhx, Θ3(x) =

1

3!
coshx, Θ4(x) =

1

4!
sinhx, · · · .

Hence, the solution in series form is as follow

θ̃n(x, t) =

∞∑
k=0

Θk(x)t
k = Θ0(x) + Θ1(x)t+Θ2(x)t

2 + ...

= x2t2 + sinhx
(
1 +

t2

2!
+
t4

4!
+ ...

)
+ coshx

(
t+

t3

3!
+
t5

5!
+ ...

)
,

which converges efficiently to the exact solution
θ(x, t) = x2t2 + sinh (x+ t).
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Example 7: We take (1.1)-(1.4) with T = 1, l = 1, and

µ(x, t) =
x2

2
, λ(x, t) = 0, α(x) = x, β(x) = x2,

γ(t) = 0, χ(t) =
1

2
+

1

3
sinh t. (4.16)

According to the operations of differential transformation given in Table I for Eq.
(1.1) we achieve the recurrent relation as bellows

(k + 1)(k + 2)Θk+2(x) =
x2

2

∂2

∂x2
Θk(x), (4.17)

and from initial conditions (4.16), reads as

Θ0(x) = x, Θ1(x) = x2. (4.18)

Substituting the above equation in Eq. (4.17), we drive the following results

Θ2(x) = 0, Θ3(x) =
x2

3!
, Θ4(x) = 0, Θ5(x) =

x2

5!
, · · · .

Hereafter, the solution in series form is as follow

θ̃n(x, t) =

∞∑
k=0

Θk(x)t
k = Θ0(x) + Θ1(x)t+Θ2(x)t

2 + ...

= x+ x2
(
t+

t3

3!
+
t5

5!
+ ...

)
,

which converges efficiently to the exact solution

θ(x, t) = x+ x2 sinh t.

Comparing our consequence with the solutions ascertained in [21, 24] by HPM, we
can see that the results are the same.

5. Conclusion

In this article, we successfully employed the reduced differential transform method
to solve accurately the one-dimensional hyperbolic equation with integral conditions.
The suggested technique, without involving the perturbation, linearization or dis-
cretization provides a solution in the form of convergent power series with daintily
estimated components. RDTM can be applied the most of the biological, physical,
engineering and other models as an alternative for obtaining reliable and fastest con-
verge, useful approximations. On the other hand, RDTM is mighty of reducing the
size of computational work compared to other traditional methods. The results il-
lustrate that the RDTM is a very interesting and efficient semi-numerical-analytical
method for successfully employed to achieve the exact and approximate solutions of
the linear and nonlinear PDEs.
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Figure 1. The 3D plot of equation (left) exact solution and (right) nu-
merical solution to Example 1.

Table I. The fundamental operations of RDTM
Original Form Transformed Form

θ(x, t) Θk(x) =
1
k! [

∂k

∂tk
θ(x, t)]t=0

θ(x, t) = θ1(x, t)± θ2(x, t) Θk(x) = Θ1k(x)±Θ2k(x)

θ(x, t) = λθ1(x, t) Θk(x) = λΘ1k(x) (λ is a constant)

θ(x, t) = xmtn Θk(x) = xmδ(k − n), δ(k) =

{
1, k = 0
0, k ̸= 0

θ(x, t) = xmtnθ1(x, t) Θk(x) = xmΘ1,k−n(x)

θ(x, t) = θ1(x, t)θ2(x, t) Θk(x) =
∑k

r=0 Θ2r(x)Θ1,k−r(x) =
∑k

r=0 Θ1r(x)Θ2,k−r(x)

θ(x, t) = ∂r

∂tr θ1(x, t) Θk(x) = (k + 1) . . . (k + r)Θ1,k+r(x) =
(k+r)!

k! Θ1,k+r(x)

θ(x, t) = ∂
∂xθ1(x, t) Θk(x) =

∂
∂xΘ1k(x)

θ(x, t) = eλt Θk(x) =
λk

k!

θ(x, t) = sin(ωt+ αx) Θk(x) =
ωk

k! sin(
kπ
2 + αx)

θ(x, t) = cos(ωt+ αx) Θk(x) =
ωk

k! cos(
kπ
2 + αx)
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Figure 2. The 3D plot of equation (left) exact solution and (right) nu-
merical solution to Example 2.

Figure 3. The 3D plot of equation (left) exact solution and (right) nu-
merical solution to Example 3.

Figure 4. The 3D plot of equation (left) exact solution and (right) nu-
merical solution to Example 4.
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Figure 5. The 3D plot of equation (left) exact solution and (right) nu-
merical solution to Example 5.

Figure 6. The 3D plot of equation (left) exact solution and (right) nu-
merical solution to Example 6.

Figure 7. The 3D plot of equation (left) exact solution and (right) nu-
merical solution to Example 7.



CMDE Vol. 8, No. 3, 2020, pp. 537-552 549

Table 1. The absolute error, (n = 1), between the exact and the numer-
ical solutions for example 1.

(x, t) eRDTM eHPM

(0.5,0.1) 0 0

(0.5,0.2) 0 0

(0.5,0.3) 0 0

(0.5,0.4) 0 0

(0.5,0.5) 0 0

Table 2. The absolute error, (n = 3), between the exact and the numer-
ical solutions for example 2.

(x, t) eRDTM eHPM

(0.3,0.1) 3.5127×10−8 2.0071×10−7

(0.3,0.2) 4.4839×10−6 5.2822×10−6

(0.3,0.3) 7.6092×10−5 2.5487×10−4

(0.3,0.4) 5.6463×10−4 9.0886×10−4

(0.3,0.5) 2.6596×10−3 7.2582×10−3

Table 3. The absolute error, (n = 3), between the exact and the numer-
ical solutions for example 3.

(x, t) eRDTM eHPM

(0.3,0.1) 7.8344×10−7 9.7571×10−7

(0.3,0.2) 4.9877×10−5 5.2822×10−5

(0.3,0.3) 5.6316×10−4 6.5087×10−4

(0.3,0.4) 3.1256×10−3 6.0886×10−3

(0.3,0.5) 1.1737×10−2 3.2782×10−2

Table 4. The absolute error, (n = 3), between the exact and the numer-
ical solutions for example 4.

(x, t) eRDTM eHPM

(0.3,0.1) 1.7772×10−8 0.7572×10−7

(0.3,0.2) 2.1721×10−6 6.3422×10−6

(0.3,0.3) 3.5279×10−5 2.5087×10−5

(0.3,0.4) 2.5001×10−4 4.5354×10−4

(0.3,0.5) 1.1218×10−3 3.2782×10−3
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Table 5. The absolute error, (n = 3), between the exact and the numer-
ical solutions for example 5.

(x, t) eRDTM eHPM

(0.1,0.1) 3.3333×10−10 2.7512×10−9

(0.1,0.2) 6.6666×10−9 8.3402×10−9

(0.1,0.3) 3.3999×10−8 8.5087×10−8

(0.1,0.4) 1.0733×10−7 4.5354×10−6

(0.1,0.5) 2.6266×10−7 5.2782×10−6

Table 6. The absolute error, (n = 4), between the exact and the numer-
ical solutions for example 6.

(x, t) eRDTM eHPM

(1,0.1) 5.2657×10−10 2.1412×10−9

(1,0.2) 7.4762×10−10 4.3472×10−9

(1,0.3) 1.2994×10−9 8.5687×10−8

(1,0.4) .9382×10−8 4.5354×10−7

(1,0.5) 1.2192×10−7 4.2799×10−6

Table 7. The absolute error, (n = 4), between the exact and the numer-
ical solutions for example 7.

(x, t) eRDTM eHPM

(1,0.1) 1.9874×10−11 3.1412×10−10

(1,0.2) 4.0349×10−11 4.3472×10−10

(1,0.3) 6.1429×10−12 8.5687×10−10

(1,0.4) 7.1730×10−10 4.2354×10−9

(1,0.5) 5.3941×10−9 4.9799×10−8
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