TY - JOUR
ID - 3006
TI - Inverse Sturm-Liouville problems with transmission and spectral parameter boundary conditions
JO - Computational Methods for Differential Equations
JA - CMDE
LA - en
SN - 2345-3982
AU - Shahriari, Mohammad
AD - University of Maragheh
Y1 - 2014
PY - 2014
VL - 2
IS - 3
SP - 123
EP - 139
KW - Inverse Sturm-Liouville problem
KW - Jump conditions
KW - Green's function
KW - Eigenparameter dependent condition
KW - Transformation operator
DO -
N2 - This paper deals with the boundary value problem involving the differential equation ell y:=-y''+qy=lambda y, subject to the eigenparameter dependent boundary conditions along with the following discontinuity conditions y(d+0)=a y(d-0), y'(d+0)=ay'(d-0)+b y(d-0). In this problem q(x), d, a , b are real, qin L^2(0,pi), din(0,pi) and lambda is a parameter independent of x. By defining a new Hilbert space and using spectral data of a kind, it is developed the Hochestadt's result based on transformation operator for inverse Sturm-Liouville problem with parameter dependent boundary and discontinuous conditions. Furthermore, it is established a formula for q(x) - tilde{q}(x) in the finite interval, where tilde{q}(x) is an analogous function with q(x).
UR - https://cmde.tabrizu.ac.ir/article_3006.html
L1 - https://cmde.tabrizu.ac.ir/article_3006_b58f6612cd4666d0abfa3f6283667255.pdf
ER -