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Abstract The Lie symmetry method for differential equations is applied to study the exact
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1. Introduction

Symmetry analysis of differential equations is a method based on finding some
differential operators (vector fields) which called symmetries. These operators are
the largest local group of transformations acting on the independent and dependent
variables of the system with the property that they transform solutions of the system
to other solutions. When we are confronted with a complicated system of PDEs arising
from some physically important problem, the discovery of any explicit solution has
great importance. Explicit solutions can be used as a model for physical experiments,
as benchmarks for testing numerical methods, etc., and often reflect the asymptotic
or dominant behavior of more general types of solutions.

The determination of symmetry group of the geometric object can be regarded
as a special case of the general equivalence problem. Indeed, provided it lies in the
admissible class of changes of variables, a symmetry is merely a self-equivalence of
the object. Thus, for instance, the solution of the equivalence problem for differen-
tial equations will include a determination of all symmetries of a given differential
equation. Two equivalent objects have isomorphic symmetry group, indeed, conju-
gating any symmetry of the first object by the equivalence transformation produces
a symmetry of the second. Thus, one means of recognizing equivalent objects is by
inspecting their symmetry group: If the two symmetry groups are not equivalent, e.g.,
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they have different dimensions, or different structures, then the two objects cannot be
equivalent. Of course, having isomorphic symmetry groups is no guarantee that the
two objects are equivalent; nevertheless, in many highly symmetric cases, including
linearization problems, the existence of a suitable symmetry group is both necessary
and sufficient for the equivalence of two objects.

The concept of an invariant proves to be of crucial importance in understanding an
equivalence problem. By definition, an invariant is a quantity that is unaffected by
the chnage of variables. Consequently, two equivalent objects must necessarily have
the same invariants. Conversely, in the regular case, if we know enough invariant
functions, we can use them to completely characterize the equivalent objects, and
thereby completely solve the equivalence problem. Thus, the construction of invari-
ants and their characterization lies at the heart of most approaches to equivalence
problems. In addition, every regular invariant system of equations (algebraic, differ-
ential, variational, etc.) can be characterized by functions relationships among the
invariant functions, so the invariants form the fundamental building blocks which can
be used to construct suitably symmetric objects, a process of immense utility in mod-
ern physics. Whereas invariant functions are the most important invariant quantities
associated with the equivalence, many other invariant objects such as vector fields,
differential forms, differential operators, etc. arise naturally and play important roles.

One of the most important applications of symmetry’s method is to reduce the sys-
tems of differential equations, i.e., finding equivalent systems of differential equations
of simpler form, that is called reduction and the obtained solutions are called group-
invariant solutions. This system gives us some explicate solutions of the primary
system more easily. This method provides a systematic computational algorithm for
determining a large class of special solutions. The solutions to the obtained equiv-
alent system will correspond to solutions of the original system. There are a lot
of papers in the literature for this process and one can find the classical reduction
method in [3, 4, 7]. As it discussed above, these systems and their solutions give
some equivalence quantities. For example, in our study, the emphasis will be on the
group-invariant solutions of the acoustic PDE. These exact solutions solve the equiv-
alence problem of wave’s propagation and diffusion in three-dimensional space. More
precisely, the reduced systems classify the acoustic waves and their invariant physi-
cal quantities under their symmetries. Lie symmetries of differential equations, and
their applications to find analytic solutions of the equations are described in detail in
several monographs on the subject (e.g. [1, 2, 5, 6, 8]) and in numerous papers in the
literature (e.g. [7, 9]). A short presentation for Lie symmetry method is introduced
in the sequel.

Acoustics is a branch of physics and acoustics dealing with sound waves of suffi-
ciently large amplitudes. Large amplitudes require using full systems of governing
equations of fluid dynamics (for sound waves in liquids and gases) and elasticity (for
sound waves in solids). These equations are generally non-linear, and their traditional
linearization is no longer possible. The solutions to these equations show that sound
waves are being distorted as they travel. A sound wave propagates through a material
as a localized pressure change. Increasing the pressure of a gas or fluid increases its
local temperature. The local speed of sound in a compressible material increases with
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temperature; as a result, the wave travels faster during the high-pressure phase of the
oscillation than during the lower pressure phase. This affects the wave’s frequency
structure; for example, in an initially plane sinusoidal wave of a single frequency,
the peaks of the wave travel faster than the troughs, and the pulse becomes cumula-
tively more like a sawtooth wave. In other words, the wave self-distorts. In doing so,
other frequency components are introduced, which can be described by the Fourier se-
ries. This phenomenon is characteristic of a non-linear system, since a linear acoustic
system responds only to the driving frequency. This always occurs but the effects of
geometric spreading and absorption usually overcome the self distortion, so, linear be-
havior usually prevails and nonlinear acoustic propagation occurs only for very large
amplitudes and only near the source. Additionally, waves of different amplitudes will
generate different pressure gradients, contributing to the non-linear effect.

The common acoustic PDE is usually written as
∂

∂t

(
∂u

∂x
− u

∂u

∂t

)
= −βu, β = const.

This equation has a generalization in the form of
∂

∂t

(
∂u

∂x
− P (u)

∂u

∂t

)
= F (x, u). (1.1)

In this paper, the symmetry analysis of the equation (1.1) is considered for finding
reduced forms and exact solutions.

The paper is organized as follows: Section 2 is devoted to the Lie algorithm of
finding symmetry operators. In section 3 exact solutions for some special cases of
(1.1) are found via two methods. Kudryashov methods, which deals with special cases
of symmetries and the direct method which is based on similarity variables obtained
from the operators. It is noteworthy that both methods have several similarities in
common but with little differences. The similarities are in the method of reduction
and similarity variables construction. But, the constructed solutions are different in
almost everywhere. For example, the solutions obtained from Kudryashov method
are very complicated while in direct method we have more tangible solutions.

2. Symmetry operastors of equation (1.1)

Consider a system of differential equations (PDE or ODE) in the dependent vari-
ables uα(1 ≤ α ≤ q) and independent variables xi(1 ≤ i ≤ p) of the form:

∆s(xi, uα, uα
i , u

α
ij , ...) = 0, 1 ≤ s ≤ k, (2.1)

where the subscripts denote partial derivatives (e.g. uα
i = ∂uα/∂xi). To determine

continuous symmetries of (2.1), it is useful to consider infinitesimal Lie transforma-
tions of the form:

x̃i = xi + εξi +O(ε2), ũα = uα + εϕα +O(ε2), (2.2)
that leave the equation system invariant to O(ε2). Lie point symmetries correspond
to the case where the infinitesimal generators ξi = ξi(xi, uα) and ϕα = ϕα(xi, uα)
depend only on the xi and the uα and not on the derivatives or integrals of the uα.
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It is noteworthy that when the transformations (2.2) also depend on the derivatives
or integrals of the uα, the obtained symmetries are called generalized symmetries.

The infinitesimal transformations for the first and second derivatives to O(ε2) are
given by the prolongation formula:

ũα
i = uα

i + εζαi , ũα
ij = uα

ij + εζαij , (2.3)
where

ζαi = Diϕ̂α + ξsuα
si, ζαij = DiDj ϕ̂

α + ξsuα
sij . (2.4)

Here
ϕ̂α = ϕα − ξsuα

s , (2.5)

corresponds to the canonical Lie transformation for which x̃i = xi and ũα = uα+εϕ̂α.
The symbol Di in (2.4) denotes the total derivative operator with respect to xi.
Similar formula to (2.4) applies to the transformation of the higher-order derivatives.

The condition for invariance of the system of differential equations (2.1) to O(ε2)
under the Lie transformation (2.2) can be expressed in the form:

LX∆s ≡ X̃(∆s) = 0, whenever ∆s = 0, 1 ≤ s ≤ k, (2.6)
where

X̃ = X + ζαi
∂

∂uα
i

+ ζαij
∂

∂uα
ij

+ · · · , (2.7)

is the prolongation of the vector field

X = ξi
∂

∂xi
+ ϕα ∂

∂uα
, (2.8)

associated with the infinitesimal transformation (2.2). The symbol LX∆s in (2.6)
denotes the Lie derivative of ∆s with respect to the vector field X (i.e. LX∆s =
d∆s

dε |ε=0).
According to the Eq. (1.1) has a one-parameter Lie point transformation of the

form
x 7−→ x+ εξ(x, t, u) +O(ε2),
t 7−→ t+ ετ(x, t, u) +O(ε2), (2.9)
u 7−→ u+ εϕ(x, t, u) +O(ε2),

including a special one-parameter transformation
P 7−→ P + ελ(x, t, u, ux, ut, P ) +O(ε2),
F 7−→ F + εµ(x, t, u, ux, ut, F ) +O(ε2), (2.10)

for the arbitrary functions in (1.1).
A symmetry operator or an infinitesimal generator corresponding to (2.9) and

(2.10) is given by

X = ξ(x, t, u)
∂

∂x
+ τ(x, t, u)

∂

∂t
+ ϕ(x, t, u)

∂

∂u

+λ(x, t, u, ux, ut, P )
∂

∂P
+ µ(x, t, u, ux, ut, F )

∂

∂F
. (2.11)
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Because of the order of equation (2.9) and the invariance condition (2.6), the affection
of the second prolongation of the operator (2.11), i.e.,

X(2) = X + ϕx ∂

∂ux
+ ϕt ∂

∂ut
+ ϕxt ∂

∂uxt
+ ϕtt ∂

∂utt

+ω1
∂

∂λx
+ ω2

∂

∂λt
+ ω3

∂

∂λu
+ ω4

∂

∂λut

+ ω5
∂

∂λuxt

+ ω6
∂

∂λutt

+η1
∂

∂λx
+ η2

∂

∂λt
+ η3

∂

∂λu
+ η4

∂

∂λut

+ η5
∂

∂λuxt

+ η6
∂

∂λutt

, (2.12)

on the (2.9) must be vanished. The prolongation coefficients of X(2) are obtained
by the characteristic linear PDE system constructing from (2.4). A complicated
computation shows that the Lie algebra of symmetry operators for the equation (2.9)
spanned by the following geometric vector fields

X1 =
∂

∂x
,

X2 =
∂

∂t
,

X3 =
∂

∂u
,

X4 = t
∂

∂t
+ u

∂

∂u
+ P

∂

∂P
,

X5 = u
∂

∂u
+ F

∂

∂F
,

X6 = x
∂

∂t
− ∂

∂P
,

X7 = x
∂

∂x
− P

∂

∂P
− F

∂

∂F
.

For some special cases of P and F the Eq. (1.1) may be admitted some additional
symmetries. This will be shown in the next section.

3. Reduction and Exact Solutions for Eq. (1.1)

When we confronted with a complicated system of partial differential equations
in some physically important problems, the discovery of any explicit solutions what-
soever is of great interest. Explicit solution can be used as models for physical ex-
periments, as benchmarks for testing numerical methods, etc., and often reflect the
asymptotic or dominant behavior of more general types of solutions. In this sec-
tion, two illustrative methods are applied for our purpose. First, we will work on
Kudryashov method.

3.1. Exact solutions via Kudryashov method. This method is discussed in [9]
comprehensively. Here we implement it for the Eq. (1.1). For this goal, four different
cases of symmetries are considered.

These cases are listed below:
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Case 1:
P = F = 0, and ξ = f1(x), τ = f2(x), ϕ = C1u+ f3(x) + f4(t), (3.1)
where fis are arbitrary smooth functions and C1 is a constant.

Case 2:
P = 0, F 6= 0, and ξ = f3(x, t) + f4(t, u), τ = x+ (x+ t)f5(u) + f6(u),
ϕ = −u+ f2(x) + f1(x), (3.2)
where fis are arbitrary smooth functions.

Case 3:

P =
1

2
, F = 0, and ξ = −C1x− 1

2
C1x

2 − C2x− f5(t), τ = 0,

ϕ = ((x+ t)C1 + C2)u+ C3t+ f4(x), (3.3)
where fis are arbitrary smooth functions and Cis are real constant.

Case 4:
P = 1, F = 0, and ξ = f5(t), τ = 0,

ϕ =
1

2
((2x+ t)C1 + 2C2)u+ C3t+ f4(x), (3.4)

where fis are arbitrary smooth functions and Cis are real constant.
Now for these cases, exact solutions could be found in the rest of the section.

3.1.1. Group-invariant solution for Case 1. Two situations for the Case 1 are consid-
ered for finding exact solutions.

1) Suppose f1 = α, f2 = β, f3 = γ, f4 = δ and C1 = 0. Thus, the symmetry

X = α
∂

∂x
+ β

∂

∂t
+ (γ + δ)

∂

∂u
, (3.5)

yields. An integrating through the group trajectory
dx

α
=

dt

β
=

du

γ + δ
, (3.6)

gives

V = −α

β
x+ t, Y = u−

(
γ + δ

β

)
x, (3.7)

as the invariant functions. Applying the chain rule on the equation (2.9) with
respect to new variables (3.7) gives the reduced equation (3.8);

VY Y = 0. (3.8)
This equation has a line solution Y = k1Y +k2. By replacing the new variable
in this solution with (3.7), the group-invariant solution

u =

(
γ + δ − k1α

β

)
x+ k1t+ k2, (3.9)

is obtained.
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Figure 1. The solution is plotted for α = β = k1 = k2 = 1

2) Let us f1 = α, f2 = β, f3 = f4 = 0 and C1 = 0. The similarity variables for
the given symmetry

X = α
∂

∂x
+ β

∂

∂t
+ u

∂

∂u
, (3.10)

are obtained by the characteristic system
dx

α
=

dt

β
=

du

u
. (3.11)

The solution for the system (3.11) are

V = x− α

β
t, Y = e−

x
αu. (3.12)

A similar method gives

α2

β2
VY Y = 0. (3.13)

Thus, the obtained similarity solution is

u =

[
k1

(
x− α

β

)
t+ k2

]
exp

(x

α

)
. (3.14)

For some special cases of α = β = k1 = k2 = 1 the solution (3.14) is plotted in the
Fig. 1.

3.1.2. Group-invariant solution for Case 2. Similarly, two situations will be consid-
ered for this case.

1) Suppose f1 = f3 = 0, f2 = µ, f4 = α and f5 = ρ. By inserting these variables
to the corresponding symmetry we have

X = α
∂

∂x
+ ((x+ t)ρ+ x)

∂

∂t
+ (µ− u)

∂

∂u
. (3.15)
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The similarity variables for this symmetry are obtained via the group trajec-
tory

dx

α
=

dt

(x+ t)ρ+ x
=

du

µ− u
. (3.16)

The solution for the system (3.16) is

V =

(
x+ t+

α

ρ
+

x

ρ
+

α

ρ2

)
e−

ρ
αx,

Y = (u− µ)e
x
α . (3.17)

Applying the chain rule on the equation (2.9) with respect to new variables
(3.17) gives the reduced equation (3.18);[

(x+ t)ρ+ x

α

]
e−

2ρ
α xVY Y − F (Y, V ) = 0, (3.18)

where x is obtained from (3.17). If F is considered as u the, we have the
following explicit group-invariant solution:

αue
2ρY
α ln((Y + t)ρ+ Y )ρt+ αue

2ρY
α ln((Y + t)ρ+ Y )ρY

+αue
2ρY
α ln((Y + t)ρ+ Y )Y − αue

2ρY
α ρt− 2αue

2ρY
α Y + C1ρ

2Y
+2C1ρY + C2ρ

2 + C1Y + 2C2ρ+ C2 = 0.

For another example if F = xu then,

2αe
2ρY
α ρ2t2 ln((Y + t)ρ+ Y ) + 2αue

2ρY
α ρ2t ln((Y + t)ρ+ Y )ρ

+2αue
2ρY
α ρt ln((Y + t)ρ+ Y )Y − 2αue

2ρY
α ρ2t2 − 2αue

2ρY
α ρ2tY − αe

2ρY
α ρ2uY 2

−2αue
2ρY
α ρtY − 2αe

2ρY
α ρuY 2 − αue

2ρY
α Y 2 − 2C1ρ

3Y − 6C1ρ
2Y − 2C2ρ

3

−6C2ρ
2 − 2C1Y − 6C2ρ− 2C2 = 0.

2) In this case suppose f3 = α, f4 = β, f5 = 0 and f6 = π. Thus, for this
symmetry the similarites are:

Y =
2αt+ 2βt− 2πx− x2

α+ β
,

V = e
x

α+β (u− ρ− µ). (3.19)

Consequently the reduced equation

(π + 2x)VY Y − F (Y, V ) = 0. (3.20)

The equation (3.19) gives different group-invariant solutions for different cases
of F . For example

• For F = u the similarity solution is
1

2
u ln(π + 2Y )Y +

1

4
πu ln(π + 2Y )

−1

4
πu− 1

2
Y u+ C1Y + C2

−e
x

α+β (u− ρ− µ) = 0.
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• For F = xu we have
1

4
uY 2 − 1

4
πu ln(π + 2Y )Y

−1

8
π2u ln(π + 2Y ) +

1

8
π2u+

1

4
πuY + C1Y + C2

−e
x

α+β (u− ρ− µ) = 0.

• For F = x the group-invariant solution is
1

4
Y 2 − 1

4
π ln(π + 2Y )Y

−1

8
π2 ln(π2Y ) +

1

8
π2 +

1

4
πY + C1Y + C2

−e
x

α+β (u− ρ− µ) = 0.

3.1.3. Group-invariant solution for Case 3. Let us consider C1 = C2 = C3 = 0, f4 = α
and f5 = β. Consequently, the similarity variables are

Y = t,

V = u− β

α
x. (3.21)

Variables (3.21) reduce the equation (1.1) to
VY Y = 0. (3.22)

Thus, the group-invariant solution is

u = C1
β

α
x+ C2.

3.1.4. Group-invariant solution for Case 4. Suppose C1 = C2 = 1, C3 = f4 = 0 and
f5 = β. For these changes the similarities are

Y = t,

V = u exp

[
−x(x+ t+ 2)

β

]
. (3.23)

Likewise (3.21), these variables reduce the equation (1.1) to
VY Y = 0. (3.24)

So, the group-invariant solution is

u = exp

[
x(x+ t+ 2)

β

]
(C1t+ C2).

For some special cases of β = C1 = 1, C2 = 0 the solution (3.14) is plotted in the Fig.
2.

3.2. Exact solutions obtained from direct group-invariant method. In this
part, other exact solutions are found via similarity variables extracted from symme-
tries in some special cases of Eq. (1.1 ) by using the direct method. Some similarity
variables give so complicated reduced form. Thus, numerical simulations are needed
for these kinds of equations.
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Figure 2. The solution is plotted for β = C1 = 1, C2 = 0

3.2.1. Case 1: P = u and F = 0. For this case the Eq. (1.1) reduces to

uxt − u2
t − uutt = 0. (3.25)

This equation admits

X1 =
∂

∂x
, X2 =

∂

∂t
, X3 = x

∂

∂x
+ t

∂

∂t
,

X4 = t
∂

∂t
+ u

∂

∂u
, X5 =

x2

2

∂

∂x
+

xt

2

∂

∂t
− 1

2
(xu+ t)

∂

∂u
,

as the basis of symmetries. Now we can reduce the Eq. (3.25) with the similarity
variables extracted from Xis.

• Symmetry X1. This symmetry gives t = r, u(x, t) = v(r) as the similarity
variables. Inserting these variables to Eq. (3.25) gives the following reduced
equation

v′2 + vv′′ = 0, (3.26)
where ’ means the derivation with respect to r. The solution of this equation
is v = ±

√
2C1r + 2C2. Thus, the group-invariant solution for Eq. (3.25)

corresponding to X1 is

u(x, t) = ±
√
2C1t+ 2C2.

This solution is plotted for β = C1 = C2 = 1 in Fig. 3.
• Symmetry X2. This symmetry treats as same as X1. It means the reduced

equation is like as (3.26) but the similarity variables are x = r, u(x, t) = v(r).
Thus, the group-invariant solution is similar for X1.

• Symmetry X3. This operator gives r = t
x , u(x, t) = v(r) as the invariants.

Thus the reduced equation is
v′′(v + r) + v′(v′ + 1) = 0.
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Figure 3. The solution is plotted for β = C1 = C2 = 1

Figure 4. The solution is plotted for C = 1

So, the group-invariant solution is

u(x, t) = − 1

C1
LambertW

(
−C1C2e

−1

eC1
t
x

)
+

t

x
+

1

C1
,

where LambertW is the ”Lambert W” function.
• Symmetry X2. The similarity variables for this operator are x = r, u(x, t) =
v(r)t. So, the reduced equation is

v′ − v2 = 0.

Finally the group-invariant solution is

u(x, t) =
1

−x+ C
.

The solution is plotted in Fig. 4.
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• Symmetry X5. The similarity variables are t = − 2v(r)
q , u(x, t) = − 1

2v(r)q −
v(r) where q = − 2

x . These variables gives a complicated reduces equation

1

4
qvv′′ − 1

4

(
1

2
qv′ + v

)
qv′′ − 1

2

(
1

2
qv′ + 1

)2

+
1

2
(qv′ + 1) = 0,

where should be solve with numerical approximations.

3.2.2. Case 2: P = u and F = −βu. For this case the Eq. (1.1) reduces to
uxt − u2

t − uutt = −βu. (3.27)
The Lie algebra of symmetries for this equation is spanned by

X1 =
∂

∂x
, X2 =

∂

∂t
, X3 = x

∂

∂x
− t

∂

∂t
− 2u

∂

∂u
.

Now the reduction process is mentioned in the sequel.
• Reduction for X1. The similarity variables are t = r, u(x, t) = v(r). So, the

reduced equation is
vv′′ + v′2 − βv = 0. (3.28)

The group-invariant solution for Eq. (3.27) is a smooth function u(x, t) which
satisfies the following identity implicitly:∫ u(x,t)

0

ds√
6βs3 + 3C

ds− t− C = 0.

• Reduction for X2. This symmetry acts the same as X1. It means the reduced
equation is like (3.28) but the similarity variables are x = r, u(x, t) = v(r).
Consequently, the group-invariant solution is similar for X1.

• Reduction for X3. Computations show that this symmetry gives r = xt, u(x, t) =
v(r)
x2 . Thus, the reduced equation is

v′′(v − r) + v′(v′ + 1)− βv = 0.

Numerical approximations are needed here for the solutions.

3.2.3. Case 3: P = 1
u and F = 0. Eq. (1.1) reduces to

uxt −
utt

u
− u2

t

u2
= 0, (3.29)

by this substitution. This equation admits the following four symmetries:

X1 =
∂

∂x
, X2 =

∂

∂t
, X3 = x

∂

∂x
+ t

∂

∂t
, X4 = −t

∂

∂t
+ u

∂

∂u
.

Reduced equations are listed below:
• Reduction for X1. The similarity variables r = t, u(x, t) = v(r) reduce the

Eq. (3.29) to
vv′′ + v′2 = 0.

Consequently, the group-invariant solution for Eq. (3.29) is

u(x, t) = ±
√
2C1t+ 2C2.
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Figure 5. u = −3xt+ t

• Reduction for X2. For the similarity variables r = x, u(x, t) = r we conclude
the trivial equation v′ = 0 with the trivial solution u = 0.

• Reduction for X3. The results for this operator is r = t
x , u(x, t) = v(r). So,

the reduced equation

v′′v(rv + 1) + v′(v′ + v2) = 0,

is derived. Numerical simulations are needed for the solutions.
• Reduction for X4. The similarity variables are r = x, u(x, t) = v(r)

t . If
we insert these new variables to Eq. (3.29) we derive the following reduced
equation:

v′ = −3.

So, it gives the solution

u(x, t) = −3xt+ Ct.

The solution for C = 1 is plotted in Fig. 5

3.2.4. Case 4: P = eu, F = 0. The new equation

uxt − euutt − euu2
t = 0, (3.30)

is derived by this substitution. This equation has a two-dimensional symmetry algebra
spanned by

X1 =
∂

∂t
, X2 = t

∂

∂t
+ u

∂

∂u
.

The similarity variables r = x, u(x, t) = v(r) gives a trivial algebraic equation u =
0. Thus, we do not have any group-invariant solution. But for X2 we have r =
x, u(x, t) = v(r)t as the similarities. The reduced equation for this case is

v′ − v2ev = 0.
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Thus, the group invariant solution for Eq. (3.30) is the implicit function

x+
e−u

u
− Ei(1, u) + C = 0,

where Ei is the exponential integral

Ei(a, z) =

∫ ∞

1

e−szs−ads, Re(z) > 0.

4. Conclusion

In this paper, an application of Lie symmetries of differential equations is applied
in order to find some exact solutions of the acoustic equation. In the first step,
the geometric vector fields of symmetries are found then the reduction process is
illustrated precisely with two separate methods. This process leads to a class of exact
solutions called group-invariant solutions. It is noteworthy that we can extend the
obtained solutions to another’s by using the flow of symmetries.
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