
Computational Methods for Differential Equations
http://cmde.tabrizu.ac.ir

Vol. 9, No. 3, 2021, pp. 710-721

DOI:10.22034/cmde.2020.34989.1596

Constructing an efficient multi–step iterative scheme for nonlinear
system of equations

Taher Lotfi∗

Department of Mathematics, Hamedan Branch,
Islamic Azad University, Hamedan, Iran.
E-mail: lotfitaher@yahoo.com

Mohammad Momenzadeh
Department of Mathematics, Hamedan Branch,
Islamic Azad University, Hamedan, Iran.
E-mail: m.momenzadeh12@yahoo.com

Abstract The objective of this research is to propose a new multi-step method in tackling a

system of nonlinear equations. The constructed iterative scheme achieves a higher

rate of convergence whereas only one LU decomposition per cycle is required to
proceed. This makes the efficiency index to be high as well in contrast to the existing

solvers. The usefulness of the presented approach for tackling differential equations

of nonlinear type with partial derivatives is also given.

Keywords. Iterative methods; high order; nonlinear systems; partial differential equations; efficiency

index.

2010 Mathematics Subject Classification. 41A15; 65H10.

1. Introductory notes and literature

Let us take into account the following set of algebraic equations of nonlinear type:

G(x) = 0, (1.1)

at which G is defined by G(x) = (g1(x), g2(x), . . . , gn(x))T while g1(x), g2(x), . . .,
gn(x) are the functions of coordinate, see e.g. [17]. For some background and recent
studies in the field of iteration schemes in tackling nonlinear equations, an interested
reader may consult the works and [3, 5, 8, 16, 19] the references cited therein.

Let us consider that G(x) is a smooth function of x in D ⊆ Rn which is an open
convex set. Let us now recall some of the pioneer iterative methods for tackling (1.1).
The widely used method of Newton for solving (1.1) is given by [17]:{

G′(x(l))s(l) = −G(x(l))
x(l+1) = x(l) + s(l), l = 0, 1, 2, · · · . (1.2)

Received: 1 August 2019 ; Accepted: 9 March 2020.
∗ corresponding.

710

CMDE Vol. 9, No. 3, 2021, pp. 710-721 711

An advantage of (1.2) is the second order rate at the cost of tackling only one linear
system of algebraic equations per cycle as long as the guess x(0) is enough close to the
exact root. In fact, to overcome some of the drawbacks of (1.2) and similar schemes
like the derivative-free Steffensen’s scheme, several works have been published.

An improvement of (1.2) was introduced by Traub possessing a cubical rate of
convergence as comes next [25]:{

h(l) = x(l) −G′(x(l))−1G(x(l)),
x(l+1) = h(l) −G′(x(l))−1G′(h(l)).

(1.3)

The Jarratt’s iteration expression with quartic rate of local speed is defined by [4]:

h(l) = x(l) − 2

3G
′(x(l))−1G(x(l)),

x(l+1) = x(l) − 1
2 (3G′(h(l))−G′(x(l)))−1

·(3G′(h(l)) +G′(x(l)))G′(x(l))−1G(x(l)).

(1.4)

Authors in [15] proposed the following scheme:
v(l) = G′(x(l))−1G(x(l)),
z(l) = x(l) − 2

3v(l),
h(l) = x(l) − [23

8 I − 3G′(x(l))−1G′(z(l))
+ 9

8 (G′(x(l))−1G′(z(l)))2]v(l),
x(l+1) = h(l) − [5

2I −
3
2G
′(x(l))−1G′(z(l))]G′(x(l))−1G(h(l)).

(1.5)

The purpose of this article is to propose a novel multi steps high order scheme to
solve (1.1). Hence, we propose an eighth-order iterative scheme to compute the simple
roots. The method is free of calculating the function’s second Fréchet derivative. Note
that some discussions on the usefulness of higher order iterative methods with and
without memory can be found at [10, 11, 12].

The rest sections in this paper are given as follows. Section 2 contributed the
derivation of the new scheme consisting of multi steps while Section 3 furnishes an
analysis of error for its speed of convergence. Section 4 discusses the application of
the proposed scheme with some discussion concerning the efficiency index in solving
nonlinear partial differential equations (PDEs), [22, 23, 24]. The paper ends in Section
5 with some outlines for future works.

2. Construction of a scheme

Here, we propose our iteration scheme as an improved method over (1.2)-(1.5) as
follows:

y(l) = x(l) − 2
3G
′(x(l))−1G(x(l)),

z(l) = x(l) − [23
8 I − 3G′(x(l))−1G′(y(l))

+ 9
8 (G′(x(l))−1G′(y(l)))2]G′(x(l))−1G(x(l)),

w(l) = z(l) − [5
2I −

3
2G
′(x(l))−1G′(y(l))]G′(x(l))−1G(z(l)),

x(l+1) = w(l) − [5
2I −

3
2G
′(x(l))−1G′(y(l))]G′(x(l))−1G(w(l)).

(2.1)

Note that in such schemes, one should avoid computing the inverse matrix. As
such, linear systems using LU decompositions must be tackled. Now, if we consider

712 T. LOTFI AND M. MOMENZADEH

G′(x(l)) = U l:
U lV (l) = G(x(l)),
U lM (l) = G′(y(l)),
U lW (l) = G(z(l)),
U lL(l) = G(w(l)),

(2.2)

then the iterative expression (2.1) can be furnished in a more elegant way as follows:

y(l) = x(l) − 2

3V
(l),

z(l) = x(l) − [23
8 I − 3M (l) + 9

8 (M (l))2]V (l),
w(l) = z(l) − [5

2I −
3
2M

(l)]W (l),
x(l+1) = w(l) − [5

2I −
3
2M

(l)]L(l).

(2.3)

To implement (2.3), one requires to tackle several linear systems of algebraic equa-
tion when the matrices U l are dense and when they are sparse and of large size,
some Krylov subspace methods could be taken into account to accelerate the process.
Anyhow, the advantage in (2.3) is that the four systems of linear equation having the
same system matrix.

As such, just one LU decomposition is enough, and then we can incorporate it to
four various right hand side vectors and get the solution vector per sub-cycle of (2.3).

The convergence rate of the iteration expression (2.3) without memory must be
pursued by applying n-D Taylor expansions. Accordingly, it is recalled that e(l) =
x(l) − x∗ is the called the error at lth iterate and also [17, 20]:

e(l+1) = Je(l)p +O(e(l)p+1

), (2.4)

is named as the error equation, where J is a function of p-linear type. This means
that J ∈ L(Rn,Rn, . . . ,Rn) and p is the speed rate. Furthermore, we obtain:

e(l)p = (e(l), e(l), . . . , e(l)). (2.5)

3. Investigating the convergence rate

In this section, we give the following theoretic for the convergence speed of (2.3).
Before going to the main theorem, we recall the n-D Taylor expansion as follows.

Assume that G : D ⊆ Rn −→ Rn be sufficiently differentiable in terms of Fréchet
in D. As in [6], the mth differentiation of G at u ∈ Rn, m ≥ 1, is the m-linear
function

G(m)(u) : Rn × · · · × Rn −→ Rn, (3.1)

so that G(m)(u)(v1, . . . , vm) ∈ Rn. It is also famous that, for x∗ + h ∈ Rn locating in
a neighborhood of a root x∗ of (1.1), the expansion of Taylor could be written and
we have [6]:

G(x∗ + h) = G′(x∗)

[
h+

p−1∑
m=2

Cmh
m

]
+O(hp), (3.2)

CMDE Vol. 9, No. 3, 2021, pp. 710-721 713

wherein

Cm = (1/m!)[G′(x∗)]−1G(m)(x∗), m ≥ 2. (3.3)

One finds Cmh
m ∈ Rn, because G(m)(x∗) ∈ L(Rn × · · · × Rn,Rn) and [G′(x∗)]−1 ∈

L(Rn). Moreover, for G′ we have:

G′(x∗ + h) = G′(x∗)

[
I +

p−1∑
m=2

mCmh
m−1

]
+O(hp), (3.4)

where I is the matrix of identity. Herein, mCmh
m−1 ∈ L(Rn).

Theorem 3.1. Assume that in (1.1) G : D ⊆ Rn −→ Rn is Fréchet differentiable
sufficiently at any points of D at x∗ ∈ Rn. Herein we take into account that G(x∗) =
0. Furthermore assume that G′(x) is nonsingular and continuous in x∗. Hence,
{x(l)}l≥0 produced applying (2.3) tends to x∗ with the rate of eight, while the equation
of error satisfies

e(l+1) = −1

9
(6C2

2 − C3)2(45C3
2 − 9C3C2 + C4)e(l)8

+O(e(l)9
). (3.5)

Proof. To prove the rate of converging, we apply (3.2) and (3.4) to get

G(x(l)) = G′(x∗)
[
e(l) + C2e

(l)2
+ · · ·+ C8e

(l)8]
+O(e(l)9

), (3.6)

and

G′(x(l)) = G′(x∗)
[
I + 2C2e

(l) + · · ·+ 8C8e
(l)7]

+O(e(l)8
), (3.7)

where Cl = (1/l!)[G′(x∗)]−1G(l)(x∗), l = 2, 3, . . ., and e(l) = x(l) − x∗. Using (3.7),
one obtains:

[G′(x(l))]−1 =
[
I +X1e

(l) +X2e
(l)2

+X3e
(l)3

+ · · ·
]

[G′(x∗)]−1 +O(e(l)8
),

(3.8)

wherein X1 = −2C2, X2 = 4C2
2 − 3C3, X3 = −8C3

2 + 6C2C3 + 6C3C2 − 4C4, · · · .
Thus from (3.6)-(3.8), we obtain that

y(l) = x∗ +
1

3
e(l) +

2

3
C2e

(l)2
· · ·+O(e(l)7

). (3.9)

For the matrix of Jacobian obtained from G′(y(l)), one can similarly obtain

G′(y(l)) = G′(x∗)[I + 2C2(x(l) − x∗) + 3C3(x(l) − x∗)2

+4C4(x(l) − x∗)35C5(y(l) − x∗)4 + · · ·+O(e(l)7
)]. (3.10)

Now, we obtain:

z(l) − x∗ =

(
5C3

2 − C3C2
1

9
+ C4

)
e(l)4

+ · · ·+O(e(l)9
). (3.11)

Here, in order to avoid writing bulky formulas which will be simplified in the forth-
coming sub steps of our proposed iterative scheme, we used “· · · ”. This shows that
similar expressions based on the multi-dimensional Taylor expansion are existed up
to that order.

714 T. LOTFI AND M. MOMENZADEH

Now similarly, we have:

G(z(l)) =
1

9
(13C3

2 − 9C2C3 + C4)G′(x∗)e(l)4
− 2

27
(86C4

2 − 144C2C3C2

+27C2
3 + 30C4C2 − 4C5)G′(x∗)e(l)5

+ · · ·+O(e(l)8
). (3.12)

Using (3.8)-(3.12) in the structure of the third sub step of (2.3), one derives:

[
5

2
I − 3

2
G′(x(l))−1G′(y(l))]G′(x(l))−1G(z(l)) =

(
5C3

2 − C3C2 +
C4

9

)
e(l)4

+

(
−36C4

2 + 32C2C3C2 − 2C2
3 −

20

9
C4C2 +

8

27
C5

)
e(l)5

+(140C5
2 − 251C2

2C3C2 + 65C3C2C3 +
416

9
C2C4C2

−65

9
C4C3 −

10

3
C5C2 +

14

27
C6)e(l)6

+ · · ·+O(e(l)9
). (3.13)

Using (3.13) and further Taylor expansions at the fourth sub step of our method,
we attain the final error equation of the presented scheme as in (3.5). This shows
its eighth rate of convergence by employing only one LU decomposition per cycle to
proceed. The proof is ended. �

3.1. Comparing the indices of efficiency. To achieve the high eighth rate of
convergence in our presented scheme, we require to solve four linear systems per cycle
but each having the same system matrix. Accordingly, just one LU factorization
must be done and then act of the right hand side vectors. This would yield in an
increased computational efficiency for the proposed solver since it avoids computing
several matrix inverses per cycle.

To evaluate the index of efficiency for (2.3), we need to first define the number
of functional evaluations, viz, the cost, for n-D functions and Jacobians as follows
(without the index l):

• For G(x), n evaluations,
• For G(z), n evaluations,
• For the Jacobian G′(x), n2 evaluations,
• For the Jacobian G′(y), n2 evaluations, and similarly for other involved func-

tional evaluations.

The efficiency index for iterative methods defined in the discussed context is given
by [9]:

E = p
1
C , (3.14)

where C is the whole burden and p is the speed in each loop by taking into account
the number of function evaluations. Precisely, we also take into account that the cost
for calculating each of the scalar functions is unit. And the cost for the computation
of other operations is a factor of the unit cost.

Assume also that the number of matrix products, quotients, summations, and
subtractions along with the cost of solving two triangular systems, viz, via flops are

CMDE Vol. 9, No. 3, 2021, pp. 710-721 715

counted here. Reminding that the flops for computing the LU decomposition is 2n3

3 ,

and to handle the 2 required triangular systems, the flops would be roughly 2n2.
Whenever a matrix is in the right hand side, then the cost (flops) of the 2 triangular
systems would increase to n3.

The results in Table 1 show that for large n the efficiency index of our scheme
overcome on its competitors. We do not include the results of other schemes since
they are mainly inefficient whenever more than one LU decomposition should be
computed per cycle.

Table 1. Comparing the efficiency indices of variants methods.
Iterative methods (1.2) (1.5) (2.3)
No. of steps 1 3 4
Rate of convergence 2 6 8
No. of functional evaluations n+ n2 2n+ 2n2 3n+ 2n2

The classical efficiency index 2
1

n+n2 6
1

2n+2n2 8
1

3n+2n2

No. of LU factorizations 1 1 1

Cost for LU decompositions (based on flops) 2n3

3
2n3

3
2n3

3

Cost for linear systems (based on flops) 2n3

3 + 2n2 5n3

3 + 4n2 5n3

3 + 6n2

Flops-like index of efficiency 2
1

2n3
3

+3n2+n 6
1

5n3
3

+6n2+2n 8
1

5n3
3

+8n2+3n

4. Application in nonlinear PDEs

Here the objective is to reveal the application of our presented method for solving
nonlinear PDEs arising frequently in important engineering problems.

The codes are done in Mathematica 11.0, [14]. The involved linear system of
equations are handled by the following command:

LinearSolver[]

In addition, the computational tests are all done in the same environment having
the following hardware specifications: 16.00 GB of RAM, Core(TM) i5–2430M CPU
with Windows 7 Ultimate.

In the comparisons, we considered the quadratically convergent iterative method of
Newton (1.2), the sixth-order expression of Montazeri et al. (1.5), and the presented
eighth-order approach (2.3) for solving our system of nonlinear equations extracted
from the numerical solution of nonlinear time dependent PDEs. Some other differen-
tial problems that might need a nonlinear algebraic solver such as the proposed ones,
can be observed in [7, 13, 21].

When solving nonlinear problems like differential equations with partial derivatives
in the nonlinear form [1, 2], this process will normally be yielded to tackle nonlinear
systems of equations. Noting that efficient two or three steps methods for solving non-
linear systems can be found in [1, 2]. Apart from this point, normally computational
procedures of lower accuracy in terms of the accuracy are required. Consequently, we
approximate the solution employing the discretization of finite difference (FD) with
the following stop termination:

||G(·)||2 < 10−8. (4.1)

716 T. LOTFI AND M. MOMENZADEH

Here, we take into consideration u = u(y, t), as the true resolution of the nonlinear
PDE. The numerical approximation is shown by:

wi,j ' u(yi, tj), (4.2)

at the location i, j on our uniform discretization points. Let us also denote M and
N to be the steps’ number for the space and time, and m = M − 1, n = N − 1,
respectively.

Burgers’ PDE or Bateman-Burgers PDE is a pioneer PDE happening in different
fields of applied and computational mathematics, [27]. Burgers equations appear
often as a simplification of a more complex and sophisticated model. Hence, it is
usually thought as a toy model, viz, a tool that is applied to find out some of the
behavior of a general procedure.

Experiment 4.1. An important model of fluid flow is the Burgers’ PDE alongside
the side conditions of Dirichlet type with the coefficient of diffusion D as comes next:

ut + uuy = Duyy,

u(y, 0) = 2Dβπ sin(πy)
α+β cos(πy) , 0 ≤ y ≤ 2,

u(0, t) = 0, t ≥ 0,

u(1, t) = 0, t ≥ 0.

(4.3)

To tackle this nonlinear problem, we employ the backward FD for the 1st derivative
in time t:

ut(yi, tj) '
wi,j − wi,j−1

k
, (4.4)

wherein the step size is k, and the FD formula of the central type for the other terms
of the PDE, viz.,

uy(yi, tj) '
wi+1,j − wi−1,j

2h
, (4.5)

and also

uyy(yi, tj) '
wi+1,j − 2wi,j + wi−1,j

h2
, (4.6)

where we consider h to be the step size for discretization along y. We assume the
following values for the involved parameters β = 4, D = 0.05, T = 1, and α = 5.

When (4.3) is being solved, the procedure yields a system of nonlinear of equa-
tions possessing a large sparse matrix of Jacobian that are resolved and compared
throughout the tested methods. The solution has been plotted in Figures 1-2. Ta-
ble 2 demonstrates the comparison evidences in this case. Here, we have chosen
M = N = 21, to attain a system of dimension 400 × 400, using the initial guess
y0 = Table[0.6, {i, 1, m ∗ n}] written in the Mathematica with the precision of ma-
chine.

Another significant type of nonlinear PDEs is comprised of reaction-diffusion equa-
tions, [27]. This is investigated in the following experiment. It is also requisite to note
that [18, chapter 8] the Experiments 4.2-4.2 do not admit an exact solution in general
unless for special initial and boundary conditions, and thus the numerical results are

CMDE Vol. 9, No. 3, 2021, pp. 710-721 717

not compared with any exact solution while the graphs of the solutions resemble to-
tally with those in [18]. Furthermore, by having the spatial step size there is a clear
convergence for the numerical values to specific values. However, since our aim is
mainly focused on showing the applicability and usefulness of the proposed nonlinear
algebraic solver for tackling discretization problems, we do not provide any compar-
ison with other PDE solvers and we report the results of accuracies based on (4.1),
i.e., based on the residual of the obtained nonlinear system of equations. Besides, the
plots for (1.2), (1.5) and (2.3) are very much resemble to each other but (2.3) possess
more accurate values due to its higher rate of convergence and efficiency.

Experiment 4.2. Consider tackling the Fisher’s equation with side conditions of the
homogenous Neumann type:

ut = Duyy + u(1− u),

u(y, 0) = sin(πy), 0 ≤ y ≤ 1,

uy(0, t) = 0, t ≥ 0,

uy(1, t) = 0, t ≥ 0.

(4.7)

Note that

f(u) = u(1− u), (4.8)

indicating that f ′(u) = 1− 2u. In tackling (4.7) using the same discretizations as in
Experiment 4.1, one obtains a set of nonlinear equations.

Here a challenge arises for the Neumann boundary conditions whereas two collec-
tions of novel nonlinear equations at the mesh nodes would be added into the system.
This means that the following discretized equations have to be imposed:

uy(0, tj) '
−3w0,j + 4w1,j − w2,j

2h
, (4.9)

and

uy(1, tj) '
−3wm−2,j + 4wm−1,j − wm,j

2h
. (4.10)

The computational evidences for tackling this experiment are reported in Table 3,
while its numerical resolution is shown in Figures 3-4. Here, we have selected M =
N = 23, to attain a nonlinear system of dimension 528× 528, which provides a large
sparse Jacobian alongside the following initial guess

y0 = Table[0., {i, 1, m ∗ n}]; (4.11)

Table 2. Comparison evidences for Experiment 4.1.

Iterative methods (1.2) (1.5) (2.3)
Iterates count 5 2 1
CPU time 4.45 3.85 3.02

Table 3. Comparison evidences for Experiment 4.2.

718 T. LOTFI AND M. MOMENZADEH

Iterative methods (1.2) (1.5) (2.3)
Number of iterations 5 2 1
The elapsed time 6.23 3.67 3.25

Herein, the residual norm along with the iterates’ counts in Mathematica 11.0 [26]
are reported in Tables 2-3. The observations reveal that the proposed approach is not
only better in terms of the elapsed computational time but also is fast and stable in
calculating the computational solution of large scale nonlinear systems of algebraic
equations extracted from the numerical solution of nonlinear PDEs in real problems
via discretization techniques.

Figure 1. Numerical solution of nonlinear Burgers’ PDE applying (2.3).

5. Summary

This work has contributed a higher order iteration scheme without memory as
a multi step solver so as to find the simple zeros of nonlinear system of equations.
Both real and complex solutions can be found upon the choice of a proper initial
approximation.

The proposed approach reached an eighth order of convergence by solving only
four linear systems per cycle via only one LU decomposition. This makes the imple-
mentation of the scheme quite straightforward and useful with a high computational
efficiency index specially once the user needs to solve hard nonlinear systems arising
from applications.

The scheme (2.3) is free from the computation of the 2nd Fréchet derivative and is
of high order. The application of the proposed solver in real problems originated from
solving nonlinear PDEs via discretization approaches was also pointed out showing a
stable and fast behavior of this method.

CMDE Vol. 9, No. 3, 2021, pp. 710-721 719

Figure 2. List point plot solution of nonlinear Burgers’s PDE ap-
plying (2.3).

Figure 3. Numerical solution of nonlinear Fisher’ PDE applying (2.3).

Acknowledgements

We are thankful to three anonymous referees whose comments and suggestions
helped improve this work.

Conflicts of Interest

No conflict of interest is stated by the writers.

720 T. LOTFI AND M. MOMENZADEH

Figure 4. List point plot solution of nonlinear Fisher’s PDE apply-
ing (2.3).

References

[1] F. Ahmad, E. Tohidi, M. Zaka Ullah, and J. A. Carrasco, Higher order multi–step Jarratt–like
method for solving systems of nonlinear equations: Application to PDEs and ODEs, Comput.

Math. Appl. 70 (2015), 624–636.

[2] F. Ahmad, S. ur Réhman, M. Zaka Ullah, H. Moaiteq Aljahdali, S. Ahmad, A. S. Alshomrani,
J. A. Carrasco, S. Ahmad, and S. Sivasankaran, Frozen Jacobian multistep iterative method for

solving nonlinear IVPs and BVPs, Complexity, 2017 (2017), 1–30.
[3] F. Ahmad, T. A. Bhutta, U. Sohaib, M. Zaka Ullah, A. S. Alshomrani, S. Ahmad, and S.

Ahmad, A preconditioned iterative method for solving systems of nonlinear equations having

unknown multiplicity, Algorithms, 10 (2017), 1–9.
[4] D. K. R. Babajee, M. Z. Dauhoo, M. T. Darvishi, and A. Barati, A note on the local convergence

of iterative methods based on Adomian decomposition method and 3-node quadrature rule, Appl.

Math. Comput., 200 (2008), 452-458.
[5] R. Behl, E. Mart́ınez, F. Cevallos, and D. Alarcón, A higher order Chebyshev-Halley-type family

of iterative methods for multiple roots, Math., 7 (2019), 1-12.

[6] A. Cordero, J. L. Hueso, E. Mart́ınez, and J. R. Torregrosa, A modified Newton-Jarratt’s com-
position, Numer. Algor., 55 (2010), 87-99.

[7] P. Darania, Superconvergence analysis of multistep collocation method for delay Volterra integral

equations, Comput. Meth. Diff. Equ., 4 (2016), 205-216.
[8] I. G. Ivanov and T. Mateva, Interval methods with fifth order of convergence for solving non-

linear scalar equations, Axioms, 8 (2019), 1-11.

[9] M. Grau-Sánchez, À. Grau, and M. Noguera, On the computational efficiency index and some
iterative methods for solving systems of nonlinear equations, J. Comput. Appl. Math., 236
(2011), 1259-1266.

[10] F. W. Khdhr, F. Soleymani, R. K. Saeed, and A. Akgül, An optimized Steffensen–type iterative

method with memory associated with annuity calculation, Euro. Phys. J. Plus, 134 (2019),
Article ID: 146, 1–12.

[11] F. W. Khdhr, R. K. Saeed, and F. Soleymani, Improving the computational efficiency of a
variant of Steffensen’s method for nonlinear equations, Math., 7 (2019), Article ID: 306, 1–9.

CMDE Vol. 9, No. 3, 2021, pp. 710-721 721

[12] Y. I. Kim, R. Behl, and S. S. Motsa, An optimal family of eighth-order iterative methods with

an inverse interpolatory rational function error corrector for nonlinear equations, Math. Model.

Anal., 22 (2017), 321-336.
[13] C. Lin, C. W. Hsu, T. E. Simos, and Ch. Tsitouras, Explicit, semi-symmetric, hybrid, six-step,

eighth order methods for solving Y ′′ = F (X;Y), Appl. Comput. Math., 18 (2019), 296-304.

[14] S. Mangano, Mathematica Cookbook, O’Reilly Media, USA, 2010.
[15] H. Montazeri, F. Soleymani, S. Shateyi, and S. S. Motsa, On a new method for computing the

numerical solution of systems of nonlinear equations, J. Appl. Math., 2012 (2012), Article ID:

751975, 15 pages.
[16] O. Ogbereyivwe and K. Obiajulu Muka, Multistep quadrature based methods for nonlinear

system of equations with singular Jacobian, J. Appl. Math. Phys., 7 (2019), 702-725.

[17] J. M. Ortega and W. C. Rheinboldt, Iterative Solution of Nonlinear Equations in Several Vari-
ables, Academic Press, New York, 1970.

[18] T. Sauer, Numerical Analysis, Pearson, 2nd edition, USA, 2012.
[19] K. Shah and K. Rahmat, Iterative scheme to a coupled system of highly nonlinear fractional

order differential equations, Computational Methods for Differential Equations, 3(3) (2015),

163-176.
[20] J. R. Sharma, R. K. Guha, and R. Sharma, An efficient fourth order weighted-Newton method

for systems of nonlinear equations, Numer. Algor., 62 (2013), 307–323.

[21] T. E. Simos and Ch. Tsitouras, High phase lag-order, four-step methods for solving y′′ = f(x, y),
Appl. Comput. Math., 17 (2018), 307-316.

[22] F. Soleymani, M. Barfeie, and F. Khaksar Haghani, Inverse multi-quadric RBF for computing

the weights of FD method: Application to American options, Commun. Nonlinear Sci. Numer.
Simul., 64 (2018), 74-88.

[23] F. Soleymani, Pricing multi-asset option problems: A Chebyshev pseudo-spectral method, BIT,

59 (2019), 243-270.
[24] F. Soleymani and B. N. Saray, Pricing the financial Heston–Hull–White model with arbitrary

correlation factors via an adaptive FDM, Comput. Math. Appl, 77 (2019), 1107–1123.

[25] J. F. Traub, Iterative Methods for the Solution of Equations, Prentice Hall, New York, 1964.
[26] Wolfram Research, Inc., Mathematica, Version 11.0, Champaign, IL (2016).

[27] M. Zaka Ullah, F. Soleymani, and A. S. Al-Fhaid, Numerical solution of nonlinear systems by a
general class of iterative methods with application to nonlinear PDEs, Numer. Algor, 67 (2014),

223–242.

	1. Introductory notes and literature
	2. Construction of a scheme
	3. Investigating the convergence rate
	3.1. Comparing the indices of efficiency

	4. Application in nonlinear PDEs
	5. Summary
	Acknowledgements
	Conflicts of Interest
	References

