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Abstract The present paper aims to get through a class of fractional optimal control prob-
lems (FOCPs). Furthermore, the fractional derivative portrayed in the Caputo sense
through the dynamics of the system as fractional differential equation (FDE). Get-

ting through the solution, firstly the FOCP is transformed into a functional optimiza-
tion problem. Then, by using known formulas for computing fractional derivatives
of Legendre wavelets (LWs), this problem has been reduce to an equivalent system
of algebraic equations. In the next step, we can simply solved this algebraic system.

In the end, some examples are given to bring about the validity and applicability of
this technique and the convergence accuracy.
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1. Introduction

According to variability of arbitrary value for the order of derivatives and inte-
grals, we can consider an order which generates an extension of the classical calculus,
namely fractional calculus. More precisely, this topic is a development of classical
calculus where the order of derivative operators are estimated by any arbitrary value.
This subject applied through many physical applications evidently, when the mem-
ory effects is sensitive to the time and place of the event. Several ways are existing
that define fractional derivatives but the Riemann-Liouville and the Caputo fractional
derivatives have been used more than the other definitions. Overwhelming research
on developing applications of fractional calculus has been done to prove the diver-
sity of scientific, engineering fields and physical models [5, 24, 31]. More specifically,
fractional order formulations used to exemplified the mechanics and dynamic systems
governed by FDEs. It must be considered that due to the high complexity of fractional
order derivatives, the analytically handling equations described by this derivatives is
extremely difficult and even impossible. To overcome this challenge, practical nu-
merical/approximate methods have been presenting to solve them. An up-to-date
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bibliography on numerical methods for solving FDEs was recently reported by Zeid
in [35].

A generalization of classic optimal control problems when the dynamics system is
described by FDEs is considered as FOCPs. The reason to formulate and solve FOCPs
has recently been answered affirmatively turn into significant increasing of these prob-
lems in control systems. On the other hand, all the methods for solving FOCPs di-
vided mainly in two category namely as direct and indirect in which the first methods
describe the continuous FOCPs to a finite-dimensional nonlinear programming prob-
lem and others are based on the necessary optimality conditions of a FOCP. Although,
many computational methods have been proposed for solving FOCPs, [33], but the
recent study in FOCP are referred to [1, 2, 3, 4, 11, 14, 21, 23, 27, 26, 29, 30, 32, 34].
The overall aim of this paper is to interoducing a class of FOCPs and use the interpo-
late approximate basis functions to reformulated the FOCPs as an equivalent system
of algebraic equations that makes the problem significantly simpler. For this purpose,
we consider the following FOCP:

minJ(t, x, u) =

∫ tf

t0

L(t, x(t), u(t))dt (1.1)

with the fractional system

Dαx(t) = f(t, x(t), u(t)), α ∈ (0, 1), t ∈ [t0, tf ] (1.2)

and boundary conditions

x(t0) = x0, u(t) ∈ U, (1.3)

where J ∈ C1[t0, tf ], t0 and tf are two positive constant, x0 ∈ R, L and f are
continuous functions, the set U ⊂ Rm represents the allowable inputs, which are
considered to be continuous functions and Dα denote the fractional derivative of
order α which will be introduced in the next.

Overwhelming research on developing applications of using wavelets for solving
fractional equations has been done to prove the applicability of this approximation.
Here, in the suggested technique, the FOCP (1.1)-(1.3)are reformulated into an op-
timization problem with discrete parameters in a way that the main computational
cost of this FOCP comes from solving the discrete optimization problem. To improve
the quality of numerical solutions we applied the necessary and sufficient condition for
obtaining the optimal extremum to obtain the unknown coefficients. We can observe
that the solutions obtained by this method are in good agreement with the exact
solution. Moreover, for the proposed method we requires less computational work of
the other proposed methods. In short, the main contributions of this work listed as
follows:

- The main motivation of this work that is the FOCP is recast to an optimiza-
tion functional. Then, by utilizing the LWs, this optimization problem is
rtransformed into a system of algebraic equations in which solves the FOCP
very easy.
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- Direct method based on LWs is presentedd and its error estimation is also
investigated.

The outline of the paper is formed as follows: Section 2 includes the necessary
definitions and mathematical preliminaries of the fractional calculus. The properties
of LWs and the corresponding fractional operators of these functions are described in
section 3. In section 4, with the underlying FOCP we derive the optimal solutions
under consideration with direct method. Convergence analysis are also presented in
this section. Some illustrative numerical examples which are solved by the proposed
method are provided in section 5. Also, we compare our results with previous methods
available in the literatures in this section. A brief summary is stated in the last section.

2. Basic Definitions and Notations of Fractional Calculus

Here we briefly propose some definitions regarding fractional operators permitting
us to formulate FOCP. For more details, see [15, 18, 20].

Definition 2.1. The left and right Riemann-Liouville fractional integrals operator
of order α > 0 of a given function f ∈ L1([t0, tf ],Rn), are defined by

t0I
α
t f(t) =

1

Γ(α)

∫ t

t0

(t− τ)α−1f(τ)dτ (2.1)

and

tI
α
tf
f(t) =

1

Γ(α)

∫ tf

t

(τ − t)α−1f(τ)dτ, (2.2)

where Γ(.) is the Euler-Gamma function. It is identity that t0I
0
t f(t) = tI

0
tf
f(t) = f(t).

Definition 2.2. The left RLFD, and the right RLFD, of order α > 0 of a given
function f(t) are defined by [15, 19, 22]:

t0D
α
t f(t) = Dn( t0I

n−α
t )f(t) =

1

Γ(n− α)

( d
dt

)n
∫ t

t0

(t− τ)n−α−1f(τ)dτ (2.3)

and

tD
α
tf
f(t) = (−1)nDn( tI

n−α
tf

)f(t) =
(−1)n

Γ(n− α)

( d
dt

)n
∫ tf

t

(τ − t)n−α−1f(τ)dτ,

(2.4)

respectively, where n− 1 < α ≤ n, n ∈ N. When α is an integer, the usual definitions
of the derivatives are considered.

From this definition we have (α, β ≥ 0):

t0D
α
t t0D

β
t f =t0 D

α+β
t f, t0D

α
t t0D

β
t =t0 D

β
t t0D

α
t , (2.5)

t0D
α
t k =

kΓ(t− t0)
α

Γ(1− α)
(2.6)

and

t0D
α
t (t− t0)

n =
Γ(n+ 1)

Γ(n− α+ 1)
(t− t0)

n−α, t > t0. (2.7)
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Definition 2.3. The left and the right Caputo fractional derivatives of function f(t)
of order α > 0 are defined by [7]:

C
t0D

α
t f(t) = ( t0I

n−α
t )Dnf(t) =

1

Γ(n− α)

∫ t

t0

(t− τ)n−α−1f (n)(τ)dτ (2.8)

and

C
t D

α
tf
f(t) = (−1)n( tI

n−α
tf

)Dnf(t) =
(−1)n

Γ(n− α)

∫ tf

t

(τ − t)n−α−1f (n)(τ)dτ,

(2.9)

respectively, where n− 1 < α ≤ n, n ∈ N.

Also we have:
C
t0D

α
t
C
t0D

β
t f =C

t0 D
α+β
t f, C

t0D
α
t
C
t0D

β
t f =C

t0 D
β
t
C
t0D

α
t f, (2.10)

C
t0D

α
t k = 0 (2.11)

and

C
t0D

α
t (t− t0) =


Γ(n+ 1)

Γ(n− α+ 1)
(t− t0)

n−α, n ≥ [α],

0, n < [α].

(2.12)

3. The LWs and their properties

For a square integrable function f(t) on [0, 1] we have the following expanded based
on the LWs :

f(t) =
∞∑

n=1

∞∑
m=0

cnmψnm(t), (3.1)

where cnm =< f(t), ψnm(t) >, < ., . > denotes the inner produc in L2[0, 1] and ψnm(t)
are the LWs that defined as:

ψnm(t) =


√
2m+ 12

k
2 Pm(2k+1t− 2n+ 1), t ∈

[
n−1
2k
, n
2k

]
,

0, 0.w.
(3.2)

where n = 1, 2, · · · , 2k, k is any arbitrary positive integer and {Pm(t)} denote the
Legender polynomials of degree m. . So, we can rewrite Eq. (3.1) as:

f(t) =

2k∑
n=1

M−1∑
m=0

cnmψnm(t) = CTΨ(t). (3.3)

For simplicity, we can write:

f(t) ≃
m∗∑
i=1

ciψi(t) = CTΨ(t), (3.4)

in which C and Ψ(t) are m∗ = 2kM column vectors, ci = cnm and ψi(t) = ψnm(t)
where i is determined by the relation i =M(n− 1) +m+ 1.
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Theorem 3.1. Providnig that f(t) ∈ L2[0, 1]. Also, presume that there exixts a

constant M̂ in which |fε(t)| ≤ M̂ . Then, the expanision (3.4) is uniformly convergens
to the function f(t) and cnm fulfills the condition [16]:

cnm ≤ 2
√
3M̂

(2n)
5
2 (2m− 3)2

. (3.5)

Theorem 3.2. Assuming the conditions of the preceding theorem are satisfied. Then,
we have [12]:(∫ 1

0

(f(t)− CTΨ(t))2dt
) 1

2 ≤
( ∞∑

n=1

∞∑
m=M

c2nm +

∞∑
n=2k+1

M−1∑
m=0

c2nm

) 1
2

. (3.6)

Now, by taking the collocation points ti =
i

m∗−1 , i = 0, 1, · · · ,m∗ − 1, we can get
the LWs matrix Φm∗×m∗ as follows:

Φm∗×m∗

[
Ψ(0),Ψ(

1

m∗ − 1
), · · · ,Ψ(1)

]
. (3.7)

Also, for the fractional integration of Ψ(t) we have:(
IαΨ

)
(t) ≃ PαΨ(t) ≃

(
Φm∗×m∗QαΦ−1

m∗×m∗

)
Ψ(t), (3.8)

where Φm∗×m∗ is defined in (3.7) and Qα is defined as follows [28]:

Qα =
hα

Γ(α+ 2)



0 ϱ1 ϱ2 · · · ϱm∗−2 ϱm∗−1

0 1 µ1 · · · µm∗−3 µm∗−2

0 0 1 · · · µm∗−4 µm∗−3

...
...

...
. . .

...
...

0 0 0 · · · 1 µ1

0 0 0 · · · 0 1


m∗×m∗

(3.9)

in which{
ϱi = iα(α− i+ 1) + (i− 1)α+1, i = 1, 2, · · · ,m∗ − 1,

µi = (i+ 1)α+1 − 2iα+1 + (i− 1)α+1, i = 1, 2, · · · ,m∗ − 2.
(3.10)

4. Numerical Simulation of FOCP

The FOCP consists of finding the optimal control u(t) and the corresponding state
variable x(t) which minimize the functional (1.1) and that applies the conditions (1.2)-
(1.3) with 0 < α ≤ 1 and t ∈ [0, 1]. It is worth noting that for reducing computations,
here we restrict our attention to those FOCPs that the FDE (1.2) can be solve with
respect to u such that:

u(t) = g(t, x(t), Dαx(t)). (4.1)
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So, we get through the Eq. (1.1) as follows:

minJ(x) =

∫ tf

t0

L
(
t, x(t), g(t, x(t), Dαx(t))

)
dt, (4.2)

with the boundary conditions (1.3). To solve this problem, we consider (4.2) involving
a left fractional operator. To find the function x(t) that solves problem LW7, Dαx(t),
is approximated by LWs as:

Dαx(t) ≃ CTΨ(t), (4.3)

where CT = [c1, c2, · · · , cm∗ ] is an unknown vector which should be computed. Now,
according to the relation between the fractional operators, Eq. (4.3) is transformed
into the following equivalent equation:

x(t) ≃ CTPαΨ(t) + x0 = (CTPα + x0d
T )Ψ(t), (4.4)

where d = [1, 0, · · · , 0]. By substituting (4.3)-(4.4) into (4.1), we have:

g
(
t, (CTPα + x0d

T )Ψ(t), CTΨ(t)
)
− u(t) ∼= R(t) ≃ 0. (4.5)

Now, we proceed by the following residual function:

M(C) =

∫ tf

t0

R(t)2dt, (4.6)

which can be utilized for the following optimization problem:

minJ(C) =M(C), (4.7)

subject to

CTΨ(0)− x0 = 0, (4.8)

where J is the goal function which should be minimized on C with equality constraints
(4.8). According to the constrained extremum method, we assign

J∗[C, λ] = J(C) + λ(CTΨ(0)− x0), (4.9)

where λ is the Lagrange multiplier vector. Finally, the solution of the following system
of algebraic equations yields an extremum for the optimization problem:

∂J∗

∂C
= 0,

∂J∗

∂λ
= 0. (4.10)

Furthermore, we choose the value of m∗ such that the required accuracy be provided.

4.1. Convergence of The Method. For the convergence behavior of the proposed
method, we give a set X = {x1, x2, · · · , xN} of pairwise distinct points in Ω = [t0, tf ]
with the fill distance hX,Ω = supx∈Ω infxi∈X ∥x−xi∥. Indeed, we used the collocation
points xi ∈ X, that for them J(xi) = 0, i = 1, 2, · · · , N . In this case, we get at a
completely nonlinear equation which we will discuss in the following about its residual
error. Let {ϕ1, ϕ2, · · · , ϕN} be a collocation set of functions on Ω such that ϕi(xj) =
δi,j , in which δi,j recalled the cardinal functions. Also, assume that f ∈ Cm(Ω).
Then, for every ϵ > 0 and for any a ∈ Ω, there exists ci(a) ∈ R, i = 1, 2, · · · , N , such

that f(x) −
∑N

i=1 ci(a)ϕi(x) = hf,m(x, a), in which x ∈ Bϵ(a) (a neighborhood of a
with the radius ϵ), |hf,m(x, a)| ≤ Hf,m(a, hX,Ω) and limh→0Hf,m(a, h) = 0 [6]. An
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immediate result from this discussion is that |f(x)−
∑N

i=1 ciϕi(x)| ≤ Hf,m(hX,Ω) for
all x ∈ Ω where Ω is a compact subset of R. So, we can define all previous continuous
functions with this approximation as we denote by LWs approximation in (3.4). We
continue the discussion by estimate the error bound.

Theorem 4.1. Assume that X = {x1, x2, · · · , xN} be a set of pairwise distinct points
in compact set Ω and {ϕ1, ϕ2, · · · , ϕN} as before. If there exists Hf,m(hX ,Ω) such
that for any f ∈ Cm(Ω) have

|f(x)−
N∑
i=1

f(xi)ϕi(x)| ≤ Hf,m(hX,Ω), (4.11)

then, there exist wi, i = 1, 2, · · · , N , such that:

|
∫
Ω

f(x)dx−
N∑
i=1

wif(xi)| ≤ Hf,m(hX,Ω). (4.12)

Proof. It is directly provided from the above context (interested readers can refer to
[8, 9, 10]). □

To continue, let Hu,m(hX,Ω) = ChmX,Ω∥u∥Hm(Ω), C > 0. Consider a general non-
linear equation as follows:

Lu = f(u), (4.13)

where L is a linear differential operator (such as Dα) from Hm(Ω) to χ that is the
Banach space of functions and f is a nonlinear operator. Using the proposed methed
in this paper, the approximation solution of equation (4.13) will be satisfied in the
following system:

N∑
i=1

ci

∫
Ω

Lϕi(x)ϕj(x)dx =

∫
Ω

f
( N∑

i=1

ciϕi(x)ϕj(x)
)
dx. (4.14)

By Theorem 4.1, we obtain

N∑
i=1

ci

N∑
k=1

wkLϕi(xk)ϕj(xk) =
N∑

k=1

wkf
( N∑

i=1

ciϕi(xk)ϕj(xk)
)
, (4.15)

in whcih xk ∈ X, k = 1, 2, · · · , N . Furthermore we know ϕj(xi) = δi,j . So, if wj ̸= 0,
we have:

N∑
i=1

ciLϕi(xj) = f(cj), j = 1, 2, · · · , N. (4.16)

Now, we can determine the unknown coefficients from (4.16) and then approximate
u(xi), i = 1, 2, · · · , N . In generally, it can be concluded that the proposed method
has consistency with the following errore estimate:

∥LuN − f(uN )∥χ ≤ ChmX,Ω∥u∥Hm(Ω), (4.17)

where uN is the approximate solution of (4.13) with LWs.
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5. Illustrative test problems

In this section, we solve three FOCPs that were investigated before in [3, 17, 21, 25].
All the computations were carried out using the Matlab software. The results are
provided for various values of α and the calculations are performed using the Matlab
software. For all examples, the error between the exact solution and the approximate
solution, found using our method, is computed as follows:

Error{x, x̄} =

∫ tf

t0

(x(t)− x̄(t))2dt, (5.1)

in which x(t) and x̄(t) are the exact and approximated solutions of our problem,
respectively.

Example 1. Consider the following time invariant FOCP:

min J(u(.)) =
1

2

∫ 1

0

(
x2(t) + u2(t)

)
dt (5.2)

subject to the dynamical system:

0D
α
t x(t) = −x(t) + u(t) (5.3)

with the initial condition x(0) = 1. The exact solution of this problem for α = 1 is
given in [3, 17] as:

x(t) = cosh(
√
2t) + βsinh(

√
2t) (5.4)

and

u(t) = (1 + β
√
2)cosh(

√
2t) + β

√
2sinh(

√
2t), (5.5)

where:

β = −cosh(
√
2) +

√
2sinh(

√
2)√

2cosh(
√
2) + sinh(

√
2)

∼= −0.9799

. Using our proposed method with m∗ = 40 (k = 2 and M = 10), we calculate the
ci’s by solving the system of equations (4.10). Figure 1 show the behavior of the
numerical solutions of x(t) and u(t). In addition, Tables I and II show the absolute
errors of x(t) and u(t), respectively. From these results, it can be concluded that the
proposed method provides approximate solutions, accurately.

Our results that are achieved with much less computational work, are agreement
with the results obtained in [3, 12, 17].

Example 2. Consider the FOCP in the form [10]:

minJ(x, u) =
1

2

∫ 1

0

(3x2(t) + u2(t))dt, (5.6)

subject to the following dynamical system:

0D
α
t x(t) = x(t) + u(t), (5.7)



488 S. SORADI-ZEID

Figure 1. The numerical solutions of x(t) and u(t) for Example 1
at different values of α.

Table I. The error of x(t) at different values of α for Example 1.

t α = 0.5 α = 0.8 α = 0.9 α = 1.0
0.1 7.959× 10−3 7.477× 10−3 7.466× 10−4 7.450× 10−4

0.2 4.599× 10−3 4.097× 10−3 4.085× 10−4 4.069× 10−4

0.3 2.546× 10−3 2.047× 10−3 2.035× 10−4 2.019× 10−4

0.4 1.390× 10−3 9.158× 10−4 9.044× 10−4 8.893× 10−4

0.5 7.928× 10−4 3.608× 10−4 3.504× 10−4 3.366× 10−4

0.6 5.005× 10−4 1.259× 10−4 1.170× 10−4 1.050× 10−4

0.7 3.500× 10−4 4.323× 10−5 3.587× 10−5 2.605× 10−7

0.8 2.515× 10−4 1.874× 10−5 1.315× 10−5 5.704× 10−6

0.9 1.665× 10−4 1.059× 10−5 6.854× 10−6 1.860× 10−6

1.0 8.324× 10−5 5.209× 10−6 3.334× 10−6 8.348× 10−7

with the initial condition x(0) = 1. The exact solution of this problem for α = 1 is
given by:

x(t) =
3

3 + e4
e2t +

e4

3 + e4
e−2t, u(t) =

3e4

3 + e4
e−2t − 3

3 + e4
e2t. (5.8)

Figure 2 show the behavior of the numerical solutions of the proposed method with
m∗ = 40. By comparing our results with other methods, one can see that our results,
which are shown in Figure 2, provides the approximate solutions obtained in [10].
The absolute error of this approximation is shown in Figure 3.

Example 3. Consider the FOCP of [13]:

minJ(x, u) =

∫ 1

0

(
u2(t)− 4x(t)

)2

dt, (5.9)
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Table II. The error of u(t) at different values of α for Example 1.

t α = 0.5 α = 0.8 α = 0.9 α = 1.0
0.1 6.7655× 10−2 9.9122× 10−4 2.4869× 10−6 6.1863× 10−7

0.2 6.5035× 10−2 5.7142× 10−4 2.8044× 10−7 5.3133× 10−7

0.3 6.934× 10−2 2.416× 10−4 2.512× 10−7 4.809× 10−7

0.4 5.502× 10−2 1.950× 10−4 2.412× 10−7 5.721× 10−8

0.5 4.927× 10−2 1.307× 10−4 2.905× 10−8 4.355× 10−8

0.6 4.214× 10−2 2.068× 10−4 2.171× 10−7 3.988× 10−8

0.7 3.380× 10−2 2.120× 10−5 2.399× 10−7 3.638× 10−8

0.8 2.662× 10−3 1.717× 10−5 1.545× 10−7 3.456× 10−8

0.9 1.715× 10−3 9.776× 10−6 3.103× 10−7 3.329× 10−8

1.0 1.700× 10−4 6.006× 10−7 5.789× 10−8 3.583× 10−8

Figure 2. The numerical solutions of x(t) and u(t) for Example 2
with some different values of α.

subject to the control system

ẋ(t) + C
0 D

0.5
t x(t) = u(t) +

2

Γ(2.5)
t1.5, (5.10)

and the boundary condition

x(0) = 0. (5.11)

The exact solution to (5.9)-(5.11) is given by (x(t), u(t)) = (t2, 2t).
This problem is now solved by the proposed method for m∗ = 96(k = 4 and

M = 6). The absolute errors for x(t) and u(t) are represented in Tables III and IV,
respectively. We corroborate that these accurate results have been acquired as α→ 1
and the accuracy can be prospered by increasing the amount of α.
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Figure 3. The graph of the absolute error of x(t) and u(t) for Ex-
ample 2 with α = 1.

Table III. The error of x(t) at different values of α for Example 3.

t α = 0.5 α = 0.8 α = 0.9 α = 1.0
0.1 7.116× 10−4 8.275× 10−5 6.810× 10−5 4.856× 10−5

0.2 7.027× 10−4 7.739× 10−5 6.240× 10−5 4.241× 10−5

0.3 7.027× 10−4 7.228× 10−5 5.712× 10−5 3.691× 10−5

0.4 7.065× 10−4 6.714× 10−5 5.204× 10−5 3.191× 10−5

0.5 7.215× 10−4 6.170× 10−5 4.695× 10−5 2.728× 10−5

0.6 5.959× 10−4 5.563× 10−5 4.161× 10−5 2.291× 10−5

0.7 5.572× 10−4 4.854× 10−5 3.573× 10−5 1.865× 10−5

0.8 5.369× 10−4 4.001× 10−5 2.902× 10−5 1.438× 10−5

0.9 3.996× 10−4 2.950× 10−5 2.112× 10−5 9.950× 10−6

1.0 1.755× 10−4 1.641× 10−5 1.161× 10−5 5.210× 10−6

6. Conclusion

The main contribution of this paper was to identify optimization functional for
which optimal control problems with fractional systems can be solved numerically.
Indeed, a new computational approach based on the LWs is constructed for numeri-
cally approximating the solutions of a class of FOCPs. Getting through the solution,
firstly the FOCP is transformed into a functional optimization problem. Then, by us-
ing known formulas for computing fractional derivatives of Legendre wavelets (LWs),
this problem has been reduce to an equivalent system of algebraic equations. In order
to test our formalism, and to get a somewhat deeper understanding, we have exam-
ined three examples of FOCP. Moreover, the results are reasonably well in perfect
agreement with those obtained in other literatures.
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Table IV. The error of u(t) at different values of α for Example 3.

t α = 0.5 α = 0.8 α = 0.9 α = 1.0
0.1 4.213× 10−3 3.432× 10−3 8.858× 10−6 7.573× 10−7

0.2 2.517× 10−3 2.212× 10−4 6.186× 10−6 4.197× 10−7

0.3 1.320× 10−3 2.642× 10−4 5.772× 10−6 4.472× 10−8

0.4 3.978× 10−3 1.634× 10−4 5.714× 10−6 2.146× 10−8

0.5 1.320× 10−3 2.692× 10−5 9.717× 10−7 2.008× 10−8

0.6 3.978× 10−3 1.434× 10−4 6.006× 10−6 1.045× 10−8

0.7 1.320× 10−3 2.692× 10−5 9.612× 10−7 1.017× 10−8

0.8 3.978× 10−3 1.436× 10−5 6.093× 10−7 2.082× 10−8

0.9 1.320× 10−3 2.649× 10−6 4.385× 10−7 6.533× 10−9

1.0 3.978× 10−4 1.436× 10−6 3.929× 10−7 4.180× 10−9
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