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Abstract This paper deals with the solution of a class of Volterra integral equations in the
sense of the conformable fractional derivative. For this goal, the well-organized

Neumann method is developed and some theorems related to existence, uniqueness,

and sufficient condition of convergence are presented. Some illustrative examples
are provided to demonstrate the efficiency of the method in solving conformable

fractional Volterra integral equations.
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1. Introduction

Fractional calculus is as old as usual calculus. During the past several years,
many researchers have been trying to generalize the concept of the usual calculus
to fractional calculus and some definitions for fractional derivative and integral, by
Riemann, Liouville, Grenville, Caputo, and others are presented (see [29]). However,
some of these definitions suffer disadvantages that caused their application confront
difficulties such as: satisfying the derivative product rule, the derivative quotient rule,
and the chain rule. In 2014, Khalil and his collaborators presented a new definition
for fractional derivative and integral, called conformable fractional derivative and
integral, that removes all of the drawbacks of aforementioned definitions (see [1, 27]).
In what follows same basic definitions are stated referred to (see [27]).
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Definition 1.1. Consider a function f : [0,∞) → R, then conformable fractional
derivative of f of order α is defined by

Tα(f)(x) = lim
ε→0

f(x+ εx1−α)− f(x)

ε
,

for all x > 0 and α ∈ (0, 1]. If f is α-differentiable in some open interval (0, a), and
lim
x→0+

Tα(f)(x) exists, then one can define Tα(f)(0) = lim
x→0+

Tα(f)(x).

If the conformable derivative of f of order α exists, then we simply say that f is
α-differentiable (see [1, 15–25, 27]).

Definition 1.2. Given a function f : [a,∞) → R, a ≥ 0, then the conformable
fractional integral of f is defined by

Iaα(f)(x) =

∫ x

a

f(t)

t1−α
dt,

where the integral is the usual Riemann improper integral and α ∈ (0, 1) (see [1, 15–
25, 27]).

For the sake of simplicity, let us consider I0
α(f)(x) = Iα(f)(x). One of the most

useful facts, in this concept, is the following statement (see [1, 15–25, 27]).
Many phenomena in our real world are described by fractional differential equations
(FDEs) and fractional integral equations (FIEs). In recent years, many effective
methods have been proposed and exerted to solve fractional integral equations (see
[2–6, 8–14, 26, 28–30]). In this study, the Neumann method is successfully developed
to handle an important class of Volterra integral equations in the sense of conformable
fractional derivative.
The organization of the paper is as follows: In Section 2, some fundamental concepts
related to conformable fractional Volterra integral equations of the second kind are
given. In Section 3, the Neumann method is presented to solve conformable fractional
integral equation. In Section 4, some illustrative examples are provided to show the
efficiency of the method. Finally, conclusion is given in Section 5.

2. Some fundamental concepts related to conformable fractional
Volterra integral equation (CFVIEs) of the second kind

In this section, some fundamental concepts such as regular value, existence, unique-
ness, sufficient condition of convergence, and conformable fractional Neumann series
related to conformable fractional Volterra integral equations are presented.

2.1. Regular value. Consider the conformable fractional Volterra integral equations
as the following form

x(s) = y(s) + λIaα (K(s, t)x(t)) , ∀α ∈ (0, 1] (2.1)

where y and K are known function, λ and a are constants and x is an unknown
function(see [7, 25]). Applying conformable fractional integral definition on equation
(2.1), results in

x(s) = y(s) + λ

∫ s

a

K(s, t)x(t)

t1−α
dt. (2.2)
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By considering

Kα(s, t) =
K(s, t)

t1−α
, (2.3)

as conformable fractional Volterra kernel, and substituting (2.3) into (2.2), we obtain

x(s) = y(s) + λ

∫ s

a

Kα(s, t)x(t)dt. (2.4)

According to equation (2.4), the operator form of CFVIEs (2.1), can be denoted as
follows

x = y + λKαx, ∀α ∈ (0, 1], (2.5)

or

Lαx = (I − λKα)x = y. (2.6)

Definition 2.1. Let’s consider λ = λ0, α = α0, and (Lα0)−1 as an L2 operator,
exists and satisfies

(Lα0)−1Lα0 = Lα0(Lα0)−1 = I, (2.7)

then λ0 is called a regular value of the conformable fractional operator Kα0 (see
[7, 25]).

Theorem 2.2. If for a given α = α0 and λ = λ0, the operator (Lα0)−1 exists, then
it is unique (see [7, 25]).

Proof. Suppose that (Lα0
1 )−1 and (Lα0

2 )−1 are two L2 operators that satisfy Eq. (2.7),
and let

H = (Lα0
1 )−1 − (Lα0

2 )−1.

Regarding Eq. (2.7), one has

(Lα0
1 )−1Lα0 = Lα0(Lα0

1 )−1 = I, (2.8)

(Lα0
2 )−1Lα0 = Lα0(Lα0

2 )−1 = I,

and subtracting these two relations results in

HLα0 = Lα0 = 0. (2.9)

Multiplying Eq. (2.9) by the conformable fractional operator (Lα0
1 )−1 and regarding

Eq. (2.8), we get H = 0. �

Theorem 2.3. If λ is a regular value of the conformable fractional operator Kα,
with inverse conformable fractional operatore (Lα0)−1, then for any L2 function y,
Eq. (2.6) has an unique L2 solution, say, x, satisfying (see [7, 25])

x = (Lα0)−1y. (2.10)
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Proof. By Substitution of equation (2.10) into equation (2.6), we have

Lα(Lα)−1y = y, (2.11)

and since Lα(Lα)−1 = I, thus the function x, defined by Eq. (2.10), is a solution of
Eq. (2.6). To show the uniqueness, Lets x1 and x2 be two different solutions of (2.6),
then

Lα(x1 − x2) = 0,

hence

(Lα)−1Lα(x1 − x2) = 0.

So

x1 = x2,

which completes the proof. �

2.2. Conformable fractional Neumann series. If λ is a regular value of con-
formable fractional operator Kα, then the Eq. (2.6) has a unique solution

x = (Lα)−1y = (I − λKα)−1y.

So

(Lα)
−1

= (I − λKα)
−1

= I + λKα + (λKα)
2

+ (λKα)
3

+ (λKα)
4

+ · · · ,

(Lα)
−1

= I +

∞∑
n=1

(λKα)
n
, (2.12)

where Eq. (2.12) is called the conformable fractional Neumann series for the invers

conformable fractional operator (Lα)
−1

.
We set

x0 = y,

x1 = y + λKαx0 = y + λKαy,

x2 = y + λKαx1 = y + λKαy + (λKα)
2
y,

...

so, the nth approximation to xn, can be presented as below

xn = y + λKαxn−1 = y +

n∑
i=1

(λKα)
i
y.

Therefore, if the sequence of functions xn have a limit as n→∞, then

x = lim
n→∞

xn = y +

∞∑
i=1

(λKα)
i
y, (2.13)

where Eq. (2.13) is called the conformable fractional Neumann series for the solution
x of CFVIEs (2.1) (see [7]).
The following theorem states the sufficient condition for convergence.
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Theorem 2.4. The conformable fractional Neumann series (2.12), for (Lα)−1,
α ∈ (0, 1] converges strongly if ||λKα|| < 1 (see [7, 25]).

Proof. Assume that α is given and considered as a constant throughout the proof.
Define

Sn =

n∑
i=0

(λKα)
i
, (2.14)

and take n > m. Regarding equation (2.14), we have

‖Sn − Sm‖ ≤
n∑

i=m+1

‖λKα‖i =
‖λKα‖ (‖λKα‖m − ‖λKα‖n)

1− ‖λKα‖
. (2.15)

Since ‖λKα‖ < 1, thus

lim
n→∞

‖λKα‖n = 0, (2.16)

by considering equations (2.15) and (2.16), we derive

lim
n,m→∞

‖Sn − Sm‖ = 0. (2.17)

So, the sequence {Sn} is a Cauchy sequence, so the limit Sn exists.
Now, lets consider the residual Rn as the following form

Rn = I − (I − λKα)Sn. (2.18)

Setting equation (2.14) in equation (2.18), results in

Rn = (λKα)
n+1

,

‖Rn‖ ≤ ‖λKα‖n+1
.

Since ‖λKα‖ < 1, therefore

lim
n→∞

‖Rn‖ = 0.

Then, conformable fractional operator (Lα)
−1

, is a right inverse of Lα, a similar proof
shows that it is also a left inverse of conformable fractional operatore Lα. �

Lemma 2.5. If Kα is an L2 conformable fractional Volterra operator for a given α,
and b > a, then∣∣∣(Kα)

n+1
(s, t)

∣∣∣ ≤ ‖Kα‖n+1
E

[(n− 1)!]
1
2

kα1 (s) kα2 (s) ,

where (see [7, 25])

kα1 (s) =

[∫ s

a

|Kα (s, t)|2ds
] 1

2
,

kα2 (s) =

[∫ b

t

|Kα (s, t)|2ds

] 1
2

.
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Proof. For α = 1, refer to books [7, 31, 32]. �

Theorem 2.6. If Kα is an L2 conformable fractional Volterra operator for a given
α, the Neumann series (2.12), converges strongly for all λ to the inverse conformable
fractional operator of Kα (see [17, 25]).

Proof. According to Eq. (2.14), for n > m, we obtain

‖Sn − Sm‖E ≤
n∑

i=m+1

‖λKα‖iE . (2.19)

But from lemma (2.5) and Euclidean norm, we get

‖λKα‖iE ≤ |λ|
i ‖Kα‖Ei
[(i− 2)!]

1
2

,

and hence, for allλ,

lim
i→∞

‖λKα‖iE = 0. (2.20)

By considering equations (2.19) and (2.20), we persuade the sequence {Sn} is Cauchy,
so the Neumann series (2.12), converges strongly for all λ to the inverse conformable
fractional operator of Kα. �

3. The conformable fractional Neumann method (CFNM)

Consider the conformable fractional Volterra integral equations of second kind as
follows

x(s) = y(s) + λIaα (K(s, t)x(t)) ,

where y, K are known functions and λ, a are constants and x an unknown function.
We define

x0 (s) = y (s) ,

x1 (s) = y (s) + λIaα (K (s, t)x0(t)) = y (s) + λIaα (K (s, t) y(t)) ,

x2 (s) = y (s) + λIaα (K (s, t)x1(t))

= y (s) + λIaα (K (s, t) y(t)) + λ2Iaα (K (s, t) Iaα (K(t, t1)y(t1))) ,

x3 (s) = y (s) + λIaα (K (s, t)x2(t))

= y (s) + λIaα (K (s, t) y(t)) + λ2Iaα (K (s, t) Iaα (K(t, t1)y(t1)))

+ λ3Iaα (K (s, t) Iaα (K(t, t1) (Iaα (K(t1, t2)y(t2))))) ,

...
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moreover the n-th approximations xn, to x, will be as

xn (s) = y (s) + λIaα (K (s, t)xn−1(t))

= y (s) + λIaα (K (s, t) y(t))

+ λ2Iaα (K (s, t) Iaα (K(t, t1)y(t1)))

+ · · ·+ λnIaα (K (s, t) Iaα (K(t, t1) · · · (Iaα (K(tn−1, tn−2)y(tn))))) .

The solution of CFVIEs is

x (s) = lim
n→∞

xn (s) .

4. Examples

In this section, some illustrative examples are provided to demonstrate the effi-
ciency of the method in solving conformable fractional Volterra integral equations of
second kind.

Example 4.1. Consider the following conformable fractional Volterra integral equa-
tion (see [17, 25])

x (s) = 1− Iα
((

1

α
sα − 1

α
tα
)
x (t)

)
, (4.1)

where its exact solution is as follows

x (s) = cos

(
1

α
sα
)
.

According to the proposed conformable fractional Neumann method, we have

x0(s) = 1,

x1 (s) = 1− Iα
(

1

α
sα − 1

α
tα
)
, (4.2)

x2 (s) = 1− Iα
(

1

α
sα − 1

α
tα
)

+ Iα

((
1

α
sα − 1

α
tα
)
Iα

(
1

α
sα − 1

α
tα
))

,

x3 (s) = 1− Iα
(

1

α
sα − 1

α
tα
)

+ Iα

((
1

α
sα − 1

α
tα
)
Iα

(
1

α
sα − 1

α
tα
))

− Iα
((

1

α
sα − 1

α
tα
)
Iα

((
1

α
sα − 1

α
tα
)
Iα

(
1

α
sα − 1

α
tα
)))

,

...

By solving this sequence of integral equations, the solution of equation (4.1), can be
obtained as the following form

x (s) = 1− 1

2

(
1

α
sα
)2

+
1

24

(
1

α
sα
)4

− 1

720

(
1

α
sα
)6

+ · · · = cos

(
1

α
sα
)
.

This solution is the same as the exact solution.
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Example 4.2. Consider the following CFVIE (see [17, 25])

x (s) = exp

(
1

α
sα
)

+ Iα

(
exp

(
1

α
sα − 1

α
tα
)
x (t)

)
, (4.3)

whit the exact solution

x (s) = exp

(
2

α
sα
)
.

According to the CFNM approach, we have

x0 (s) = exp

(
1

α
sα
)
,

x1 (s) = exp

(
1

α
sα
)

+ Iα

((
1

α
sα − 1

α
tα
)

exp

(
1

α
tα
))

, (4.4)

x2 (s) = exp

(
1

α
sα
)

+ Iα

((
1

α
sα − 1

α
tα
)

exp

(
1

α
tα
))

+ Iα

((
1

α
sα − 1

α
tα
)
Iα

((
1

α
sα − 1

α
tα
)

exp

(
1

α
tα1

)))
,

x3 (s) = exp

(
1

α
sα
)

+ Iα

((
1

α
sα − 1

α
tα
)

exp

(
1

α
tα
))

+ Iα

((
1

α
sα − 1

α
tα
)
Iα

((
1

α
tα − 1

α
tα1

)
exp

(
1

α
tα1

)))
+ Iα

((
1

α
sα − 1

α
tα
)
Iα

((
1

α
tα − 1

α
tα1

)
Iα

((
1

α
tα1 −

1

α
tα2

)
exp

(
1

α
tα2

))))
,

...

By solving this sequence of integral equations, n-th order approximation of Eq. (4.2)
is

xn (s) = exp

(
1

α
sα
)

(4.5)[
1 +

(
1

α
sα
)

+
1

2

(
1

α
sα
)2

+
1

6

(
1

α
sα
)3

+ · · ·+ 1

n!

(
1

α
sα
)n]

.

According to the expansion of the exponential function and equation (4.5), it is ob-
vious that

x (s) = lim
n→∞

xn (s) = exp

(
2

α
sα
)
.

This solution is the same as the exact solution.

Example 4.3. Consider the following Volterra conformable fractional integral equa-
tion (see [17, 25])

x(s) = 2 + s2 + Iα((s− t)x(t)), (4.6)

where for α = 1, the exact solution of Eq. (4.6) is as follows

x(s) = 4 cosh−2.
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Applying to the proposed conformable fractional Neumann method, results in

x0 (s) = 2 + s2,

x1 (s) = 2 + s2 + Iα
(
(s− t)

(
2 + t2

))
, (4.7)

x2 (s) = 2 + s2 + Iα
(
(s− t)

(
2 + t2

))
+ Iα

(
(s− t) Iα

(
(t− t1)

(
2 + t21

)))
,

x3 (s) = 2 + s2 + Iα
(
(s− t)

(
2 + t2

))
+ Iα

(
(s− t) Iα

(
(t− t1)

(
2 + t21

)))
+ Iα

(
(s− t) Iα

(
(t− t1) Iα

(
(t1 − t2)

(
2 + t22

))))
,

...

The corresponding solutions of these sequences are as below

x0 (s) = 2 + s2,

x1(s) =
1

α (α+ 1) (α+ 2) (α+ 3)

(
12α+ 22α2 + 12α3 + 2α4

+
(
12 + 10α+ 2α2

)
sα+1 +

(
α+ α2

)
sα+3

+
(
6α+ 11α2 + 6α3 + α4

)
s2)

...

The seven-terms approximate solutions of Eq. (4.6), for α = 0.4, 0.6, 0.8, 1.0, will be
obtained, respectively as follows

x0.4
7 (s) = 2 + s2 + 0.1225490196s

17
5 + 3.571428571s

7
5 +0.006718696249s

24
5

+ 0.7086167799s
14
5 + 0.0002083962858s

31
5 + 0.05272446284s

21
5

+0.000041546308954s
38
5 + 0.002046757097s

28
5 + 5.770320685 10−8s9

+ 0.0000487323118s7 + 5.902537525 10−10s
52
5 + 7.839818501 10−7s

42
5 ,

x0.6
7 (s) = 2 + s2 + 0.106837606s

18
5 + 2.083333334s

8
5 +0.004891831816s

26
5

+ 0.295928030s
16
5 + 0.0001240322468s

34
5 + 0.01622412446s

24
5

+0.00004154630895s
38
5 + 0.002046757097s

28
5 +5.770320685 10−8s9

+ 0.000001995370766s
42
5 + 0.0004694480457s

32
5 + 2.217078629 10−8s10

+ 0.000008383000821s8 + 1.803089322 10−10s
58
5 + 1.015382851 10−7s

48
5 ,
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x0.8
7 (s) = 2 + s2 + 0.09398496239s

19
5 + 1.388888889s

9
5 +0.003648484567s

28
5

+ 0.1483855651s
18
5 + 0.1483855651s

37
5 + 0.006245183709s

27
5

+0.000001021172568s
46
5 + 0.000001021172568s

36
5 +9.283386987 10−9s11

+ 0.000001943070402s9 + 6.146310236 10−11s
64
5 + 1.835856387 10−8s

54
5 ,

x1.0
7 (s) = 2 + 2s2 + 0.1666666667s4 + 0.005555555556s6+0.00009920634921s8

+ 0.000001102292769s10 + 8.350702795 10−9s12 + 2.294149120 10−11s14.

According to Taylor expansion of x(s), it clearly has seen that

lim
n→∞

x1.0
n (s) = 4 cosh s− 2.

In Figure 1, the seventh-order approximate solution of conformable fractional Volterra
integral equation for α = 0.4, 0.6, 0.8, 1.0 and exact solution for α = 1 are plotted.

Figure 1. The 7th-order approximation of CFNM for different val-
ues α versus exact solution when α = 1.

Example 4.4. Consider the CFVIEs as follows (see [25])

x (s) = 3 sin

(
2

α
sα
)
− Iα

((
1

α
sα − 1

α
tα
)
x (t)

)
, (4.8)

with the exact solution

x (s) = 4 sin

(
2

α
sα
)
− 2 sin

(
1

α
sα
)
.
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By using the proposed CFNM approach, we gain

x0 (s) = 3 sin

(
2

α
sα
)
,

x1 (s) = 3 sin

(
2

α
sα
)

+ Iα

((
1

α
sα − 1

α
tα
)

3 sin

(
2

α
tα
))

, (4.9)

x2 (s) = 3 sin

(
2

α
sα
)

+ Iα

((
1

α
sα − 1

α
tα
)

3 sin

(
2

α
tα
))

+ Iα

((
1

α
sα − 1

α
tα
)
Iα

((
1

α
sα − 1

α
tα1

)
3 sin

(
2

α
tα1

)))
,

x3 (s) = 3 sin

(
2

α
sα
)

+ Iα

((
1

α
sα − 1

α
tα
)

3 sin

(
2

α
tα
))

+ Iα

((
1

α
sα − 1

α
tα
)
Iα

((
1

α
sα − 1

α
tα1

)
3 sin

(
2

α
tα1

)))
+ Iα

((
1

α
sα − 1

α
tα
)
Iα

((
1

α
tα − 1

α
tα1

)
Iα

((
1

α
t1
α − 1

α
tα2

)
3 sin

(
2

α
tα2

))))
,

...

By solving above sequences of integral equations, the 6th-order approximate solution
of equation (4.8), can be presented as follows

x6(s) =
4029

1012
sin

(
2

α
sα
)
− 993

512

(
1

α
sα
)

+
225

768

(
1

α
sα
)3

− 33

1280

(
1

α
sα
)5

+
1

40320

(
1

α
sα
)7

− 1

241920

(
1

α
sα
)9

.

In Figures 2, 3, 4, the 6th-order approximate and exact solutions of Volterra con-
formable fractional integral equation (4.8), for α = 0.5, 0.6, 0.7, 0.8, 0.9, 1.0 are plot-
ted.
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Figure 2. The 6th-order approximation of CFNM for different val-
ues α versus exact solution.

Figure 3. The 6th-order approximation of CFNM for different val-
ues α versus exact solution.



66 M. ILIE, J. BIAZAR, AND Z. AYATI

Figure 4. The 6th-order approximation of CFNM for different val-
ues α.

5. Conclusion

Under investigation in the present paper was been offered the solution of an im-
portant class of Volterra integral equations in the sense of the conformable fractional
derivative. For this purpose, the well-established Neumann method was successfully
developed and some theorems related to existence, uniqueness, and sufficient condi-
tion of convergence were been provided. Some illustrative examples also were been
presented, confirming the super performance of the method in solving conformable
fractional Volterra integral equations.
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