%0 Journal Article
%T Existence results of infinitely many solutions for a class of p(x)-biharmonic problems
%J Computational Methods for Differential Equations
%I University of Tabriz
%Z 2345-3982
%A Shokooh, Saeid
%A Alizadeh Afrouzi, Ghasem
%D 2017
%\ 10/01/2017
%V 5
%N 4
%P 310-323
%! Existence results of infinitely many solutions for a class of p(x)-biharmonic problems
%K Ricceri's Variational Principle
%K infinitely many solutions
%K Navier condition
%K $p(x)$-biharmonic type operators
%R
%X The existence of infinitely many weak solutions for a Navier doubly eigenvalue boundary value problem involving the $p(x)$-biharmonic operator is established. In our main result, under an appropriate oscillating behavior of the nonlinearity and suitable assumptions on the variable exponent, a sequence of pairwise distinct solutions is obtained. Furthermore, some applications are pointed out.
%U https://cmde.tabrizu.ac.ir/article_6539_b6bddd9ead17b36e9afe3d6b4e743494.pdf