
Computational Methods for Differential Equations
http://cmde.tabrizu.ac.ir

Vol. 9, No. 1, 2021, pp. 273-288

DOI:10.22034/cmde.2020.35593.1611

Application of the method of fundamental solutions for designing
the optimal shape in heat transfer

Kamal Rashedi∗
Department of Mathematics,
University of Science and Technology of Mazandaran, Behshahr, Iran.
E-mail: k.rashedi@mazust.ac.ir

Akbar Hashemi Borzabadi
Department of Mathematics,
University of Science and Technology of Mazandaran, Behshahr, Iran.
E-mail: borzabadi@mazust.ac.ir

Maryam Zarhoun
Department of Mathematics,
University of Science and Technology of Mazandaran, Behshahr, Iran.
E-mail: mzflower91@yahoo.com

Abstract In this paper, we propose a meshless regularization technique for solving an optimal
shape design problem (OSD) which consists of constructing the optimal configura-
tion of a conducting body subject to given boundary conditions to minimize a certain

objective function. This problem also can be seen as the problem of building a sup-
port for a membrane such that its deflection is as close as possible to 1 in the subset
D of the domain. We propose a numerical technique based on the combination of

the method of fundamental solutions and application of the Tikhonov’s regulariza-
tion method to obtain stable solution. Numerical experiments while solving several
test examples are included to show the applicability of the proposed method for
obtaining the satisfactory results.

Keywords. Elliptic equation, Optimal shape, Method of fundamental solutions, Tikhonov regularization,

Radial basis functions.
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1. Introduction

Mathematical models describing the thermal processes for determination of the
optimal shape of a heat conducting body with respect to a specified design criterion,
belong to the category of inverse heat transfer problems (IHTPs). Historically, the
inverse heat transfer problems were first appered in early 1960’s to support the space
programs where it was impossible to figure out the temperature at the surface of the
thermal shields of space vehicles [18]. On the other hand, it was much easier to derive
information by placing some sensors at the interior parts with a specified distance
from the surface. Therefore, by employing an inverse analysis of the information
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exploited from the sensors, the temperature at the surface was approximated [18, 19].
Generally speaking, in the theory of heat transfer problems, if boundary conditions,
the thermophysical properties or the geometrical configuration of the heated body
are uknown then the problem is referred to as inverse heat transfer problem. Todays,
traces of inverse heat transfer problems can be found in different areas of science and
engineering because of their great mathematical applications [14, 15]. To name a
few applications, we can refer to [18, 19, 20] the electronic packaging problems where
designing an appropriate shape for the electronic devices prevents damage. Moreover,
in the chemical vapor deposition (CVD) process, producing the fine solid materials
depends on providing uniform temperature distribution in the deposition zone across
the surface of the substrate.

The steady-state heat transfer problems may consist of finding the optimal shape
of a body such that either the temperature distribution on its boundary or the heat
flux on some part of its boundary match a desired distribution. Optimal shape design
problems (OSD) model many applied problems of science and industry such as finding
the optimal structures of a car such that the final production carries the minimum
weight while having the best aerodynamics, designing the best breakwater to protect a
harbor from uniformly sinusoidal waves with a determined wave length and direction
and optimization of stealth objects and antenna subject to aerodynamic constraints
in electromagnetism [17]. Mathematically speaking, the OSD problems deal with
solving an optimization problem where the dynamic constrains are a system of partial
differential equations defined over a physical domain Ω supplemented with boundary
conditions.

Following, we consider an OSD problem which has great applications in wind tunnel
or nozzle design for potential flows [17]. For this problem, some of the boundary
conditions are defined over an unknown curve Γ∗ ⊂ ∂Ω. We address the question
of simultaneous estimation of the unspecified trajectory function Γ∗ as well as the
stream function by applying the given boundary conditions and using the fact that
the volume of the stream function passing through the known region D ⊂ Ω reaches
a prescribed value.

1.1. Problem statement and some applications: Assume that an incompressible
irrotational flow at each location (x, y) ∈ Ω ⊂ R2, denoted by stream function ψ(x, y),
satisfies the Poisson equation

△ψ = g in Ω, (1.1)

such that (see Figure 1)

∂Ω = Γ1∪Γ2∪Γ3∪Γ∗, Γ1 = {0}× [0, a], Γ2 = {L}× [0, b], Γ3 = [0, L]×{0},

Γ∗ := {(x, s(x))| s ∈ C[0, L], s(0) = a, s(L) = b}. (1.2)

The mathematical representation of the shape optimization problem of interest here
is expressed by [17]:

P := min
∂Ω, D⊂Ω

{∫
D

(ψ − 1)2 s.t ∆ψ = g, ψ|∂Ω = 0

}
, (1.3)
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Figure 1. Representation of the physical domain corresponding to problem P,
with locations of the given bounderies Γ1, Γ2, Γ3 and unknown moving boundery

Γ∗.

Figure 2. Representation of a possible placement of source (◦) and collocation
points (⋆).
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where the notation ψ|∂Ω = 0 stands for the Dirichlet boundary conditions on ∂Ω as
follows:

ψ(0, y) = 0, 0 < y < a, ψ(L, y) = 0, 0 < y < b,

ψ(x, 0) = ψ(x, s(x)) = 0, 0 < x < L.

In general, g is a multivariate function but when g is a constant function, more
specially, when g(x, y) = 9.81, we pose the following question: Is it possible to build
a support for a membrane with domain Ω bent by its own weight which would bring
its deflection as close to 1 as possible in a region of space D ⊂ Ω ?

A rigorous proof of the shape design sensitivity formulas for the static response
and the repeated eigenvalues of the membrane has been discussed in [32]. Since
the solution is sensitive to errors with respect to boundary conditions, we use the
Tikhonov regularization method to achieve stable numerical solution.

1.2. Literature review: As a special case of 2D optimal control problems [7, 16],
various methods have been applied to solve OSD problems. These studies include
classical approaches such as dynamic interpretation of OSD, applying some direct
calculations of shape variations, employing the minimax differentiability method and
using the mapping method [2, 4, 5, 9, 10, 11]. Moreover, finite element methods
and measure theoretical techniques have also been employed in the literature [1, 21,
22, 24, 25]. Other numerical approaches such as evolutionary algorithms including
the genetic algorithm, topological optimization and level set algorithms, iterative
optimization techniques such as Newton, quasi Newton and conjugate gradient have
been discussed in [17, 18, 19, 24, 25] and references therein.

In this work, since the optimization problem involves partial differential equation
with its constrains, we aim to employ the method of fundamental solutions (MFS),
which is a meshless boundary collocation technique and belongs to the class of Trefftz
method [12, 13, 35]. We solve the Poisson equation defined over a domain Ω by ap-
proximating the stream function ψ using the method of fundamental solutions. The
following is a list of key points that jutifies why the method of fundamental solutions
is suitable for solving the considered problems:

• The MFS is easy to adjust to various solution domains by applying a scattered
set of points on the irregular domains [8] like Ω. In contrast other approxi-
mations based on the use of finite-difference methods (FDM), finite element
methods (FEM) and orthogonal polynomials have shortcomings in dealing
with problems defined over nonrectangular domains, especially in higher di-
mensions [26, 29, 31].

• The MFS is easy to program and it is computationally cost-effective. On
contrast, the mesh dependent methods, such as classical and modified spectral
element methods (SEM) and finite element methods (FEM) suffer from a large
computational time, while in MFS no mesh generation is needed because it
employs the collocation technique [30, 31].
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• Despite the fact that MFS results in ill-conditioned matrices, the usage of
regularization techniques leads to accurate and stable results for different
types of problems [31].

• The literature on application of method of fundamental solutions for the ho-
mogenous partial differential equations is rather extensive, but in this work we
deal with the nonhomogenous case (Poisson equation). This motivates us to
develop the application of the method of fundamental solutions in recovering
the stream function ψ using the dual reciprocity method [6, 23, 27].

1.3. The structure of this paper: This paper is organized as follows. In section
2, we propose a numerical algorithm for solving the given inverse problem based on
the method of fundamental solutions. In section 3, we present the numerical results.
In section 4, we give some concluding remarks on the results of the paper.

2. The solution procedure

It should be noted that for applying the method of fundamental solutions, a general
placement of source and collocation points similar to Figure 2 is required. Then,
we take into account the fundamental solution [12] of the two dimensional Laplace
equation as:

Φ(x, y) = log(x2 + y2), (x, y) ∈ Ω. (2.1)

The source points should be located outside the domain. We are interested in setting
the source points, placed external to the domain Ω via the following construction
scheme:

ΓP :=

{
(x0

j , y
0
j )| x0

j =
L

2
+ (

L

2
+ γ) cos

(
2πj

N1

)
, y0

j =
b

2
+ (

b

2
+ γ) sin

(
2πj

N1

)
, j = 1, N1

}
,

(2.2)

where γ > 0 and use a linear combination of basis functions belong to the following
set {

Φm(x, y) = Φ(x− x0m, y − y0m)

}N1

m=1

. (2.3)

To solve the problem P where the function g is a two dimensional function, say
g := g(x, y), we use (2.2) for placing the source points and consider the following
approximation for ψ:

ψ(x, y) =

N1∑
m=1

cmΦm(x, y) + ψp(x, y), (2.4)

where ψp(x, y) is supposed to satisfy the following equation:

∆

{
ψp(x, y)

}
= g(x, y). (2.5)
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Also, we introduce a Ritz type approximation [28, 33] using a truncated series in
terms of the Lagrange polynomials Li(x) [26]:

s(x) =

N1+N2∑
m=N1+1

cmx(x− L)Li(x) + a+
(b− a)x

L
, 0 ≤ x ≤ L, (2.6)

as an approximation for the smooth object s(x), where ci’s are the unknown coeffi-
cients. Moreover, it is obvious that the conditions s(0) = a, s(L) = b are satisfied.
Next, we apply the dual reciprocity technique to calculate ψp(x, y). The main idea
consists of four steps:

Step1: Use the radial basis functions [3, 29] to approximate the known function
g(x, y). For which, we assume that this approximation is derived by using the IMQ
radial basis function F (x, y) = 1√

x2+y2+ϵ2
, ϵ ∈ R.

Step2: Apply the collocation points (xk, yk) belonging to the domain Ω and solve
the interpolation problem

g(xk, yk)−
M∑
j=1

djF (xk − xj , yk − yj) = 0, k = 1,M, (2.7)

then find the elements di, i = 1,M .
Step3: Apply the annihilator method [6, 27] to get Z(r) by solving the following

differential equation:

1

r

d

(
r dZ(r)

dr

)
dr

=
1√

r2 + ϵ2
, r =

√
x2 + y2 (2.8)

and get

Z(r) =
√
r2 + ϵ2+ ϵ log(ϵ3r)− ϵ log

(
2ϵ2+2ϵ

√
r2 + ϵ2

)
+A log(r)+B, A,B ∈ R.

(2.9)

Step4: Establish the approximation ψp(x, y) =
∑M

j=1 djZ(x−xj , y−yj), (xj , yj) ∈ Ω.
To fulfill the following Dirichlet boundary conditions

ψ(0, y) = 0, y ∈ [0, a], ψ(L, y) = 0, y ∈ [0, b], (2.10)

ψ(x, 0) = 0, x ∈ [0, L], ψ(x, s(x)) = 0, x ∈ [0, L], (2.11)
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we construct the new Tikhonov’s functional as:

J∗ =

M1∑
i=1

{ N1∑
m=1

cmΦm(0, ti) + ψp(0, ti)

}2

+

M2∑
i=1

{ N1∑
m=1

cmΦm(L, yi) + ψp(L, yi)

}2

+

M3∑
i=1

{ N1∑
m=1

cmΦm(xi, 0) + ψp(xi, 0)

}2

+ λ

N1+N2∑
i=1

c2i

+

∫
D

(

N1∑
m=1

Φm(x, y) + ψp(x, y)− 1)2

+

M3∑
i=1

{ N1∑
m=1

cmΦm(xi, s(xi)) + ψp(xi, s(xi))

}2

, (2.12)

and minimize it to get the parameters ci, i = 1, N1 +N2.
For minimizing J∗, we can either use the necessary conditions for the extremum

as

∂J∗

∂cj
= 0, j = 1, N1 +N2, (2.13)

and solve a nonlinear system of algebraic equations for the elements ci directly, or
apply the Mathematica toolbox ”NMinimize” which is designed to minimize a sum of
squares of arbitrary differentiable functions. The regularization parameter λ is applied
to the functional J∗ as a known value. Then, this approach is called as the static MFS.

It is worth mentioning that the integration term
∫
D
(
∑N1

m=1 Φm(x, y) + ψp(x, y)− 1)2

in J∗ will be calculated numerically using the midpoint rule [34].

Remark 2.1. It should be noted that Step2 involves solving an interpolation prob-
lem based on the radial basis functions which raises the cost of computations. When
the function g is a single variable function, i.e. g := g(y) we can avoid employing the
dual recipricity technique and just use some tranformations to reduce the problem
∆ψ = g(y) to a homogeneous one and then use the method of fundamental solutuions
to solve the new problem. In what follows, we briefly explain the procedure.

First take the transformations

U = ψ −G(y), G(y) =

∫ y

0

∫ t

0

g(s)dsdt, (2.14)

to get the new modified minimization problem

min
∂Ω, D⊂Ω

{∫
D

(U +G− 1)2 s.t ∆U = 0, U |∂Ω = η

}
, (2.15)

where η stands for the following Dirichlet boundary conditions:

U(0, y) = −G(y), y ∈ [0, a], U(L, y) = −G(y), y ∈ [0, b], (2.16)
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U(x, 0) = 0, x ∈ [0, L], U(x, s(x)) = −G(s(x)), x ∈ [0, L]. (2.17)

Hereafter the solution procedure is straightforward. The approximation for s(x) is
assumed exactly like (2.6) and we consider

U(x, y) =

N1∑
m=1

cmΦm(x, y). (2.18)

Then, by minmizing the following Tikhonov’s functional

J∗
1 =

M1∑
i=1

{ N1∑
m=1

cmΦm(0, ti) +G(ti)

}2

+

M2∑
i=1

{ N1∑
m=1

cmΦm(L, yi) +G(yi)

}2

+

M3∑
i=1

{ N1∑
m=1

cmΦm(xi, 0)

}2

+ λ

N1∑
i=1

c2i +

∫
D

(

N1∑
i=1

Φm(x, y) +G(y)− 1)2

+

M3∑
i=1

{ N1∑
m=1

cmΦm(xi, s(xi)) +G(xi, s(xi))

}2

, (2.19)

we get the unknown parameters ci, i = 1, N1 +N2. It must be noted that the
numerical solution obtained by minimizing the functional 2.12 or 2.19 is acceptable
as long as ∀ x ∈ [0, L], a ≤ s(x) ≤ b.

3. Numerical experiments

To test the effectiveness of the proposed technique, we solve two benchmark test ex-
amples. They are chosen to report the results of implementing the proposed method.
The numerical experiments are carried out in the presence of the maximum tolerable
amount of noise level λ% = λ×10−2. The numerical implementation is carried out in
MATHEMATICA 11, with hardware configuration: Desktop 32-bit Intel Core 7 Duo
CPU, 4 GB of RAM, 32-bit Operating System (Windows 10).

Example 3.1. Consider P with the following properties:

g(x, y) = 9.81, L = b = 3, a = 1, D = [1.5, 2.5]× [0, 1]. (3.1)

By employing (2.14)-(2.19) with

N1 = 36, N2 = 2, M1 =M2 =M3 =M4 = 4000, γ = 0.2, G(y) =
9.81y2

2
, λ = 10−5,

we find the results illustrated by Figures 3-4 where the minimum value of the cost
functional

∫
D
(ψ − 1)2 is 5.89501. Moreover, by defining

U1(y) = U(0, y) +G(y), U2(y) = U(L, y) +G(y),

U3(x) = U(x, 0), U4(x) = U(x, s(x)) +G(s(x)),

ε∗ = ∥U1(y)∥2 + ∥U2(y)∥2 + ∥U3(x)∥2 + ∥U4(x)∥2,



CMDE Vol. 9, No. 1, 2021, pp. 273-288 281

Figure 3. Approximate solution for s(x) with λ = 10−5 in presence
of exact boundary data, discussed in Example 3.1.

0.5 1.0 1.5 2.0 2.5 3.0
x

1.0

1.5

2.0

2.5

3.0

s Hx L

Figure 4. Approximate solution for ψ(x, y) with λ = 10−5 in pres-
ence of exact boundary data, discussed in Example 3.1.

as the residual of the boundary conditions, the obtained results are visualized by
Figures 5-8 confirming that the boundary conditions are fulfilled accurately. Next,
we

test the numerical stability of the solution by employing the contaminated input
boundary data generated by:

ψ(0, yl) = δ%RandomReal[{−1, 1}], yl ∈ (0, 1), l = 1,M1,

ψ(3, yl) = δ%RandomReal[{−1, 1}], yl ∈ (0, 3), l = 1,M2,
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Figure 5. Graph of the absolute error for the residual of boundary
condition U1(y) with λ = 10−5, ε∗ = 0.0426153 in presence of exact
boundary data discussed in Example 3.1.

0.2 0.4 0.6 0.8 1.0
y

0.005

0.010

0.015

U1 Hy L

Figure 6. Graph of the absolute error for the residual of boundary
condition U2(y) with λ = 10−5, ε∗ = 0.0426153 in presence of exact
boundary data discussed in Example 3.1.
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ψ(xl, 0) = δ%RandomReal[{−1, 1}], xl ∈ (0, 3), l = 1,M3,

ψ(xl, s(xl)) = δ%RandomReal[{−1, 1}], xl ∈ (0, 3), l = 1,M4,

where RandomReal[{−1, 1}] produces a random real digit that belongs to the interval
[−1, 1] and δ% = δ×10−2 is called the level of noises. The results for this experiment
are shown in Table 1 to see a good agreement between the exact and approximate
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Figure 7. Graph of the absolute error for the residual of boundary
condition U3(x) with λ = 10−5, ε∗ = 0.0426153 in presence of exact
boundary data discussed in Example 3.1.
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Figure 8. Graph of the absolute error for the residual of boundary
condition U4(x) with λ = 10−5, ε∗ = 0.0426153 in presence of exact
boundary data discussed in Example 3.1.
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solutions. Nevertheless, when noise level δ increases, according to parameter ε∗ the
approximations for the boundary conditions depart from the exact solution.

Example 3.2. In this example we discuss solving P where

g(x, y) = exp(−x2 − y2), L = b = 3, a = 1,



284 K. RASHEDI, A. H. BORZABADI, AND M. ZARHOUN

Table 1. The obtained values for the cost functional
∫
D
(ψ−1)2 and

ε∗ in the present of the different noise levels δ with N1 = 36, N2 =
2, M1 = M2 = M3 = M4 = 1000, γ = 0.2, λ = 10−5, discussed in
Example 3.1 for exact and contaminated data.

δ% 0% 1% 3% 7% 10%

ε∗ 0.05880 0.08298 0.1625 0.3523 0.4761∫
D
(ψ − 1)2 5.5834 5.4224 5.4210 5.2707 5.1700

Figure 9. Approximate solution for s(x) with λ = 10−7 in presence
of exact boundary data, discussed in Example 3.2.

0.5 1.0 1.5 2.0 2.5 3.0
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0.5

1.0

1.5

2.0

2.5

3.0

s Hx L

and D is a closed region with boundaries y = 0, y = x− 2, y =
√

π2

16 − (x− 2)2. We

use the procedure presented by (2.4)-(2.13) with the following parameters

N1 = 46, N2 = 2, M1 =M2 =M3 =M4 = 200,

M = 100, A = B = 0, ϵ = 0.25, γ = 0.2, λ = 10−7,

and obtain the resultes shown by Figures 9-14.
The optimal value of cost function is obtained 0.242832.
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Figure 10. Approximate solution for ψ(x, y) with λ = 10−7 in pres-
ence of exact boundary data, discussed in Example 3.2.

Figure 11. Graph of the absolute error for the residual of boundary
condition ψ(0, y) with λ = 10−7 in presence of exact boundary data
discussed in Example 3.2.
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Figure 12. Graph of the absolute error for the residual of boundary
condition ψ(3, y) with λ = 10−7 in presence of exact boundary data
discussed in Example 3.2.
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Figure 13. Graph of the absolute error for the residual of boundary
condition ψ(x, 0) with λ = 10−7 in presence of exact boundary data
discussed in Example 3.2.
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Figure 14. Graph of the absolute error for the residual of boundary
condition ψ(x, s(x)) with λ = 10−7 in presence of exact boundary
data discussed in Example 3.2.
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4. Concluding remarks

In this article, we approximate the inverse problem of designing the optimal con-
figuration of a conducting body subject to given boundary conditions. As an extra
specification, we take advantage of this fact that the volume of the stream function
passing through the known region D ⊂ Ω gets a desired value. Approximation is
based on the combination of the static method of fundamental solutions with the
Tikhonov regularization technique to solve the optimization problem. Some numeri-
cal examples for various test problems are included to show that the propsed method
produces stable solutions with low computational costs.
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