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Abstract In this article, the meshless local radial point interpolation (MLRPI) methods are
applied to simulate two-dimensional wave equation subject to given appropriate

initial and Neumann’s boundary conditions. In MLRPI method, all integrations

are carried out locally over small quadrature domains of regular shapes such as
square or circle. The radial point interpolation method is proposed to construct

shape functions for MLRPI. A weak formulation with a Heaviside step function

transforms the set of governing equations into local integral equations on local sub
domains where Neumann’s boundary condition is imposed naturally. A two-step

time discretization method with the help of Crank-Nicolson technique is employed
to approximate the time derivatives. Convergence studies in the numerical example

show that MLRPI method possesses excellent rates of convergence.

Keywords. Meshless local radial point interpolation (MLRPI), Local weak formulation, Radial basis func-
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1. Introduction

The wave equations display vibrations of structures such as buildings, beams and
machines, and more are the basis for fundamental equations of atomic physics. The
wave equation usually depicts water waves, the vibrations of a string, the propagation
of sound waves, and the transmission of electric signals in a cable, etc. The typical
model of wave equation is an initial boundary value problem being valid in a bounded
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domain or an initial value problem being valid in an unbounded domain. It is worth
to mention that two initial conditions should be prescribed, namely the initial dis-
placement u (x, 0) = ϕ (x) and the initial velocity ut (x, 0) = ψ(x) which describes
the initial displacement and the initial velocity at the starting time, respectively. Un-
like the heat equation, the wave equation includes the term utt which represents the
vertical acceleration at point x. The wave equation plays an important role in var-
ious physical problems and it is required in diverse areas of science and engineering
[11, 15, 18, 27, 28, 29, 31, 32].

Consider the following two-space dimensional hyperbolic partial differential equa-
tion

∂2u

∂t2
+ α

∂u

∂t
+ βu = ∆u+ f (x) , x ∈ Ω = [0, 1]

2
, (1.1)

subject to the initial conditions

u (x, 0) = ϕ (x) ,
∂u

∂t
(x, 0) = ψ (x) , (1.2)

and the Neumann’s boundary condition

∂u

∂n
(x, t) = 0, x ∈ ∂Ω . (1.3)

The main shortcoming of mesh-based methods such as the finite element method
(FEM), the finite volume method (FVM) and the boundary element method (BEM)
are that these numerical methods rely on meshes or elements. In order to overcome
the mentioned difficulties some techniques so-called meshless methods have been pro-
posed recently [22]. Overcoming mesh based methods difficulties is an advantages of
meshless methods which encouraged many researchers to work on different areas of
applied mathematics based on these methods like integral equations[1, 2, 3] as good as
differential equations. There are three types of meshless methods: Meshless methods
based on weak forms such as the element free Galerkin (EFG) method [5, 6], meshless
methods based on collocation techniques (strong forms) such as the meshless collo-
cation method based on radial basis functions (RBFs) [14, 19] and meshless methods
based on the combination of weak forms and collocation technique.

In the literature, several meshless weak form methods have been reported such as:
diffuse element method (DEM) [26], smooth particle hydrodynamic (SPH) [7, 9], the
reproducing kernel particle method (RKPM)[23], boundary node method (BNM) [25],
partition of unity finite element method (PUFEM) [24], finite sphere method (FSM)
[12], boundary point interpolation method (BPIM) [17] and boundary radial point
interpolation method (BRPIM) [10, 16]. G.R. Liu applied the concept of MLPG and
developed meshless local radial point interpolation (MLRPI) method [13, 20, 21, 30].

It is notable using radial basis functions have been shown to be most useful. Es-
pecially thin-plate splines, because of their ability to approximate locally, could help
to improve the accuracy of solving hyperbolic equations [8]. Some basic formulations
and properties of TPSs and the error estimate for them on the Sobolev spaces have
been investigated in [4]. In this paper, MLRPI method is applied to the problem
(1.1)-(1.3). We give an example to show that MLRPI method possesses excellent



CMDE Vol. 8, No. 1, 2020, pp. 155-172 157

rates of convergence. For numerical results the famous MATLAB package R2013b is
used.

2. Point interpolation using radial basis functions

Using polynomials as basis functions in the interpolation is one of the earliest
interpolation schemes. Consider a continuous function u(x) defined in a domain Ω,
which is represented by a set of field nodes. The u(x) at a point of interest x is
approximated in the form:

u (x) =

m∑
i=1

pi(x)ai = {p1 (x) p2 (x) . . . pm (x)}


a1

a2

...
am

= PTa, (2.1)

where pi(x) is the given monomial in the polynomial basis function in the space
coordinate xT = [x, y], m is the number of monomials, and ai is the coefficient for
pi(x) which is yet to be determined. The pi(x) in Eq. (2.1) is built using Pascal’s
triangle and a complete basis is usually preferred. For the two-dimensional (2-D)
space, the linear basis functions are given by

PT (x) = {1, x, y} , m = 3, (2.2)

the quadratic basis functions are

PT (x) =
{

1, x, y, x2, y2, xy
}
, m = 6, (2.3)

and the cubic basis functions are presented as

PT (x) =
{

1, x, y, x2, y2, xy, x3, y3, x2y, xy2
}
, m = 10. (2.4)

In order to determine the coefficients ai, a support domain is formed for the point of
interest at x, with a total of n field nodes included in the support domain. Note that
in the conventional PIM, the number of nodes in the local support domain always
equals the number of basis functions of m, i.e., n = m. The coefficients ai in Eq. (2.1)
can then be determined by enforcing u (x) in Eq. (2.1) to pass through the nodal
values at these n nodes. This yields n equations with each for one node, i.e.,

u1 =
∑m
i=1 aipi (x1) = a1 + a2x1 + a3y1 + · · ·+ ampm (x1) ,

u2 =
∑m
i=1 aipi (x2) = a1 + a2x2 + a3y2 + · · ·+ ampm (x2) ,

...
un =

∑m
i=1 aipi (xn) = a1 + a2xn + a3yn + · · ·+ ampm (xn) ,

(2.5)

which can be written in the following matrix form:

Us=Pma, (2.6)

where

Us={u1 u2 u3. . . un}T (2.7)
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is the vector of function values, and

a = {a1 a2 a3 . . . an}T (2.8)

is the vector of unknown coefficients, and

Pm=


1 x1y1 . . . pm (x1)
1 x2y2 . . . pm (x2)
1 x3y3 . . . pm (x3)
...

...
. . .

...
1 xnyn . . . pm (xn)

 (2.9)

is the so-called moment matrix. Because of n = m in PIM, Pm is hence a square
matrix with the dimension of (n×n or m×m). By solving Eq. (2.6) for a, we obtain

a=P−1
m Us. (2.10)

In obtaining the foregoing equations, we have assumed that P−1
m exists. It is noted

that coefficients a are constant even if the point of interest at x changes, as long
as the same set of n nodes are used in the interpolation, because Pm is a matrix of
constants for this given set of nodes. Substituting Eq. (2.10) back into Eq. (2.1) and
considering n = m yields

u (x) = PT (x) P−1
m Us =

n∑
i=1

φiui = ΦT (x) Us, (2.11)

where ΦT (x) is a vector of shape functions defined by

ΦT (x) =PT (x) P−1
m = {φ1 (x) φ2 (x) . . . φn (x)} . (2.12)

Derivatives of the shape functions can be easily obtained because the PIM shape
function is of polynomial form. The lth derivatives of PIM shape functions can be
written as

Φl (x) =


φl1(x)
φl2(x)

...
φln(x)

=
∂lPT(x)

∂xl
P−1
m . (2.13)

Note that our discussion is based on the assumption that P−1
m exists. This condition

cannot always be satisfied depending on the locations of the nodes in the support
domain and the terms of monomials used in the basis. If an inappropriate polynomial
basis is chosen for a given set of nodes, it may yield in a badly conditioned or even
singular moment matrix. In order to avoid the singularity of the moment matrix,
several strategies have been proposed, such as the randomly moving node method and
the method of transformation of local coordinate system. However, these methods
cannot completely overcome the singularity problem. The matrix triangularization
algorithm (MTA) is another technique to overcome the singularity. Kansa has also
solved this kind of singularity problem using radial basis functions. The Kansa model
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is a global collocation method that uses all the grids in the problem domain, which
leads to a fully populated system matrix. Since the RBFs are used, the moment
matrix is not singular in general. A more stable symmetric formulation has also been
proposed by Z. Wu. Also Liu et al, to overcome this deficiency used RBFs as the
augmented terms in the point interpolation method. In the following section the
conventional radial point interpolation method (RPIM) is described in details.

In order to avoid the singularity problem in the polynomial point interpolation
(PIM), the radial basis function (RBF) is used to develop the radial point interpola-
tion method (RPIM) shape functions for meshless weak form methods. The RPIM
interpolation augmented with polynomials can be written as:

u (x) =

n∑
i=1

Ri (x) ai+

m∑
j=1

pj (x)bj= RT (x) a+PT (x) b, (2.14)

where Ri (x) is a radial basis function (RBF), n is the number of RBFs, pj (x) is
monomial in the space coordinate xT = [x, y], and m is the number of polynomial
basis functions. When m = 0, only RBFs are used. Otherwise, the RBF is augmented
with m polynomial basis functions. Coefficients ai and bj are unknown which should
be determined. There are a number of types of RBFs, and the characteristics of RBFs
have been widely investigated. In the current work, we have chosen the thin plate
spline (TPS) as radial basis functions in Eq. (2.14). This RBF is defined as follows:

R (x) = r2mln (r) , m = 1, 2, 3, . . . (2.15)

Since R(x) in Eq. (2.15) belongs to C2m−1(The set of 2m−1 times continuously
differentiable funtions), so higher-order thin plate splines must be used for higher-
order partial differential operators. For the second-order partial differential equation
(1.1), m = 2 is used for thin plate splines (i.e. second-order thin plate splines). In
radial basis function Ri (x), the variable is only the distance between the point of

interest x and a node at, xi = (xi, yi) i.e. r =

√
(x− xi)2

+ (y − yi)2
. In order to

determine ai and bj in Eq. (2.14), same as PIM, a support domain is formed for
the point of interest at x, and n field nodes are included in the support domain.
Coefficients ai and bj in Eq. (2.14) can be determined by enforcing Eq. (2.14) to
be satisfied at these n nodes surrounding the point of interest x. This leads to the
system of n linear equations, one for each node. The matrix form of these equations
can be expressed as:

Us=Rna+Pmb, (2.16)

where the vector of function values Us is

Us={u1 u2 u3. . . un}T , (2.17)

the RBFs moment matrix is

Rn =


R1(r1) R2(r1) . . . Rn(r1)
R1(r2) R2(r2) . . . Rn(r2)
...

...
. . .

...
R1(rn) R2(rn) . . . Rn(rn)


n×n

, (2.18)
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and the polynomial moment matrix is

Pm =


1 x1y1. . . pm (x1)
1 x2y2. . . pm (x2)
1 x3y3. . . pm (x3)
...

...
. . .

...
1 xnyn. . . pm (xn)


n×m

. (2.19)

Also, the vector of unknown coefficients for RBFs is

aT= {a1 a2 a3. . . an} (2.20)

and the vector of unknown coefficients for polynomial is

bT= {b1 b2 b3. . . bm} . (2.21)

We notify that in Eq. (2.18), rk in Ri(rk) is defined as

rk =

√
(xk − xi)2

+ (yk − yi)2
. (2.22)

We mention that there are (m + n) variables in Eq. (2.16). The additional
m equations can be added using the following m constraint conditions:

n∑
i=1

pj (xi)ai = PT
ma = 0, j = 1, 2, . . . ,m. (2.23)

Combining Eqs. (2.16) and (2.23) yields the following system of equations in the
matrix form

Ũs =

[
Us

0

]
=

[
Rn Pm

PT
m 0

] [
a
b

]
= Gã, (2.24)

where

Ũs={u1 u2 u3. . . un 0 0 . . . 0}T , (2.25)

and

ãT= {a1 a2 a3. . . an b1 b2 b3. . . bm} . (2.26)

Because the matrix Rn is symmetric, the matrix G will also be symmetric. Solving
Eq. (2.24), we obtain

ã=

[
a
b

]
= G−1Ũs. (2.27)

Eq. (2.14) can be re-written as

u (x) = RT (x) a+PT (x) b=
{

RT (x) PT (x)
}[

a
b

]
. (2.28)

Now using Eq. (2.27) we obtain:

u (x) =
{

RT (x) PT (x)
}

G−1Ũs = Φ̃
T

(x) Ũs, (2.29)
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where Φ̃
T

(x) can be re-written as

Φ̃
T

(x) =
{

RT (x) PT (x)
}

G−1

= {φ1 (x)φ2 (x) . . . φn (x)φn+1 (x) . . . φn+m(x)} .
(2.30)

The first n functions of the above vector function are called the RPIM shape functions
corresponding to the nodal displacements and we show by the vector ΦT (x) so that
it is

ΦT (x) = {φ1 (x)φ2 (x) . . . φn (x)} , (2.31)

then Eq. (2.29) is converted to the following one

u (x) = ΦT (x) Us =

n∑
i=1

φi(x)ui. (2.32)

The derivatives of u(x) are easily obtained as

∂u(x)

∂x
=

n∑
i=1

∂φi(x)

∂x
ui,

∂u(x)

∂y
=

n∑
i=1

∂φi(x)

∂y
ui. (2.33)

Note that R−1
n usually exists for arbitrary scattered nodes. In addition, the order of

polynomial used in Eq. (2.14) is relatively low. It is remarkable that the RPIM shape
functions have the Kronecker delta function property, that is

φi (xj) =

{
1, i = j j = 1, 2, . . . , n,
0, i 6= j i, j = 1, 2, . . . , n.

(2.34)

This is because the RPIM shape functions are created to pass thorough nodal values.

3. The time discretisation approximation

In the current work, we employ a time-stepping scheme to overcome the time
derivatives. For this purpose, the following finite difference approximations for the
time derivative operators are used:

∂2u (x, t)

∂t2
∼=

1

(∆t)
2

(
uk+1 (x)− 2uk (x) + uk−1 (x)

)
, (3.1)

∂u (x, t)

∂t
∼=

1

2∆t

(
uk+1 (x)− uk−1 (x)

)
. (3.2)

Also we employ the following approximations by using the Crank-Nicolson technique:

u (x, t) ∼=
1

3

(
uk+1 (x) + uk (x) + uk−1 (x)

)
, (3.3)

∆u (x, t) ∼=
1

3

(
∆uk+1 (x) + ∆uk (x) + ∆uk−1 (x)

)
, (3.4)
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where uk (x) = u(x, k∆t) and x = (x, y). Using the above discussion, Eq. (1.1) can
be written as:

1

(∆t)
2

(
uk+1 (x)− 2uk (x) + uk−1 (x)

)
+

α

2∆t

(
uk+1 (x)− uk−1 (x)

)
+
β

3

(
uk+1 (x) + uk (x) + uk−1 (x)

)
=

1

3

(
∆uk+1 (x) + ∆uk (x) + ∆uk−1 (x)

)
+

1

3
(f (x, (k + 1) ∆t) + f (x, k∆t) + f(x, (k − 1) ∆t)).

(3.5)

Suppose that λ= 3
(∆t)2

, η = 3α
2∆tand F (x; k) = f (x, (k + 1) ∆t) + f (x, k∆t) +

f (x, (k − 1) ∆t) , then we obtain

(λ+ η + β)uk+1 −∆uk+1 = (2λ− β)u
k

+ ∆uk

+ (η − λ− β)u
k−1

+ ∆uk−1 + F (x; k) .
(3.6)

4. The meshless local weak form formulation

Let us now before continuing recall a certain Green’s formula in 2-dimension which
will be of fundamental importance in what follows. Let us start from the divergence
theorem (in two dimensions):∫

Ω

divAdx=

∫
Γ

A.nds, (4.1)

in which A = (A1, A2) is a vector-valued function defined on Ω, x = (x, y) ,
divA = ∂A1

∂x + ∂A2

∂y and n = (n1, n2) is the outward unit normal to Γ. Here dx

denotes the element of area in R2 and ds the element of length on Γ. If we apply the
divergence theorem to A= (vw, 0) and A= (0, vw) we find that∫

Ω

∂v

∂x
wdx+

∫
Ω

v
∂w

∂x
dx=

∫
Γ

vwn1ds, (4.2)

∫
Ω

∂v

∂y
wdx+

∫
Ω

v
∂w

∂y
dx=

∫
Γ

vwn2ds, (4.3)

Denoting by ∇v the gradient of v, i.e. ∇v=
(
∂v
∂x ,

∂v
∂y

)
, we get from (4.2) and (4.3) the

following 2-dimensional Green’s formula:∫
Ω

∇v. ∇wdx=

∫
Ω

(
∂v

∂x

∂w

∂x
+
∂v

∂y

∂w

∂y

)
dx

=

∫
Γ

(
v
∂w

∂x
n1 + v

∂w

∂y
n2

)
ds−

∫
Ω

v

(
∂2w

∂x2
+
∂2w

∂y2

)
dx

=

∫
Γ

v
∂w

∂n
ds−

∫
Ω

v∆wdx,

(4.4)
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where ∂w
∂n = ∂w

∂x n1+∂w
∂y n2 is the normal derivative, i.e. the derivative in the outward

normal direction to the boundary Γ.
Instead of giving the global weak form, the MLRPI method constructs the weak

form over local quadrature cell such as Ωq, which is a small region taken for each node
in the global domain Ω. The local quadrature cells overlap each other and cover the
whole global domain Ω. The local quadrature cells could be of any geometric shape
and size. In this paper they are taken to be of circular shape (see Figure 1). The
local weak form of Eq. (3.6) for xi = (xi, yi) ∈ Ω i

q can be written as

∫
Ωi

q

(
(λ+η+β)uk+1−∆uk+1

)
v(x)dΩ =

∫
Ωi

q

(
(2λ−β)uk+∆uk

)
v(x)dΩ

+

∫
Ωi

q

(
(η−λ−β)uk−1+∆uk−1

)
v(x)dΩ+

∫
Ωi

q

F (x; k) v (x) dΩ,

(4.5)

where Ω i
q is the local quadrature domain associated with the point i, i.e., it is a circle

centered at xi of radius rq and, v(x) is the Heaviside step function,

v (x) =

{
1, x∈Ωq,
0, x/∈Ωq,

(4.6)

as the test function in each local quadrature domain. Using the 2-dimensional Green’s
formula (4.4) and Eq. (4.5) yields the following expression:

(λ+η+β)

∫
Ωi

q

u(k+1)v(x)dΩ+

∫
Ωi

q

∇u(k+1)∇v dΩ−
∫
∂Ωi

q

v
∂u(k+1)

∂n
dΓ

= (2λ−β)

∫
Ωi

q

ukv (x) dΩ−
∫
Ωi

q

∇uk∇v dΩ+

∫
∂Ωi

q

v
∂uk

∂n
dΓ

+ (η − λ− β)

∫
Ωi

q

u(k−1)v (x) dΩ−
∫
Ωi

q

∇u(k−1)∇vdΩ

+

∫
∂Ωi

q

v
∂u(k−1)

∂n
dΓ+

∫
Ωi

q

F (x; k) v (x) dΩ,

(4.7)

where ∂Ω i
q is the boundary of Ω i

q, n = (n1, n2) is the outward unit normal to the

boundary ∂Ω i
q, and ∂u

∂n = ∂u
∂xn1 + ∂u

∂yn2 is the normal derivative, i.e., the derivative

in the outward normal direction to the boundary ∂Ω i
q. Because the derivative of the

Heaviside step function v(x) is equal to zero, then the local weak form equation (4.7)
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Figure 1. Node I is an interior node and J is a node on the Neumann
boundary of the problem domain. Ωs and Ωq are local support and
local quadrature domains, respectively.

is transformed into the following simple integral equation:

(λ+η+β)

∫
Ωi

q

u(k+1)dΩ−
∫
∂Ωi

q

∂u(k+1)

∂n
dΓ

= (2λ−β)

∫
Ωi

q

ukdΩ+

∫
∂Ωi

q

∂uk

∂n
dΓ

+ (η − λ− β)

∫
Ωi

q

u(k−1)dΩ+

∫
∂Ωi

q

∂u(k−1)

∂n
dΓ+

∫
Ωi

q

F (x; k) dΩ,

(4.8)

As it is obvious from Figure 1, for node xi on the natural boundary, ∂Ω i
q and Ω i

q are

replaced by Liq∪Γ iqand Ώ i
q, respectively. Therefore, the local weak form equation for

this node is:

(λ+η+β)

∫
Ώi

q

u(k+1)dΩ−
∫
Li

q

∂u(k+1)

∂n
dΓ−

∫
Γ i

q

∂u(k+1)

∂n
dΓ

= (2λ−β)

∫
Ώi

q

ukdΩ+

∫
Li

q

∂uk

∂n
dΓ+

∫
Γ i

q

∂uk

∂n
dΓ

+ (η − λ− β)

∫
Ώi

q

u(k−1)dΩ

+

∫
Li

q

∂u(k−1)

∂n
dΓ+

∫
Γ i

q

∂u(k−1)

∂n
dΓ+

∫
Ώi

q

F (x; k) dΩ,

(4.9)

Applying the radial point interpolation (RPI) for the unknown functions, the local
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integral equation (4.8) and (4.9) is transformed into a system of algebraic equations
with used unknown quantities, as described in the next section.

5. Discretization and numerical implementation for MLRPI method

In this section, we consider Eq. (4.8) to see how to obtain discrete equations for the
interior points. Consider N regularly located points in the interior of domain of the
problem so that the distance between two consecutive nodes in each direction is con-
stant and equal to h (see Figure1). Assuming that u( xi, (k− 1)∆t) and u( xi, k∆t),
i = 1, 2, ..., N are known, our aim is to compute u ( xi, (k + 1) ∆t) , i = 1, 2, ..., N.
So, we have N unknowns and to compute these unknowns we need N equations. As
it will be described, corresponding to each node we obtain one equation. For nodes
which are located in the interior of the domain, i.e., for xi ∈ interior Ω , to obtain
the discrete equations from the locally weak forms (4.8), substituting approximation
formulas (2.32) and (2.33) into local integral equations (4.8) yields:

(λ+η+β)

N∑
j=1

(∫
Ωi

q

φjdΩ

)
u

(k+1)
j −

N∑
j=1

(∫
∂Ωi

q

∂φj
∂n

dΓ

)
u

(k+1)
j

= (2λ−β)

N∑
j=1

(∫
Ωi

q

φjdΩ

)
ukj +

N∑
j=1

(∫
∂Ωi

q

∂φj
∂n

dΓ

)
ukj

+(η − λ− β)

N∑
j=1

(∫
Ωi

q

φjdΩ

)
u

(k−1)
j +

N∑
j=1

(∫
∂Ωi

q

∂φj
∂n

dΓ

)
u

(k−1)
j

+

∫
Ωi

q

F (x; k) dΩ,

(5.1)

or equivalently(λ+η+β)

N∑
j=1

(∫
Ωi

q

φjdΩ

)
−

N∑
j=1

(∫
∂Ωi

q

∂φj
∂n

dΓ

)u(k+1)
j

=

(2λ−β)
N∑
j=1

(∫
Ωi

q

φjdΩ

)
+

N∑
j=1

(∫
∂Ωi

q

∂φj
∂n

dΓ

)ukj
+

(η − λ− β)

N∑
j=1

(∫
Ωi

q

φjdΩ

)
+

N∑
j=1

(∫
∂Ωi

q

∂φj
∂n

dΓ

)u(k−1)
j

+

∫
Ωi

q

F (x; k) dΩ,

(5.2)

Now for nodes which are located on the boundary, in this step we write the discretized
form of Eq. (4.9). But before this, the natural boundary condition can be easily
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imposed as follows. From Eq. (1.3) we understand:

∫
Γ??

q

∂u(k−1)

∂n
dΓ=

∫
Γ i

q

∂uk

∂n
dΓ=

∫
Γ i

q

∂u(k+1)

∂n
dΓ= 0. (5.3)

Substituting the relation (5.3) and also the approximation formulas (2.32) and (2.33)
into local integral equation (4.9) yields:

(λ+η+β)

N∑
j=1

(∫
Ώi

q

φjdΩ

)
−

N∑
j=1

(∫
Li

q

∂φj
∂n

dΓ

)u(k+1)
j

=

(2λ−β)

N∑
j=1

(∫
Ώi

q

φjdΩ

)
+

N∑
j=1

(∫
Li

q

∂φj
∂n

dΓ

)ukj
+

(η − λ− β)

N∑
j=1

(∫
Ώi

q

φjdΩ

)
+

N∑
j=1

(∫
Li

q

∂φj
∂n

dΓ

)u(k−1)
j

+

∫
Ώi

q

F (x; k) dΩ,

(5.4)

The matrix forms of Eqs. (5.2) and (5.4) for all N nodal points in domain and on
boundary of the problem are given in below in Eqs. (5.5) and (5.7) respectively:

(λ+η+β)

N∑
j=1

Aij −
N∑
j=1

Bij

u(k+1)
j

=

(2λ−β)

N∑
j=1

Aij +

N∑
j=1

Bij

ukj
+

(η − λ− β)

N∑
j=1

Aij +

N∑
j=1

Bij

u(k−1)
j + F ki ,

(5.5)

where

Aij =

∫
Ωi

q

φjdΩ, Bij =

∫
∂Ωi

q

∂φj
∂n

dΓ, F ki =

∫
Ωi

q

F (x; k) dΩ, (5.6)
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and (λ+η+β)

N∑
j=1

Áij −
N∑
j=1

B́ij

u(k+1)
j

=

(2λ−β)

N∑
j=1

Áij +

N∑
j=1

B́ij

ukj
+

(η − λ− β)

N∑
j=1

Áij +

N∑
j=1

B́ij

u(k−1)
j + F́ ki ,

(5.7)

where

Áij =

∫
Ώi

q

φjdΩ, B́ij =

∫
Li

q

∂φj
∂n

dΓ, F́ ki =

∫
Ώi

q

F (x; k) dΩ. (5.8)

Now, assuming

∀j : Aij =


(λ+η+β)Aij −Bij , i ∈ interior Ω

(λ+η+β) Áij − B́ij i ∈ ∂Ω

∀j : Bij =


(2λ−β)Aij +Bij , i ∈ interior Ω

(2λ−β) Áij + B́ij i ∈ ∂Ω

∀j : Cij =


(η − λ− β)Aij −Bij , i ∈ interior Ω

(η − λ− β) Áij − B́ij i ∈ ∂Ω

Fki =


F ki , i ∈ interior Ω

F́ ki i ∈ ∂Ω

with Fk =
[
Fk1 ,Fk2 , . . . , FkN

]T
, U = (ui)N×1, and combining Eqs. (5.5) and (5.7)

yields:

AU (k+1) = BUk + CU (k−1) + Fk. (5.9)

In general, we have the above equation for each time level and to obtain U (k+1),
we need to solve the above system of linear equations but at first step, when k = 0,
according to the initial conditions that were introduced in Eqs. (1.2), we apply the
following assumptions:

U (0) = Φ = [ϕ (x1) , ϕ (x2) , . . . ,ϕ(xN)]
T
, (5.10)

U (−1) = U (1) − 2∆tΨ = U (1) − 2∆t[ψ (x1) , ψ (x2) , . . . ,ψ(xN)]
T
. (5.11)
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Therefore Eq. (5.9) is converted to the following

AU (1) = BU (0)+C
(
U (1) − 2∆tΨ

)
+ F0, (5.12)

or equivalently

(A−C)U
(1)

= BU (0)+C (−2∆tΨ) + F0. (5.13)

6. Numerical experiment

In this section, we show the result obtained for an example using the meshless
method described above. In this example, the domain integrals and the boundary
integrals are both evaluated with 6 points Gaussian quadrature rule. To show the
behavior of the solution and the efficiency of the proposed method, the following root
mean square (RMS) error is applied to make comparison:

RMS =

√∑N
i=1 (Uexact (xi)− Uapprox (xi))

2

N
,

where Uexact (xi) and Uapprox (xi) are achieved by exact and approximate solutions
on points xi and N is number of nodal points. Also in order to implement the
meshless local weak form, the radius of the local quadrature domain rq = 0.7h is
selected, where h is the distance between the nodes in x or y direction. The size of
rq is such that the union of these sub-domains must cover the whole global domain.
The radius of support domain to obtain shape functions in the frame of local radial
point interpolation method is set as rs = 4rq. This size is significant enough to have
sufficient number of nodes (N) and gives an appropriate approximation. Also, in Eq.
(2.14), we set m = 6, i.e., the quadratic basis function (2.3) is used. We set α = 70,
β = 50 in Eq. (1.1) and, the exact solution of the problem (1.1)-(1.3) is taken as:

u (x, y, t) = cos (πx) cos (πy) exp (−t) ,
where ϕ (x, y) , ψ (x, y) are defined accordingly and

f (x, y, t) = cos (πx) cos (πy) exp (−t)
(
1− α+ β + 2π2

)
.

In Table 1, The RMS error of numerical solution for different time steps and dif-
ferent number of nodal points for t=1.5 have been reported. It is clear from this
table, the RMS error decreases when nodal points increases and also when time steps
decreases. In Table 2, the RMS error of numerical solution for different number of
nodal points for some time levels has been given. The spatial convergence could be
seen in this table. The descending behavior of the RMS error for long time by in-
creasing time with N = 1681 and ∆t = 0.01 is observed in Table 3. It can be seen
that the RMS error goes to zero by passing time, in other words the MLRPI method
is unconditionally stable for this example. In Fig.2, the RMS error has been plotted
at different time levels with ∆t=0.1, 0.05 and 0.001 and N = 289. As it is clear
from this figure, the RMS error decreases when ∆t decreases and also the RMS error
decreases by passing time. In Fig.3, the RMS error has been plotted for increasing
nodal points with time levels t=3.8, 4.8 and 5.8 and ∆t=0.01. As it is clear from this
figure, the RMS error decreases when nodal points increases and this refers to spatial
convergence.
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Table 1. The RMS error for different time steps and different nodal
points for t =1.5.

∆t N=36 N=121 N=441
0.1 1.048641e-02 2.027650e-03 1.069825e-03
0.05 9.575349e-03 1.877718e-03 8.566803e-04
0.001 9.216767e-03 1.813486e-03 7.918458e-04

Table 2. The RMS error for different time levels and different nodal
points with ∆t =0.01.

N t=1.8 t=3.6 t=5.4
16 2.954136e-02 1.460926e-02 5.276435e-03
81 3.216066e-03 2.335722e-03 1.031264e-03
169 1.295624e-03 1.134789e-03 5.520654e-04
225 9.446468e-04 8.581564e-04 4.364497e-04
400 6.633804e-04 4.831297e-04 2.728478e-04

Figure 2. The behavior of RMS error via time with N=289.
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7. Conclusion

In this paper meshless local radial point interpolation (MLRPI) method has been
applied to solve a class of two-space dimensional wave equations. The main challenge
of current work is the improvement of meshless techniques, which relies on the ro-
bust and efficient implementation of effective integration rules, to impose Neumanns
boundary conditions . In this method, the shape functions have been constructed by
the radial point interpolation. Some time stepping schemes were employed to approx-
imate the time derivatives.
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Table 3. The RMS error for different time levels with ∆t=0.01 and N=1681.

t RMS error
0 0

0.5 1.065287e− 03
1 1.215302e− 03

1.5 1.008524e− 03
2 7.274216e− 04

2.5 4.838264e− 04
3 3.092164e− 04

3.5 2.010535e− 04
4 1.429591e− 04

4.5 1.135373e− 04
5 9.557862e− 05
10 8.125376e− 06
13 1.155090e− 06

Figure 3. The behavior of RMS error via increasing nodal point for
some time levels.
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