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Abstract In this paper, we consider the hyperbolic Ricci-Bourguignon flow on a compact man-
ifold M and show that this flow has a unique solution on short-time with imposing
on initial conditions. After then, we find evolution equations for Riemannian cur-
vature tensor, Ricci curvature tensor and scalar curvature of M under this flow. In
the final section, we give some examples of this flow on some compact manifolds.
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1. INTRODUCTION

Geometric flows are important tools in differential geometry and physic, because
by these flows we can find canonical metrics on manifolds. A geometric flow is an
evolution of a geometric structure under a differential equation with a functional
on a manifold. Let M be an n-dimensional complete Riemannian manifold with
Riemannian metric g = (g;;). The first important geometric flow is Ricci flow which
defined as follows:

%g = —2Ric, 9(0) = go, (1.1)
where Ric denotes the Ricci curvature of ¢g. For the first time the Ricci flow was
introduced by R. Hamilton in 1982 [7] and evolves a Riemannian metric by its Ricci
curvature. The short-time existence and uniqueness for solution of Ricci flow studied
by R. Hamilton (see [7]) and D. DeTurck (see [6]) on compact Riemannian manifolds.
Also evolution equations for geometric structures dependent to metric were investi-
gated by some researchers (see [3]).

The second important geometric flow is the Ricci-Bourguignon flow which is defined
as follows

%g = —2Ric+ 2pRg = —2(Ric — pRyg), 9(0) = go. (1.2)
where R is the scalar curvature of g and p is a real constant. The Ricci-Bourguignon
flow was introduced by Bourguignon for the first time in 1981 ( see [1]). Short-
time existence and uniqueness for solution to the Ricci-Bourguignon flow on [0,7)
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have been shown by Catino et al. in [2] for p < m When p = 0, the Ricci-
Bourguignon flow is the Ricci flow.
The other important geometric flow was introduced by Kong and Liu [9] which is the
generalized hyperbolic geometric flow and defined as follows
9%g dg
— 4+ 2Ric+ F(g, =—
g2 T 2R+ (g, 9t
where F is a smooth function of the Riemann metric g an its first derivative with
respect to t. In [5, 10] Dai et al. introduced a new kind of hyperbolic geometric flow
as follows

) =0, (1.3)

9%gi dgip 9g; dpq  09ij
2 _2 ” 2 rq p Jq9 _ d 2 Pq pq ] 14
o2 Rij +20" 57 5 — (@420 570, (1.4)
1 dg 0gP? Og
pq ~IPI\2 Pq .

that is called dissipative hyperbolic geometric flow and they established the short-
time existence and uniqueness theorem for this flow. The hyperbolic geometric flow
is a system of nonlinear evolution partial differential equations of second order, it is
very similar to wave equation flow metrics, and as follows

52 , 0
5739 = ~2Ric. 9(0) = go, %(0) — ko, (1.6)

where kg is a (0,2)-type symmetric tensor field on M and this flow is similar to
Einstein equation

0 1 g"l 99ij O9pq

0¢;p 09
i = 2R - + g1 2T Zia

27 ot ot ot ot
The existences and uniqueness of (1.6) studied in [4] on compact Riemannian manifold
and in [12] funded some some evolution of geometric structures under the hyperbolic
geometric flow. Also, the existences and uniqueness of (1.7) and some other properties
of (1.7) studied in [11].

Motivated by the above works in this paper, we consider an n-dimensional compact
smooth Riemannian manifold M and introduce the hyperbolic Ricci-Bourguignon flow
on M as

% = —2Ric+ 2pRyg,
9(0) = go(),  G2li=0 = k(=),

where k(z) is a symmetric tensor on M and p is real constant. After this in short
we will display the hyperbolic Ricci-Bourguignon flow with the HRB flow. Then,
we show the short-time existence and uniqueness for solution to the HRB flow for
p < ﬁ Next, we find evolution equation for some geometric structures depen-

(1.7)

(1.8)

dent to g along the HRB flow. Finally, we give some examples of this flow on some
compact Riemannian manifolds.
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2. SHORT-TIME EXISTENCE AND UNIQUENESS THE HRB FLOW

In this section, by a similar argument with the existence and uniqueness of geo-
metric flow such as Ricci flow, Ricci-Bourguignon flow or hyperbolic geometric flow,
we establish the short-time existence and uniqueness for the HRB flow on a compact
n-dimensional Riemannian manifold.

Theorem 2.1. Let (M, go) be a compact n-dimensional Riemannian manifold and
k(x) be a symmetric tensor on M. Then, there exists a constant T > 0 such that the
ingtial value problem (1.8) has a unique smooth solution metric g on M x [0,T).

Proof. Let §;;(t) be a solution of hyperbolic Ricci-Bourguignon flow (1.8), and ¢; :
M — M be a family of diffeomorphisms of M. We consider the pull-back of metrics
as gij (.T, t) = (rb:‘,kgm (ZL’, t) Suppose that y(xv t) = d)t(m) = (yl(x, t)a yz(xv t), ceey yn(x’ t))
is the representation of y(x,t) in a local coordinates. Then

AT
gij(l‘,t) - &W @gaﬁ(yat)a (21)
and
9%g:; Oy 0y dPgap o 0%y~ oy’ .
oz OV = g aw ar W@+ 55T g 9es
o 0%yP oy~ . 0 0y* . 0y’ djags
927 oz 9 90 T 25 o ) 007 " (2:2)
0 0y’ Oy~ djag o oy, 0 oy’ .
P20 o owr a2 Cor ) g o 19
On the other hand
dgaﬁ o 8.@0(6 % agaﬁ
2~ 2~ 0l A 2~ v 2 A ~ 2,y
dgaﬂ( (2,0),1) = 0%Gap 0y” 0y” | ,07Gap 0y” | Jap , 09ap Oy (2.4
dt? Oyvoy* ot Ot  Oyrot ot otz oyv Ot?
and
a2§aﬁ A A ~
o2 (yvt) = _2Raﬁ<y7t) + 2pR(yat)ga5(yvt)v (25)
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hence

0%g;; N oy> oy’ oy~ 8y
8t2] (x7t) = _QRGB(y’ )a a j + 2pR(y7 )gaﬁ(y? )a 0$3

oy 0yP gap Oy Oy

Oz’ OxJ Oy Oy Ot Ot
oyP 82y°‘> 0

9 (.
"o (gaﬁaxjata

* owi

Ogap Oy” Oy~ 0y’
Oyrot Ot Oxt Oxd
ayﬁ 62ya>

' (g“" Dzt ot

09, 007 00 0 (08 \_ 0 (o \] P
By Oxt 9z i \9xi 97 ) T aui \ 959 ) | o2
o 0y~ 0y® 0Gap 0y 00ap
20 o o oy ot T o (2:6)
0 0y® Oy (0§ap Oy | Ojap o 0y~ 0 0y .
o0 otV aw oy or T ar ) T 2awCor awr or 190
Now, using the normal coordinates {x'} around a fixed point p € M we have gi"',j =
and
Gap Oy* OyY? o [(0yP . o (oY’ B o
9y Ort 07 02 \ 92797 ) T Gai \ ggiden ) =0 Ve Ay =12 m
(2.7)
Therefore
6291‘3’
W(m,t) = —2R;ij(z,t) +2pR(x,t)g;;(x,t)
0y 0y 0*gap 0y? Oy ,0%Gas Dy y* Oy”
Oxt Oxd Oy Oy* Ot Ot oyt ot Ozt dxd
N 0 Oz 9*y” +i Oz Oy~
ozt \ I gya a2 ) T awi \ I aye or2
0 0y~ 0P (0gap Oy | Djap
o0 ot Vo (ayv ot ot (28)
0 0y’ Oy* (0Gap Oy? | Ojap o oy 0 0y .
ErARTR <ayv o T ) T 20 Cor ) g o 9
Now, we define y(z,t) = ¢.(x) by the following initial value problem
(,0) ,?t (x 0) = (@),

and define the vector field V; = gikgﬂ(F?l

— f‘?l), where I‘?l and f‘?l are the connection

coefficients corresponding to the metrics g(t) and go, respectively and y§(z) for o =
1,2, ...,n, are arbitrary smooth functions on the manifold M. We get

829ij
ot?

(f,t) =
[c [m)
(0] c)

—2R;;(x,t) +2pR(x,t)gij(z,t) + V;V; + V;Vi+ F(Dy, D, Dyy),
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(2.10)
where
ay* oy~ 9%y .
V=8 aar) PPy = (Gpigg)» ni=12m
Hence
6291" 3291“ 8291«5 629 1
gz (@) = gklaxka;l (w,t)—Zpgijgpqgklm(x,t)+2pgijgp"g“m(w,t)
+G(9, D2g) + F(Dy, D:Dyy), (2.11)

where g = (g;;) and D,g = 852“' for i,j,k=1,2,....,n. Let

2h 2h
) — kL g . pq ki kl . pq kKl ql
Ly(hij) = 9% 5 qg.1 — 209:9™9" 5057+ 20913979" 525 -

We now compute the symbol of the differential operator L,. This is done by taking
the highest order derivatives and replacing % by the Fourier transform variable ;.
The symbol of the linear differential operator L, in the direction ¢ = (¢, ..., () is

oLg(Ohi; = g¥GuCihi; — 2p9i5971 9™ CpCobu + 20955971 9™ CpCilir- (2.12)

To see what the symbol does, since the symbol is homogeneous we can always assume
¢ has length 1 and we perform all the computing in an orthonormal basis {e;}?_; of
T, M such that ¢ = g(es,.) that is {; =0 for ¢ # 1, then

{gij = iy,
¢=(1,0,...,0).
Hence, we obtain
oLy (Q)hij = hij — 2p0i0kihi + 2pdi5h11, (2.13)
which can be represented in the coordinate system
(h11, ha2,s ooy B, P12, ooy Ban, hos, Boa, oo B—1.n),

for any h € I'(S2M), by the following matrix

1 —2p —2p
: Aln —1] 0 O
0
oL, =
! 0 Itno) 0
O O I(n—l)Q(n72)
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where O is the zero matrix and A[n — 1] is the (n — 1) x (n — 1) matrix given by

1-2p —-2p - —2p
An—1] = . . ) .

The matrix oL, has %n(n + 1) — 1 eigenvalues equal to 1 and 1 eigenvalue equal to
1—2(n—1)p (see [2]). Therefore for p < m the equation (2.11) is hyperbolic.
Since manifold M is compact, then by the standard theory of hyperbolic equation the
system (2.11) has a unique smooth solution for a short time. From the solution of
(2.11) we can obtain a solution of the HRB flow (1.8) and now, we show the uniqueness

of the solution. Since

oot ot oy
T 9xd Ozt Ay P Py dxIdat’

the initial value problem (2.9) can be rewritten as

%y> g1 &y*  wk 9y* | Pa 9y° 9y
{ otz g Ozi ozl Fjl oxk +F5V OxJ Ozt ) (2 14)

Y (z,0) =2, Zy*(z,0) = y(2).

Since the equation (2.14) is a strictly hyperbolic system and manifold M is compact,
it follows from the standard theory of hyperbolic equation (see [8]) that the system

(2.14) has a unique smooth solution for a short time. For any two solution g}g)(z, t)
and f]g) (x,t) of the HRB flow (1.8) with the same initial data, we solve the initial value
problem (2.14) and find two families q’)gl) and (b?) of diffeomorphisms of M. Therefore

we get two solutions, gg;)(a:,t) = ( El))*gg)(m,t) and gg)(x,t) = (¢£2))*§g)(x,t), to

the modified evolution equation (2.11) with same initial data. The uniqueness result

for the strictly hyperbolic equation (2.11) implies that gg)(x, t) = gg)(x, t) and then
by system (2.14) and the standard uniqueness result of PDE system, the corresponding
solutions ¢§1) and ¢§2> of (2.14) must agree. Consequently the metrics gi(;)(x,t) and
gg)(x,t) must agree also. Hence we have proved the uniqueness for solution of the
HRB flow (1.8). O

3. EVOLUTION EQUATIONS OF CURVATURE TENSOR ALONG THE HRB rFLOW

The HRB flow is an evolution equation on the metric. In the following, we use the
techniques and ideas to find the evolution equations for geometric structures under
the Ricic flow, the Ricci-Bourguignon flow (see [2, 3]) and the evolution equation
along the hyperbolic geometric flow by W. R. Dai et al (see [4]) to give the evolution
formula for Riemannian curvature tensor, Ricci curvature tensor and scalar curvature
of (M, g) under the HRB flow.
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Theorem 3.1. Under the HRB flow the Riemannian curvature tensor R;jx of (M, g)
satisfies the following evolution equation

82
@Rijm = ARyjri + 2(Bijr — Bijik — Bitji + Bikji)
=97 (RpjriRgi + RipriRqj + Rijpi Rgr + RijipRa1)
a P 8 q a P a q
2090 (555 T — 5005, T ) (3.1)
—p[ViViRgj — ViViRg;i — Vi ViRgy + V;ViRgi] + 2pRR;ji,

where Bijri = ¢P" 9% Rpiqj Rrksi and A is the Beltrami-Laplace operator with respect
to the evolving metric g.

Proof. For an evolution metric g along the HRB flow the Christoffel symbol of metric
g is F?l =1 ghm(ag;}j + aagg;’jl - ng,ﬁ), therefore by direct computing, we obtain the
second variation of 1"?[ as follows

ith _ 19%ghm (agmj Ogmi 393‘1) dg"m (529mj n Pgmi gy )
o2 It 2 o2 \ 9l ' Oxd  Oam ot \ozlot = Oxiot  dxmot
1 s 0 82gmj 0 82gml 0 (9zgjl
—g" | — — — . 2
39 [axl( oz )t o o ) T e o) (3:2)
On the other hand, the Riemannian curvature tensor of (M, g) is
h 81"?1 8FZ h P h 1P h
T gt Ba + Tl — T3l Rijre = gniRijs (3.3)
hence with a double differentiation respect to ¢ we have
0% _, a 0%, a ,0%_, o h
e = 53 (@ q) — @(@Fu) + ﬁ(riprﬁz =T5,I0), (3.4)
and
02 o oTh 9 ewh 92, N
wRijkl = Ynk l@x’(atz) - @( a2 ) + @(Fiprﬁl _Fjpl_‘]i?l)
dgne | 0 0T o orh. o, N
gk | T ( by (T4 —(rhrh Tk TP
2% |aw o) " aw Car ) T g Tl ~ Tt
O gnr
+RY, o7 (3.5)

(e
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We choose the normal coordinates {z*, 22, ...,2"} around a fixed point p on M, then
%(p) =0 and I‘fj (p) = 0. Then at this point we have

8723. = 1[_o (azgkj) _ (8291'1)
otz 2 | Ozidxt " Ot2 drtdxk " Ot2
1o (5’29kj) s (329iz)
2 | 0zidxt " Ot2 Oridxk " Ot?
Pgrp (Pgmj  Pgmi  gji
_ ,pm P mj mé J
Oxiot ( oxtot  OxIiot 896”%91&) (3.6)
om O Gp (029m¢ Pgmi 0%gu )
Oxiot \ dx!ot = Ox'dt  dx™ot
Oy 0 0, 0.,
+2ghk <§F2parlﬂ — arjparll) .
Since g—;g = —2Ric+ 2pRyg, so we can rewrite (3.5) as follows:
0? 1[ 92 0?
ﬁRijkl = 3 [W(_2Rkj + 2pRgy;) — pyE (—2Rj + QPjoz)}

1[ 02 0?
| (“2Ru + 20Rgki) — —
2 {83398371( Bki + 20Rgus) aﬂaxk(
pm 329kp (529mj 329m1 _ 5293‘1 )
Oxtot \ oztot ~ Oxiot  Ox™Ot
pm 02 Gkp (c’)ngi Pgmi Dga )
Oxiot\ oxlot ~ Oxidt  Ox™Ot

D 0y 0oy O
2 (5Tl T% = 5Tl T )- (3.7)

—2R; + 2/’&711)}

On the other hand, we have

82
920! Rjp = ViViRji + Rjp Vil + R Vil'y), (3.8)

and

pm 329kp (829mj a29ml _ a2gjl )
Oxtot \ 9ztot ~ Oxiot  Ox™Ot
om O Grp <829mi Pgmi Pga )

0xiot\ozlot | 0ziot  Oxmot

9.y 0 o, 0
291 (55T = 5T )
0., 0 0, 0
= 29pq<§FZ~§ i B ?r&ﬁl) (3.9)

2D
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Therefore, plug in (3.8) and (3.9) in (3.7) lead to

82
ﬁRijkl = —V;ViRjr, +V,;ViR;; +V;ViRy; — V;Vi Ry
5] 0 0 0
— 9" (RijqRip + RijiqRip) + 29pq (atrfl Filik at F?z-affk)
Pl oziazt 7%~ gzigar 9! 5$j3xl Jki axjaxkg”
% gr; %gj % gri 9*ga
i [axié)xl SR L et e R M R
= ARyjri + 2(Bijr — Bijik — Bitji + Bikji)
—9"(RpjriRgi + RipriRqj + RijpiRgr + RijipRq1)
0 p 0 0, 9
+29pq(§Fil~§ ik~ &Fjl'arik> (3.10)
—p[ViViRgj — ViViRg;, — Vi Vi Rgy + V;ViRgi] + 2pRR; i,

where Bjji = " g%’ Rpiqj Rrist, S0 the proof is complete. O

Theorem 3.2. Fvolution equation for Ricci curvature tensor under the HRB flow is
as follow:

52
ﬁRij = ARU — (n — 2)pV1VJR — pARgij + QQprgqupiqurs — QQPququj
0 0 0 0 OGpg OR;k
429000 (5T Ty = Tl ) — 27 G =g )

Ogpq O
+QQI@;Dgrqgsl g]tﬂq g;s Rikjl

Proof. Choose {z!,...,2™} to be a normal coordinate system at a fixed point. At this
point, we compute

0? 0?

@Rij = @(gklRikﬂ)
82 Og* OR;1; 9% gk
= 4 atQRszH- gt altj +Rikjl6752- (3.12)
Since 357::1 _ gkpglqagpq and ;t:l _ _gkpglq gpq +29kpgrqg9l agiq 8(%%&’ we get
32 82 89 8R'k'l ag
e - kA T T A e
AGpg O
yoghrgragfva Crs p (3.13)

ot ot
EE
BE
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by replacing (3.1) and g—;gij = —2R;; + 2pRy;; in (3.13) we have

%sz AR;; + 26" (Bijii — Bijik — Bujk + Birjt)

—g"gP Y Rpyjii Ryi + RipriRyj + RijpiRak + RijipRyt)
+2g’“lgpq<%FZ-%F§k - % ?r%rgk) (3.14)
—(n—2)pV,V;R — pARg;; — 29" glq%%
—¢"7g'"(=2Ryq + 2pRgpq) Rirji + 29’“’”9’”“9“%%&%

where

29" (Byji — Bijis — Bujk + Bikji) = 26" (Bikji — 2Biki;) + 26”7 9% Rpiqj Rrs,
and

9" 9P (RypjriRyi + RipriRyj + Rijpi Rak + RijipRat) = 2977 Rpi Ryj + 267" 9% Rpig; Rys,

but g*(Bikji — 2Biki;) = 0. Hence by replaceing last equations in (3.14) the proof of
the theorem is complete. O

From R = g% R;; and using (3.11) we have the following result:

Corollary 3.3. Under the HRB flow, the evolution equation of the scalar curvature
satisfies

—R = (1-2(n—-1)p)AR+ 2|Ric|* — 2pR?

. 0 0 0 7]

ij Kl P q P q
+20"'9"ap0 (T3 = 5Tk 5T)
ij kp lq 99pq ORikji

0gpg O
—2g"g"g +aghrgrage ZIea S9rs

ot 0ot ot ot
in_iq O9pq OR;;
—92q"P gl Pq ) .
79 "ot "ot

4. EXAMPLES

In this section, we give some examples of HRB flow.

Example 4.1. Let (M*%, g(t)) = (S? x L,c(t)gs> ® d(t)gr) where (52, gs2) is a
round sphere with Gauss curvature 1 and (L, Gp) is a surface with constant Gauss
curvature —1. The HRB flow results that

{59;6(15):—24-49(1—02)7 c(0) =1, ¢(0) =0,
=0.

; : / (4.1)
25d(t) =2+ 4p(d®> — 1), d(0) =1, d'(0)

If 0 < p < 1, then g—;c(t) < 0 implies that ¢(t) is decreasing and g—;d(t) > 0 results
that d(t) is increasing.

(&)
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Example 4.2. Let (M, g(0)) be an arbitrary compact Riemannian manifold. If
the initial metric g;;(0,z) is Ricci flat, i.e. R;;(0,2) = 0, then g;;(t,z) = ¢,;(0, )
is obviously a solution to the evolution equation HRB flow, therefore any Ricci flat
metric is a stationary solution of the HRB flow.

Example 4.3. Let (M, g(0)) be a closed Riemannian manifold and the initial
metric g(0) is Einstein that is for some constant A it holds

Rij(0) = Mgy (0). (4.2)

Since, the initial metric is Einstein for some constant A, let g;;(t, ) = ¢(t)g;;(0). By
the definition of the Ricci tensor, we have

nA

Rij(t) = Rij(0) = Agi(0), Rgey = — (4.3)
Therefore the equation (1.8) becomes

92c(t)gi;(0))

at2j = _2)‘gij (O) + 2pn)\gij(0), (44)

this implies

d?c(t

(';T(Q) = —=2X+2pn\, c(0)=1, (0)=v, (4.5)
which solution of it is given by

p(t) = (—=2\ + 2pn\)t* + vt + 1. (4.6)

Hence, the solution of the HRB flow remains Einstein.
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