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Abstract Using adaptive mesh methods is one of the strategies to improve numerical solutions

in time-dependent partial differential equations. The moving mesh method is an
adaptive mesh method, which, firstly does not need an increase in the number of

mesh points, secondly reduces the concentration of points in the steady areas of the

solutions that do not need a high degree of accuracy, and finally places the points
in the areas, where a high degree of accuracy is needed.

In this paper, we improved the numerical solutions for a three-phase model of avas-

cular tumor growth by using the moving mesh method. The physical formulation
of this model uses reaction-diffusion dynamics with the mass conservation law and

appears in the format of the nonlinear system of partial differential equations based

on the continuous density of three proliferating, quiescent, and necrotic cell catego-
rizations.

Our numerical results show more accurate numerical solutions, as compared to the
corresponding fixed mesh method. Moreover, this method leads to the higher order

of numerical convergence.
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1. Introduction

Cancer is the second-leading cause of death on the global scale and deaths from
cancer increased more than 17 percent between 2006 and 2016 [14, 30]. The accepted
theory about the origin of cancerous cells emergence states that mutations occur in
the key genes of a normal cell DNA and make it into a cancerous cell [50]. The factors
causing these mutations are, to a great extent, unknown, yet they are composed of
two general factors of inheritance and environment. On the one hand, the result of
these mutations is an increase of cell proliferation rate; on the other hand, a reduction
in cellular mortality leads to the formation of a mass of cancerous cells called tumor
[33].
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The growth process of a tumor consists of three distinct phases: avascular, angio-
genesis, and metastatic. In the avascular phase, the tumor lacks blood vessels, feeds
tumor cells and disposes of their waste materials, which are carried out through dif-
fusion [11, 16]. Like normal cells, tumor cells supply their nutrients through the
surrounding tissues by diffusion [40]. In the early stage of tumor growth, all of its
cells receive sufficient nutrients and the tumor grows rapidly, yet with the passage
of time and by an increase in the tumor size the amount of food is not sufficient.
Therefore, this reduces the growth, the size of tumor reaches a saturated size and
its growth nearly stops [26, 32, 58]. In case of tumor cells food shortage, they send
signals to blood vessels near the tumor mass, which leads to the angiogenesis process
[17]. During this process, the cell spatters a chemical composition named tumor an-
giogenic factor(TAF) in the surrounding tissues, thereby stimulating the neighboring
blood vessels, drawing them toward the tumor, and finally penetrating into the tumor
[25, 34]. As a result, tumor cells have access to the blood vessels which are considered
as a rich food resource for cells, and the rapid growth of tumor begins again. For
this reason, new treatments are oriented toward a condition in which tumor blood
vessels are attacked. When the tumor is equipped with blood vessels, cells can enter
blood circulation, travel to other parts of the body (travel to other healthy tissues
and organs), inhabit other places, and create the secondary tumors. This phase of
tumor growth is dangerous and lethal because the finding, detecting, and treating of
tumors are difficult [52]. The avascular phase of tumor growth is intended in this
paper. The tumors in avascular phase are rarely detectable due to their small size.
Therefore, their clinical investigation is difficult, but their experimental investigation
is easy through a multicellular spherical system [42, 58].
A multicellular spherical system consists of a spherical mass of cancerous cells which
grow in a culture environment riched by enough and appropriate nutrients. The
proven structure of multicellular spheres is made up of three areas. An outer area of
living, proliferative, and fed cells, is a central inner area of dead cells where a strip
of quiescent cells exists between these two areas. These quiescent cells are alive, yet
they do not proliferate. They begin to proliferate as they receive enough nutrients
again [27]. At the beginning, when the sphere size is small, all of the sphere cells
will receive enough nutrients and the growth will begin at an exponential rate. By
an increase in the sphere growth and the penetration of less nutrients into the inner
cells, the areas of quiescent and dead cells are formed and the growth speed enters a
linear phase. With the passage of more time and because of some of the intracellular
causes, the growth of the sphere approximately will be stopped and lead to a sphere
with a maximal size [3, 21, 26, 28, 31, 39, 58].
The oldest mathematical model of avascular tumor growth dates back to a model
presented by Thomlinson and Gray [60]. Then, the model was developed by Burton
[13] and Greenspan [31]. In the Greenspan model, cells inside an avascular tumor are
divided into three distinct areas of proliferating, quiescent, and necrotic cells. The
border among these three areas is determined by the surfaces of mitotic inhibitors
and nutrients. Greenspan article opened a new way in the field of mathematical mod-
els of the avascular tumor growth, and numerous researchers followed and developed
his work. As an instance, McElwain and Morris [49] obtained a similar behavior
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as Greenspan model behavior; assuming that the only mechanism of cell loss was
apoptosis. Chaplain, Benson, and Maini [19] applied a variable spatial diffusion co-
efficient which led to the same qualitative results as Greenspan model ones. Byrne
and Chaplain [15] generalized the role of inhibitors in the Greenspan model, and they
investigated the impact of cellular death mechanisms on the tumor growth distinctly.
For other extensions of Greenspan model, see [24, 56, 2, 46, 47, 18].
Ward and King [62] and Sherratt and Chaplain [54] models are considered as an evo-
lution of avascular tumor growth models. Unlike all previous models, a variety of
cells within the tumor in distinct spaces is not assumed in these models; however,
the models are presented continuously based on the density of all various cells and
depend on the density of nutrients. Three proliferating, quiescent, and necrotic in-
tratumoral cells categories are considered in the Sherratt and Chaplain model, while
the Ward and King model is a biphasic model in which only proliferating and dead
cells are considered and quiescent cells, considered as a proven part of the avascular
tumor structure, are not in this model. In Ward and King model, a mechanism is
not considered for the prevention of tumor growth. Therefore, they developed their
model to achieve the saturated phase of the growth considering basic cellular mate-
rial diffusion like protein, DNA, and fat [63]. This model was investigated by Slezaka
et al. [57] numerically with a predictor-corrector pattern based on the finite differ-
ence method. In [9, 10, 59] the term related to the extracellular matrix has been
added to the nonlinear system of Sherratt and Chaplain. Also, intracellular random
changes have been made and discussed. Darbyshire [23] addressed the numerical solu-
tion of this model in parallel and used CUDA programming framework to parallelize
the explicit finite difference method. Some other continuous models can be seen in
[51, 61, 65, 47, 44]. Alongside the development of continuous models, there are still
some of discrete models like Kiran, Jayachandran, and Lakshminarayanan in [41] that
assumed distinct areas for tumor cells and searched for the geometrical place of bor-
ders between areas during the time by considering the amount of nutrients.
Roose, Chapman, and Maini [52] conducted a complete summarization of references
for discrete and continuous models of avascular tumor growth. Moreover, we can refer
to [11] for another review.
Adaptive mesh methods have been considered for numerical solutions to mathemat-
ical models of tumor growth in recent years [4, 5, 6, 7, 8, 22, 43, 64]. Lee et al. [43]
applied the static moving mesh methods for a biphasic model provided by Breward
[12], based on the water and cell. They presented three moving mesh methods based
on the velocity, compared them and used the Euler explicit method or Runge–Kutta
methods at each time step. Amoddeo [4, 5] presented a model for the investigation
of the effects of oxygen shortage on the dynamic interaction of cancerous cells by the
UPA system in the avascular phase and addressed the numerical solution of the model
by using the moving finite element. Also, the density of cancerous cells is used as the
leading agent of mesh points. In recent years, he implemented the MMPDE numer-
ical technique based on the monitor function using a finite element discretization in
space to solve the PDE systems arising from the mathematical modelling of cancer
cell proliferation and growth [5, 6, 7, 8].
Adaptive mesh methods for time-dependent differential equations fall in static and
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dynamic categories. In static methods, an initial mesh and the answer to it are ev-
ident in the beginning; hence, a new mesh which may contain different numbers of
mesh points at each time step is constructed by various techniques. The answer is
interpolated from the old mesh to the new mesh. Therefore, an approximate solution
is defined for the new mesh [36, 37, 48].
In the dynamic methods which are known as moving mesh methods, a time-dependent
equation is defined for mesh movement based on the equidistribution principle. In
this method, without any change in the number of mesh points at each time step, at
first the mesh movement equation and physical equations are coupled and then this
system of equations is resolved simultaneously; after that physical answers and new
mesh places are obtained.
In this technique, the movement of mesh points is led by a controller parameter which
is calculated during the resolution process. Therefore, in areas where there are rapid
variations of the answer and there is a need to refine the mesh for improving discrete
answers, the points are more concentrated without an increase of the number of mesh
points [35, 36, 37, 38, 48]. Therefore, using these methods compared to a uniform
discretization based methods, can prevent extra computational fees besides the im-
provement of answers accuracy.
In this paper, we focus on a powerful model for avascular tumor growth, three-phase
continuous, Sherratt and Chaplain model. This model is in the format of a system of
nonlinear time-dependent partial differential equations. Numerical solutions for this
model are improved by the moving mesh method. Results show that the numerical
solutions based on the moving mesh method and fixed mesh method have a signifi-
cant difference. Applying the moving mesh method yields highly accurate solutions,
as well as the increasing the numerical convergence order.

2. The Model

Ward and King [62] and Sherratt and Chaplain [54] models are the first models to
consider a discrete cellular space for an avascular tumor. There are two kinds of cell,
living and dead ones, in the Ward and King model and the cellular movement has
not been considered in the model. Therefore, tumor growth is only dependent on cell
division.
Our desired model in this paper is the three-phase model introduced by Sherratt
and Chaplain [54]. The continuous density of proliferating, quiescent, and necrotic
cell categorizations has been used in this model, which have been shown as p(x, t),
q(x, t), and n(x, t), respectively. Moreover, unlike most models, in this model, the
formulation structure has been considered as in vivo-oriented than in vitro-oriented.
In this regard, the cells movement is considered as a factor of tumor growth beside
cell division.
In a single cell population or multiple cell populations with an adequate intercellular
space, the cell movement can be expressed by the approved model of linear diffusion.
Moreover, a reaction-diffusion expression can be a good indicator of cellular movement
for a single close-packed cellular population [20, 55]. However, in the close-packed cell
populations where a variety of cells interact with one another, the diffusion model
is not appropriate because using it means that the movement of a kind of cell is
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independent of the presence of other kinds of cell and cellular populations can be
combined with one another. This subject contradicts the contact inhibition of the
migration phenomenon because the cells will stop as a consequence of making one
kind of cell contact other kinds of cells based on this phenomenon [1].
In the Sherratt and Chaplain model, it is assumed that proliferating and quiescent cell
populations have the same motility and the effect of contact inhibition is considered
as well. Since cells move toward a direction where there is more space, the overall
cellular flux is proportionate to the negative gradient of cellular density. Therefore,

the two expressions,− p
p+q

∂(p+q)
∂x and − q

p+q
∂(p+q)
∂x are applied for contact inhibition

features in this model [53]. Also, using mass conservation for the cells leads to the
following system of partial differential equations:

∂p

∂t
=

∂

∂x
(

p

p+ q

∂(p+ q)

∂x
) + g(c)p(1− p− q − n)− f(c)p, (2.1)

∂q

∂t
=

∂

∂x
(

q

p+ q

∂(p+ q)

∂x
) + f(c)p− h(c)q, (2.2)

∂n

∂t
= h(c)q. (2.3)

c(x, t) is the local nutrient concentration and has the below form

c =
c0γ

γ + p
(1− α(p+ q + n)) (2.4)

where α and γ are dimensionless parameters.
g(c) is the mitosis rate function of the proliferating cells and is an increasing function,
proliferating cells become quiescent at the rate f(c), and the rate of turning the
quiescent cells to necrosis is denoted by h(c). Both f and h are the decreasing
functions and will be zero as c turns toward to +∞; in addition f(c) > h(c).
For the initial conditions, we have p(x, 0) = e−0.1x, q(x, 0) = 0, n(x, 0) = 0, and

c0 = 1. The boundary conditions are ∂p
∂x = 0, ∂q

∂x = 0, and ∂c
∂x = 0, at x = 0 and

x = 210. (x = 210 is chosen as a sufficiently large value.)

3. The Numerical Method

Equidistribution principle (EP) is the main idea in the moving mesh methods
and plays the key role in obtaining the moving mesh partial differential equation
(MMPDE) [37].
Suppose that [a, b] is the physical domain with a physical variable x, and [0, 1] is the
computational domain for a computational variable ξ. A coordinates transformation
between two domains is as follows:

Ωc = [0, 1]→ Ω = [a, b],
x = x(ξ, t), ξ ∈ [0, 1],
x(0, t) = a, x(1, t) = b.

Let ξi = i
n , i = 0, 1, . . . , n, be a uniform mesh on [0,1], and let a = x0 < x1 <

· · · < xn = b be a corresponding mesh on physical domain, where xi = x(ξi, t), i =
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0, 1, . . . , n, is defined based on the EP; so that some measure of the solution error is
equal at each subinterval [36].
We introduce a monitor function M(x, t) which indicates some error measurement in
the approximate solutions to the original PDE. The mesh in x is satisfied in the EP
for all values of time t, which could be written down as∫ x(ξ,t)

a
M(x̃, t)dx̃ = ξθ(t), (3.1)

where

θ(t) =
∫ b
a
M(x̃, t)dx̃.

By differentiating twice (3.1), it yields

∂

∂ξ
{M(x(ξ, t), t)

∂

∂ξ
x(ξ, t)} = 0. (3.2)

If a mesh is satisfied in (3.2) at the time t+ τ (0 < τ << 1) instead of t; we have

∂

∂ξ
{M(x(ξ, t+ τ), t+ τ)

∂

∂ξ
x(ξ, t+ τ)} = 0, (3.3)

where the parameter τ is called relaxation time.
Using the Taylor expansions for (3.3) after the dropping of higher order terms, we
obtain

∂

∂ξ
(M

∂ẋ

∂ξ
) +

∂

∂ξ
(
∂M

∂ξ
ẋ) = − ∂

∂ξ
(
∂M

∂t

∂x

∂ξ
)− 1

τ

∂

∂ξ
(M

∂x

∂ξ
). (MMPDE2)

For more MMPDEs see [29, 36, 37].
In our numerical results, we use

∂x

∂t
= −1

τ

∂

∂ξ
(M

∂x

∂ξ
). (MMPDE5)

For accurate and efficient numerical solutions, we should design the suitable moni-
tor functions. Common choices for the monitor function are the arc-length monitor
function,

M = (1 + |ux|2)1/2, (3.4)

curvature monitor function,

M = (1 + |uxx|2)1/4, (3.5)

and optimal mesh monitor function,

M = (1 +
1

α
|ux|2)1/3, α = max{1, ( 1

b− a

∫ b

a

|uxx|2/3)3}. (3.6)

The system of equations (2.1)–(2.3) in the computational coordinates are
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ṗ− pξ
xξ
ẋ =

rpξ − prξ
(rxξ)2

rξ +
p

rxξ
(
rξ
xξ

)ξ + g(c)p(1− r − n)− f(c)p,

(3.7)

q̇ − qξ
xξ
ẋ =

rqξ − qrξ
(rxξ)2

rξ +
q

rxξ
(
rξ
xξ

)ξ + f(c)p− h(c)q, (3.8)

ṅ− nξ
xξ
ẋ = h(c)q, (3.9)

where r = p+ q.
We employ the method of lines approach for the equations (3.7)–(3.9). The partial
derivatives with respect to the space variables are discretized by using central finite
difference schemes. Therefore, a system of ODEs is obtained as follows:

ṗj −
pj+1 − pj−1
xj+1 − xj−1

ẋ =
(pj+1 − pj−1)rj(rj+1 − rj−1)

r2j (xj+1 − xj−1)2
− pj(rj+1 − rj−1)2

r2j (xj+1 − xj−1)2

+
2pj

rj(xj+1 − xj−1)
(
rj+1 − rj
xj+1 − xj

− rj − rj−1
xj − xj−1

)

+ g(cj)pj(1− rj − nj)− f(cj)pj ,
(3.10)

q̇j −
qj+1 − qj−1
xj+1 − xj−1

ẋ =
(qj+1 − qj−1)rj(rj+1 − rj−1)

r2j (xj+1 − xj−1)2
− qj(rj+1 − rj−1)2

r2j (xj+1 − xj−1)2

+
2qj

rj(xj+1 − xj−1)
(
rj+1 − rj
xj+1 − xj

− rj − rj−1
xj − xj−1

)

+ f(cj)pj − h(cj)qj ,
(3.11)

ṅj −
nj+1 − nj−1
xj+1 − xj−1

ẋ = h(cj)qj ,

(3.12)

where the “dot” refers to the time, xj = x(ξj , t), and pj = p(x(ξj , t), t), j = 1, . . . , N−
1, also similarly for q and n. We use

cj =
c0γ

γ + pj
(1− α(rj + nj)),

where cj = c(x(ξj , t), t), j = 1, . . . , N − 1, as the discretization form of (2.4).
Moreover, the semi-discretization of (MMPDE5) can be given by

ẋj =
1

τ
(
Mj+1 +Mj

2∆ξ2
(xj+1 − xj)−

Mj +Mj−1

2∆ξ2
(xj − xj−1)), (3.13)

in which the boundary conditions are

ẋ0 = ˙xN = 0.
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We couple the equations (3.10)–(3.12) and (3.13). Then, a system involves (4N − 4)
ordinary differential equations for pj(t), qj(t), nj(t), and xj(t), j = 1, . . . , N − 1, is
constituted. We use the MATLAB ODE solver (ode15s) to integrate the resulting
system.
Here, we can use the monitor functions such as the semi-arc-length monitor function

M = (1 +
β1|px|2 + β2|qx|2 + β3|nx|2

β1 + β2 + β3
)1/2, (3.14)

semi-curvature monitor function

M = (1 +
β1|pxx|2 + β2|qxx|2 + β3|nxx|2

β1 + β2 + β3
)1/2, (3.15)

and

M =
β1M1 + β2M2 + β3M3

β1 + β2 + β3
, (3.16)

where M1, M2, and M3 can be any of the monitor functions (3.4)–(3.6) based on p,
q, and n, respectively. For example,

M1 = (1 + |px|2)1/2,

M2 = (1 + |qx|2)1/2,

M3 = (1 + |nx|2)1/2.

However, in (3.14)–(3.16)

β1 + β2 + β3 = 1.

In our numerical experiments, semi-arc-length monitor function (3.14) have been used.

4. Results and Discussion

In this section, we will address the resolution of the avascular tumor growth model
by the method presented in the section 3. Model parameters have been considered as
follows: [54]

f(c) = (1− tanh(4c− 2))/2,

h(c) = f(c)/2,

g(c) = βeβc,

α = 0.8, β = 0.5, and γ = 10.

These functions have introduced in section 2. The density of the proliferating, qui-
escent, and necrotic cells in t = 0, 2, . . . , 16 weeks has been shown as p(x), q(x), and
n(x) in Figures 1−3, respectively. The investigation of these diagrams indicates that
the proliferating cells will be extended by the proliferation over time and move toward
the outer edge of the tumor, which leads to an increase in tumor size and correspond-
ingly the quiescent group cells are formed and extend beyond the proliferated cells.
Necrotic group cells which are concentrated in a small area around the center of the
tumor at the initial times of tumor growth will occupy a wider area around the center
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of the tumor with the passage of time, while their density toward the center of the
tumor is increasing.

Figure 1. Proliferating cells density plotted as a function of space
at times t = 0, 2,. . . , 16. Curves move from left to right as time
increases.

Figure 2. Quiescent cells density plotted as a function of space at
times t = 0, 2,. . . , 16. Curves move from left to right as time in-
creases.

This model is based on the continuous density of these three group cells, and
the artificial assumption of distinct cell areas has not been considered. However,
the investigation of the geometric place of these three cells categorizations in every
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Figure 3. Necrotic cells density plotted as a function of space at
times t = 0, 2,. . . , 16. Curves move from left to right as time in-
creases.

constant time shows that the main population of cells of the proliferating group cells
is in the location of the tumor outer layer, where the density of these cells is much
more than that of necrotic and quiescent cells. Most of the necrotic group cells are
concentrated in an area adjacent to the tumor center. In this area, the density of
the two other cells categorizations is negligible and particularly when they approach
the center of tumor, their density becomes approximately zero. While, the density of
necrotic cells increases by approaching the tumor center. The area of the quiescent
cells concentration is a strip which is placed between the concentration areas of the
two other cell categorizations. In Figure 4, the concentration areas of these three cell
categorizations have been shown in t = 16 time.

To obtain an estimation of the method error and investigate its numerical conver-
gence, we resolved the model for t ∈ [0, 4] and for different N cells with the moving
mesh and fixed mesh methods(N = 150, 200, 300, 400, 600). We consider the point-to-
point error based on each of the L2, L1, and L∞ norms, respectively, as follows, and
we expected these errors to be reduced by an increase in N :

EL2
(UTN ) =

[
k∑
i=1

(
UTNR

(Xi)− UTN (Xi)
)2]1

2
,

EL1(UTN ) =

k∑
i=1

|UTNR
(Xi)− UTN (Xi) |,

EL∞(UTN ) = Maxi=1,...,k|UTNR
(Xi)− UTN (Xi) |.
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Figure 4. Concentration areas of proliferating, quiescent, and
necrotic cells.

Where UT can be each of the p, q, and n cells in the time t = T ; NR is the number
of reference mesh points, which is considered as NR = 800, and Xi, i = l, . . . , k, are
the specified points of the physical domain. In the moving mesh method, UT values
in Xi, i = l, . . . , k, should be calculated by interpolation.

Given E
(
UTN
)
' η

(
1

N

)α
, which works for sufficiently large N’s, an estimation of

convergence order can be obtained by the following equation:

αU,N = − log2

(
E(U2N )

E(UN )

)
.

The results related to the calculation of error based on L∞ norm in T = 4 and for
k = 20 equal-distance points from the physical domain and an estimation of conver-
gence order of both methods (the moving mesh and fixed mesh methods) have been
presented in Table1. In this table, it can be seen that in both methods, an increase
in N reduces the error, but the moving mesh method enjoys a higher order of con-
vergence, as compared to the fixed mesh. Moreover, the error diagrams for p, q, and
n have been drawn as a function of N based on each of the three L2, L1, and L∞
norms for T = 4 in Figures 5−7.

The tumor growth stages in the avascular phase are in such a manner that in
the beginning, the proliferating cells grow regularly and exponentially due to the ade-
quacy of nutrients. As the time proceeds, the tumor growth becomes linear due to the
inadequacy of nutrients and the growth of proliferating cells and finally stops because
of some intracellular activities. We have investigated this process for our numerical
results. In Figure 8, the growth diagram of proliferative cells has been drawn as a
function of time for t ∈ [0, 18], and the above-mentioned growth process is completely
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Table 1. Error estimation for p, q, and n with order of convergence.

Method N EL∞ (pN ) αp,N EL∞ (qN ) αq,N EL∞ (nN ) αn,N

Fixed Mesh 150 2.544 × 10−3 - 3.084 × 10−3 - 2.460 × 10−2 -

200 1.911 × 10−3 - 2.351 × 10−3 - 1.813 × 10−2 -

300 1.151 × 10−3 1.14 1.428 × 10−3 1.11 1.071 × 10−2 1.19

400 7.193 × 10−4 1.41 8.936 × 10−4 1.39 6.621 × 10−3 1.45

600 2.495 × 10−4 1.20 3.101 × 10−4 1.20 2.272 × 10−3 1.23

Moving Mesh 150 3.772 × 10−6 - 4.164 × 10−6 - 3.625 × 10−6 -

200 1.926 × 10−6 - 2.278 × 10−6 - 1.927 × 10−6 -

300 7.486 × 10−7 2.33 9.366 × 10−7 2.15 7.830 × 10−7 2.21

400 3.950 × 10−7 2.28 4.600 × 10−7 2.30 3.867 × 10−7 2.31

600 4.296 × 10−8 2.12 1.138 × 10−7 2.04 7.711 × 10−8 2.34

Figure 5. Error estimation by L2, L1, and L∞ for p in T = 4 .

visible in this diagram.

In the moving mesh related diagrams, we have used the semi-arc-length monitor
function (3.14) and four categories of {β1, β2, β3}. Mesh trajectories have been shown
in Figures 9−12 for t = 0 to t = 14. In Figure 9, β1 = 1 and β2 = β3 = 0. The effect of
n and q cells density changes was removed from the mesh movement with this choice.
As seen in this Figure, the concentration of mesh points during the time matches
with an area which has the highest amount of p density. By putting β1 = β2 = 0 and
β3 = 1, the effect of narcotic cell density changes is dominated. The mesh trajectory
corresponding to this state has been shown in Figure 10, where the concentration of
points in all points is in an area around the center of the tumor which is widened over
time. β1 = β3 = 0 and β2 = 1 have been considered in Figure 11 In this state like the
two previous states, the movement of mesh points is well coordinated with quiescent
cell density changes in the course of time. To improve the calculations of every three
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Figure 6. Error estimation by L2, L1, and L∞ for q in T = 4 .

Figure 7. Error estimation by L2, L1, and L∞ for n in T = 4 .

proliferating, quiescent, and necrotic resolution categorizations, β1 = β2 = β3 =
1

3
can be placed, which leads to the distribution of points in line with the density changes
of all the three cells categorizations (Figure 12).

The last part of this section is dedicated to the obtained numerical results of
nutrients density, C(x, t). The density of nutrients in tumor for t = 0, 2, . . . , 14, as a
function of the place has been drawn in Figure 13. These diagrams suggest that at all
time a high amount of nutrients is available for the cells outer layer and a lower amount
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Figure 8. Growth process of proliferating cells as a function of time

Figure 9. Mesh trajectories with β1 = 1 and β2 = β3 = 0.

of them is available for cells surrounding the tumor center. Moreover, the passage of
time and the increase of tumor size cause the reduction of nutrients which go to the
inner cells, particularly the cells surrounding the tumor center. This distribution of
density is well accepted, because cells receive nutrients from the surrounding tissues
through diffusion in the avascular phase of tumor growth. Given the restriction of
these nutrients, when the tumor becomes larger, less nutrients will go to the central
cells.
We became interested in investigating mesh trajectories based on C(x, t). In this
regard, we have obtained mesh trajectories for t ∈ [0, 14] using (3.4) whose results can
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Figure 10. Mesh trajectories with β2 = 1 and β1 = β3 = 0.

Figure 11. Mesh trajectories with β3 = 1 and β1 = β2 = 0.

be seen in Figure 14. The concentration of mesh points during the time is proportional
to C(x, t) and changes toward the outer layer of tumor.

5. Conclusion

Because of the subject nature, the numerical results of mathematical models re-
lated to the cancer process, such as different tumor growth phases, drugs influence
processes, various treatments on cancerous cells, and other similar models enjoy a
substantial sensitivity. Therefore, it is essential to develop the numerical solution to
these models using methods and techniques whith high accuracy and performance.
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Figure 12. Mesh trajectories with β1 = β2 = β3 = 1
3 .

Figure 13. Nutrients concentration plotted as a function of space
at times t = 0, 2,. . . , 16. Curves move from left to right as time
increases.

The avascular phase is the vital stage of tumor growth. Drug therapy and stopping
the proliferation of cancer cells at this stage, before angiogenesis process, will prevent
progression of the disease. The mathematical simulations of this phase are used to
predict the size of primary tumor by passing the time, the rate of increasing the tumor
radius, the tumor growth saturationthe time and beginning the angiogenesis process,
the size of the necrotic core, and etc.
Among the existing models, the model under study in this paper has realistic features.
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Figure 14. Mesh trajectories based on the nutrients concentrations
for t ∈ [0, 14].

For example, unlike other models, the model formulation has been directed towards in
vivo instead of in vitro; the cells movement and cell division are considered as tumor
growth factors; the real contact inhibition of the migration phenomenon is included
in the model, separate intercellular space is not considered and the continuous cell
density assumption is used, etc.
In this paper, we have numerically resolved the mentioned continuous three-phase
avascular tumor growth model by means of a dynamic moving mesh method. This
model is on the basis of the continuous density of three proliferating, quiescent, and
necrotic cell groups that are dependent on the concentration of nutrients.
In the dynamic moving mesh method, using the equidistribution principle and the
monitor function leads to the moving mesh partial differential equation (MMPDE)
for the mesh points continuous movement during the time. We coupled MMPDE
with the model physical system and obtained the approximate solutions to the model
parameters and the position of mesh points at each time step simultaneously using
the MOL. Our numerical results indicate that as compared to the fixed mesh, using
the moving mesh method increases the order of numerical convergence, as well as
being a good indicator of the avascular tumor growth process from the beginning to
the time when it reaches the growth saturated state.
The monitor function is one of the important factors in this method which leads the
mesh points toward the areas which need high accuracy. We defined the monitor
functions based on the density changes of p, q, and n with the impact coefficients of
β1, β2, and β3 and drew mesh trajectories diagrams for different amounts of these
parameters. However, the movement of mesh points and the area in which the points
are concentrated are well-conformed with the physical behavior of these three cell
categories in the tumor. Moreover, the process of mesh movement is justifiable based
on the density of nutrients and the access of the tumor structure to these nutrients.
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First of fall, this method increases the accuracy of numerical solutions. Secondly, it
does not impose calculation costs for the increasing of the number of mesh points in
order to enhance the accuracy. Therefore, it can be used in all fields for the purpose
of developing a numerical solution to the models which need adequate accuracy.
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