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Abstract This paper aims to investigate the stability and numerical approximation of the

Sivashinsky equations. We apply the Galerkin meshfree method based on the radial
basis functions (RBFs) to discretize the spatial variables and use a group presenting

scheme for the time discretization. Because the RBFs do not generally vanish on

the boundary, they can not directly approximate a Dirichlet boundary problem by
Galerkin method. To avoid this difficulty, an auxiliary parametrized technique is

used to convert a Dirichlet boundary condition to a Robin one. In addition, we
extend a stability theorem on the higher order elliptic equations such as the bihar-

monic equation by the eigenfunction expansion. Some experimental results will be

presented to show the performance of the proposed method.
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1. Introduction

The approximate solution of the Galerkin method is to determine the solution of
a system of equations obtained by the variational formulation of the main problem.
Also the key property of the Galerkin approach is that the error is orthogonal to
the chosen subspaces. In the variational formulation, it is almost always necessary
to estimate some integrals. This method has also more computational cost than the
collocation method, but it is a stable algorithm and well computes the approximate
solution of the well-posed problems. Although it has suffered from deficiencies, special
techniques can be used to alleviate the defects in the applications.
Investigated by authors of [6], a set of background cells were required to evaluate
the integrals resulted from the use of the Galerkin weak-form. Global numerical
integrations were needed to obtain the coefficient matrix of the equation system.
Hence, a global background cell structure had to be used for these integrations, so
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that the method was not truly meshless. Also, emphasis was placed on the relationship
between the supports of the shape functions and the sub-domains used to integrate
the discrete equations. It was shown that constructing the quadrature cells with no
attention to the local supports of the shape functions may result in the considerable
integration error. They employed the conventional Gauss quadrature rules in the
cells for which the high order quadrature rule was needed for sufficient accuracy in
the Galerkin meshfree method. Nodal integration, on the other hand, led to rank
instability and significant loss of accuracy in the numerical solution. In contrast with
using background meshes for integration, discussed above, a truly meshfree Galerkin
computational method rely chiefly on the nodal integration maintaining the meshfree
characteristics of the weak forms.
The Sivashinsky differential equation, which models a planar solid-liquid interface for
a binary alloy for a = 0, is considered as the following nonlinear biharmonic equation
[6, 4, 12]

ut + ∆2u− a ∆u+ b u = −∆f(u), in Ω,

u = 0, ∆u = 0, on ∂Ω,

u(0) = u◦, on Ω̄.

(1.1)

where a, b are two positive real numbers, Ω is a bonded Lipschitz region with its
boundary ∂Ω, and u◦, and f satisfy suitable conditions. This problem was surveyed
and solved by the numerical method given in [9, 10]. Dehghan [6] applied the meshless
weak form techniques based on the radial point interpolation method for solving this
equation and derived an error estimation of its global weak form.

In this work, we apply the Galerkin meshfree method based on the RBFs to the
Sivashinsky equation and consider the stability of this equation by the eigenfunction
expansion. This paper is organized as follows. In section 2, we introduce eigenfunc-
tions of the biharmonic operators and use them to study the stability of the method.
The Galerkin meshless method is presented in section 3. Some numerical results will
be presented in section 4.

2. Stability

Eigenvalue problems are important in the mathematical analysis of partial differ-
ential equations (PDEs), and occur, e.g. in the modeling of vibrating membranes and
other applications. In our study of time-dependent PDEs it will be important to de-
velop functions in eigenfunction expansions, and we therefore discuss such expansions
in this section.

2.1. Solution of Au = f by Eigenfunction Expansion. We first solve A =
∆2−a∆+ bI with the Positive Parameters a and b by the use of eigenfunction expan-
sions. We denote by (., .)Ω and ‖.‖Ω the inner product and the norm in L2 = L2(Ω),
respectively. Also a Hilbert space of functions satisfying the double Dirichlet bound-
ary condition H =

{
u ∈ H2(Ω) s.t. u = 0, ∆u = 0, on ∂Ω

}
with the inner product

(., .)H = (∆. , ∆.)Ω + a (∇. , ∇.)Ω + b ( ., .)Ω that Hk(Ω), k > 0, is the Hilbert
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Sobolev space of kth order [2]. We find an eignepair (λ, ψ) ∈ C × H\{0} such that
for all ν ∈ H

(Aψ, ν)Ω = λ (ψ, ν)Ω. (2.1)

Using integration by parts twice, we obtain

(Aψ, ν)Ω = (ψ, ν)H. (2.2)

Substituting (2.2) into (2.1), we have

(ψ, ν)H = λ (ψ, ν)Ω. (2.3)

By the result of Theorem 19.9 in [3] for classical regions with smooth or convex
polygon boundary, we may conclude at once that the eigenfunctions are smooth,
ψ ∈ C∞, because if u is a solution of Au = f and f ∈ Hk(Ω), then u ∈ Hk+4(Ω)∩H
being similar with elliptic regularity [2] that we call A−regularity and

‖u‖k+4 ≤ ‖f‖k, (2.4)

where ‖.‖k is the norm of Hk(Ω). Since ψ ∈ L2, A−regularity implies that ψ ∈
H4(Ω) ∩H, which in turn shows ψ ∈ H8(Ω) ∩H, and so on.

Theorem 2.1. The eigenvalues of A are real, positive and tend to infinity. Two
eigenfunctions corresponding to different eigenvalues are orthogonal in L2 and H.
Also the nth eigenvalue is calculated as

λn = inf
{
‖ν‖2H s.t. ν ∈ H, ‖ν‖Ω = 1 and (ψi, ν)Ω = 0 for all i = 1, 2, · · · , n−1

}
,

where ψi is eigenfunction corresponding to eigenvalue λi. {ψn}∞n=1 is an orthonormal
base of L2 and H.

Proof. Let λ be an eigenvalue and ψ be the corresponding eigenfunction. Then

λ‖ψ‖2Ω = ‖ψ‖2H,

which implies that λ > 0. Let λ1 and λ2 be two different eigenvalues and ψ1 and ψ2

be the corresponding eigenfunctions. Then

λ1(ψ1, ψ2)Ω = (ψ1, ψ2)H = (ψ2, ψ1)H = λ2(ψ2, ψ1)Ω,

so that

(λ1 − λ2)(ψ1, ψ2)Ω = 0.

Since λ1 6= λ2, it follows that (ψ1, ψ2)Ω = 0 and (ψ1, ψ2)H = 0. The property of
tending to infinity can be proved by Theorem 6.3 in [7]. It is clear that the inequality

‖ν‖H ≥ ‖ν‖1, ν ∈ H. (2.5)

holds and obviously λn ≤ λn+1. Let ‖ψn‖H = λn and ‖ψn‖Ω = 1, we get v ∈ H
such that v =

∑n−1
i=1 viψi and ‖v‖Ω > 1, for an integer number n, Cn corresponds

to the transformed of Bn =
{
ν ∈ H, ‖ν‖Ω ≤ 1 and (ψi, ν)Ω = 0 for all i =

1, 2, · · · , n−1
}
v is a weakly compact set on H by the Banach-Alaoglu Theorem [11].

Denote fn(ν) = 1
2

(
‖ν‖2H − λn‖v‖2Ω − λn

)
on Cn that is the closed convex bounded
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set, also function fn has an argument of minimum value on Cn such as v+ψn, so for
any λn there is at least a solution ψn ∈ Bn from Theorem 3.1 of [5] such that

DGfn(v + ψn)[ν − ψn] ≥ 0, ∀ν ∈ Bn,

where DGfn is Ĝateaux differential fn at ψn, so

(v + ψn, ν − ψn)H = (ψn, ν − ψn)H ≥ 0, ∀ν ∈ Bn,

from (ψn, ψn)H = λn, v + ψn implementing minimal argument of fn in Cn, and
simplifying above term we have

(ψn, ν)H − λn(ψn, ν)Ω ≥ 0, ∀ν ∈ Bn.

It is clear that H = spanBn ⊕ span{ψ1, · · · , ψn−1}, also

(ψn, ν)H − λn(ψn, ν)Ω ≥ 0, ∀ν ∈ H,

thus

(ψn, ν)H = λn(ψn, ν)Ω, ∀ν ∈ H.

By Theorem 12.10 of [11] and that A has the self-adjoint linear operator, we conclude
that {ψn}∞n=1 is an orthonormal base for L2 and H.

�

Theorem 2.2. Any solution of Au = f for f ∈ L2 has a representation in terms of
{ψn}∞n=1 as

u =

∞∑
n=1

1

λn
(ψn, f)Ωψn.

Proof. Multiplying both sides of Au = f by ψn, yields(
Au, ψn

)
Ω

=
(
f, ψn

)
Ω
,

and using integration by parts, we have(
u,Aψn

)
Ω

= λn
(
u, ψn

)
Ω

=
(
f, ψn

)
Ω
,

but we get ûn =
(
u, ψn

)
Ω

which is a multiple of Fourier representation for u =∑∞
n=1 ûnψn, that is, ûn = 1

λn

(
f, ψn

)
Ω

. �

We consider the time-independent solution in the next section.

2.2. Stability of the Sivashinsky equation. We first solve ut +Au = 0 by using
eigenfunction expansions and seeking a solution of the form

u(x, t) =

∞∑
n=1

ûn(t)ψn(x), (2.6)

where ûn : [0, T ) → R, T ∈ (0,∞], are coefficients to be determined. Because this
is a sum of products of functions of x and t, this approach is called the method
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of separation of variables. Inserting (2.6) into the differential equation in the initial-
boundary value problem ut+Au = 0 and using eignepairs property we obtain formally

∞∑
n=1

(dûn(t)

dt
+ λnûn(t)

)
ψn(x) = 0, for (t,x) ∈ (0, T ]× Ω,

and, since the ψn’s form a base, we have

dûn(t)

dt
+ λnûn(t) = 0, t ∈ [0, T ], ∀n = 1, 2, · · · ,

so that

ûn(t) = ûn(0)e−λnt.

Moreover, from the initial condition, it follows that

u(x, 0) =

∞∑
n=1

ûn(0)ψn(x) = u◦(x) =

∞∑
n=1

ûnψn(x), ûn = (ψn, u◦)Ω, ∀n = 1, 2, · · · .

We thus see that, at least formally, the solution has to be

u(x, t) =

∞∑
n=1

ûne
−λntψn(x), (2.7)

where by Parsevals relation, with L2−norm,

‖u(., t)‖2Ω =

∞∑
n=1

|ûn|2e−2λnt ≤ e−2λ1t
∞∑
n=1

|ûn|2 = e−2λ1t‖u◦‖2Ω <∞,

thus

‖u(., t)‖Ω ≤ ‖u◦‖Ω, ∀t ∈ [0, T ]. (2.8)

Modifying the above inequality, yields

‖u(., t)‖Ω ≤ e−λ1t‖u◦‖Ω, ∀t ∈ [0, T ]. (2.9)

Theorem 2.3. Assume, for u(t) ∈ H, for all t > 0, that Dm
t Aku ∈ L2, Dt being

time differential operator, for k and m, then

‖Dm
t Aku(., t)‖Ω ≤ Cm,kt−m−k‖u◦‖Ω, ∀t ∈ (0, T ],

and

‖Dm
t Aku(., t)‖H ≤ Cm,kt−m−k−

1
2 ‖u◦‖Ω, ∀t ∈ (0, T ].

Proof. The solution of this problem has the representation as (2.7). We first note
that for any m, k ≥ 0 there is a constant Ck such that tke−t ≤ Ck for t ≥ 0. Using
this with k, m,

‖Dm
t Aku(., t)‖2Ω = t−2(k+m)

∞∑
n=1

|ûn|2(λnt)
2(k+m)e−2λnt ≤ C2

k+mt
−2(k+m)e−2λ1t‖u◦‖2Ω,

so that

‖Dm
t Aku(., t)‖Ω ≤ Ck+mt

−(k+m)‖u◦‖Ω.
Because ‖u(t)‖2H = (Au(t), u(t))Ω, the other part can be proven similarly. �
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Acting the solution operator E(t), being the defined linear operator, on the initial
data u◦ is resulted in u(t) = E(t)u◦. By (2.7) this operator satisfies the stability
estimate

‖E(t)u◦‖Ω ≤ ‖u◦‖Ω, ∀t ∈ [0, T ],

and Theorem 2.3 may be expressed as

‖Dm
t E(t)u◦‖Ω ≤ Cmt−m‖u◦‖Ω,

which expresses a smoothing property of the solution operator. In fact, as we shall
see, the solution of ut +Au = f may be expressed as

u(x, t) = E(t)u◦(x) +

∫ t

0

E(t− s)f(x, s)ds. (2.10)

This formula represents the solution of the inhomogeneous equation as a superposition
of solutions of the homogeneous equations, so that

‖u(t)‖Ω ≤ ‖u◦‖Ω +

∫ t

0

‖f(s)‖Ωds, (2.11)

where we write u(t) for u(., t) and similarly for f(s). We can modify the inequality
(2.11) similar to the above process such that

‖u(t)‖Ω ≤ e−λ1t‖u◦‖Ω +

∫ t

0

e−λ1(t−s)‖f(s)‖Ωds. (2.12)

Now we are ready to express a stability theorem for the problem (2.1).

Theorem 2.4 (Stability of Sivashinsky problem). Assume that u is the solution of
equation (1.1) and there is a Lf > 0 for all ν ∈ H

(∇f(ν),∇ν)Ω ≤ Lf‖∇ν‖2Ω,

then for a C > 0 we have

‖u(t)‖Ω ≤ C‖u◦‖Ω.

Proof. Multiplying both sides of (2.10) by ν ∈ H1
◦, ‖ν‖Ω = 1, and using integration

by parts, gives

(u(t), ν)Ω = E(t)(u◦, ν)Ω +

∫ t

0

E(t− s)(∇f(u(s)),∇ν)Ωds,

where H ⊂ H1
◦ is the set of functions of H1 that vanish on the boundary of Ω. Let

ν = u(t)

(u(t), u(t))Ω ≤ e−λ1t|(u◦, u(t))Ω|+ Lf

∫ t

0

e−λ1(t−s)(∇u(s),∇u(s))Ωds,

associating to the inequality (2.5), so that

‖u(t)‖2Ω ≤ e−λ1t‖u(t)‖Ω‖u◦‖Ω + Lf

∫ t

0

e−λ1(t−s)‖u(s)‖2Hds,
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also by Cauchy-Schwarz inequality and Theorem 2.3 we derive as follows

‖u(t)‖2Ω ≤ e−λ1t‖u◦‖Ω‖u(t)‖Ω + Lf

∫ t

0

e−λ1(t−s)s−
1
2 ‖u◦‖2Ωds

≤ e−λ1t

2

(
‖u(t)‖2Ω + ‖u◦‖2Ω

)
+ ‖u◦‖2Ω

(
Lf

∫ t

0

e−λ1(t−s)s
−1
2 ds

)
.

Let C2 =

(
1
2 + 2√

λ1

)
1− 1

2 e
−λ1t ≤

(
1 + 4√

λ1

)
and thus we have

‖u(t)‖Ω ≤ C‖u◦‖Ω.

�

f(u) = 2u− 1
2u

2 (see [6]), and we can give Lf = 3. Hence problem (1.1) is stable.

3. Galerkin meshfree method

In this section, we introduce the Galerkin meshfree method based on the RBFs.
Assume that XN = {x1, · · · , xN} is a set of pairwise distinct points in the compact set
Ω. An RBF is a radial function Π(x) = π(‖x‖), where π ∈ C[0,∞), that is positive
definite or m-order conditionally positive definite on Rn with respect to the set of
polynomials Πn

m having total degree m− 1 or less when all nonzero a ∈ Rn satisfying∑N
i=1 aip(xi) = 0, for all p ∈ Πn

m, we have

N∑
i=1

N∑
j=1

aiajΠ(xj − xi) > 0.

We use compactly-supported positive definite RBFs (CS-RBFs) in this paper. For
m = 0, the fourth order CS-RBFs is defined by

Π(x) =

{
c2
(
r2

4 −
5r4

8 + 4r5

5 −
5r6

12 + 4r7

49

)
0 ≤ r ≤ 1,

0 1 < r,

where Π ∈ C4, and c > 0 is a parameter. For the biharmonic equation, we must
apply higher-order Wendlands CS-RBFs that causes complex and costly calculations.

3.1. Galerkin meshfree method based on the radial basis functions (GRBFs).
The approximation space is used to Galerkin meshfree method as follows

VN =
{ N∑
i=1

aiΠi(x) such that Πi(x) = Π(x− xi) ai ∈ R, ∀i = 1, 2, · · · , N
}
.

The meshless weak form techniques based on radial point interpolation has been
applied to the nonlinear biharmonic equation [6]. Also, the error estimate of meshless
global weak form methods has been derived for this problem. RBFs do not satisfy
the double boundary conditions, directly; however, the Robin boundary conditions to
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approximate Dirichlet boundary conditions of Eq. (1.1) by two positive parameters
α and β, can be used as follows,

∂uα,β
∂t

+ ∆2uα,β − a ∆uα,β + b uα,β = −∆f(uα,β), in Ω,

uα,β + α
∂uα,β
∂n

= 0, ∆uα,β + β
∂∆uα,β
∂n

= 0, on ∂Ω,

uα,β(0) = u◦, Ω̄,

(3.1)

where n is the surface normal to ∂Ω. The weak form of (3.1) with twice integration
by parts can be obtained when for all v ∈ H2(Ω) and from Theorem 2.4 there is a
unique uα,β ∈ H2(Ω) called weak solution of Eq. (3.1) as follows

d

dt

(
uα,β , v

)
Ω

+
(

∆uα,β ,∆v
)

Ω
+ β

(
∆uα,β , v

)
∂Ω

+

a
(
∇uα,β ,∇v

)
Ω
− aα

(
uα,β , v

)
∂Ω

+ b
(
uα,β , v

)
Ω

= −
(

∆f(uα,β), v
)

Ω

uα,β(0) = u◦, Ω̄,

(3.2)

where
(
uα,β , v

)
Ω

=
∫

Ω
uα,β(x, t)v(x)dx and

(
uα,β , v

)
∂Ω

=
∫
∂Ω
uα,β(x, t)v(x)dσ. We

investigate by some examples that solution of Eq. (3.2) tend to solution of Eq. (1.1)
as α → ∞ and β → ∞ via typically weak convergence. The approximate solution
represented in VN is given as

ũN,α,β(x, t) =

N∑
i=1

ai(t)Πi(x),

By substituting the approximate solution into Eq. (1.1), we have, for all j = 1, 2, · · · , N ,

d

dt

(
uN,α,β ,Πj

)
Ω

+
(

∆uN,α,β ,∆Πj

)
Ω

+ β
(

∆uN,α,β ,Πj

)
∂Ω

+

a
(
∇uN,α,β ,∇Πj

)
Ω
− aα

(
uN,α,β ,Πj

)
∂Ω

+ b
(
uN,α,β ,Πj

)
Ω

= −
(

∆f(uN,α,β),Πj

)
Ω

uN,α,β(0) = u◦, Ω̄,

(3.3)

so that
N∑
i=1

dai(t)

dt

(
Πi,Πj

)
Ω

+

N∑
i=1

ai(t)
(

∆Πi,∆Πj

)
Ω

+

β

N∑
i=1

ai(t)
(

∆Πi,Πj

)
∂Ω

+ a

N∑
i=1

ai(t)
(
∇Πi,∇Πj

)
Ω
−

aα

N∑
i=1

ai(t)
(

Πi,Πj

)
∂Ω

+ b

N∑
i=1

ai(t)
(

Πi,Πj

)
Ω

= −
N∑
i=1

f(uN,α,β(xi))
(

∆Πi,Πj

)
Ω

N∑
i=1

ai(0)
(

Πi,Πj

)
Ω

=
(

Πi, u◦

)
Ω
, Ω̄,

(3.4)
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which results in the following first order system of differential equations with the
initial conditions

da(t)

dt
= f(a(t))− Aα,βa(t), t ∈ [0, T ],

a(0) = a◦,
(3.5)

where the vectors a◦ can be obtained. Also Aα,β is the constant coefficient matrix
corresponding to (3.3). Let

u(t) = a(t),

so that

f(a(t), t) = f(a(t))− Aα,βa(t), t ∈ [0, T ],

with the initial condition

u(0) = a◦.

Authors of [8] presented geometric numerical integration method to solve first order
differential equation such as Eq. (3.5) called group preserving scheme (GPS) as follows

uk+1 = uk + ηkfk, (3.6)

where

ηk =
(αk − 1)fTk .uk + βk‖uk‖‖fk‖

‖fk‖2
,

αk = cosh(∆x
‖fk‖
‖uk‖

),

βk = sinh(∆x
‖fk‖
‖uk‖

),

where fk = f(Uk, xk).

4. Numerical results

In this section, we present some numerical results by applying GRBFs to the two-
dimensional Sivashinsky equation. In all examples, different values of parameters of
Eq. (1.1) with some regularly distributed nodes are used. As mentioned before, to
approximate the time variable, the GPS is employed and the relative least square
error (r.l.s.e) is used to measure the error as follows

r.l.s.e =

√√√√√√√
∑NT
i=1

(
uh,δt,β(xi, yi, T )− u(xi, yi, T )

)2
∑NT
i=1

(∑4
k=0

(
4
k

)
∂4

∂xk∂y4−k
u(xi, yi, T )

)2 ,
where NT is the number of test points and uh,δt denotes the numerical solution for the
parameters h and δt. So an iterative scheme is used to achieve the final time T = 1, in each
problem. The results are obtained in the case of δt = 0.01 and 0.001.
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Figure 1. Considered domain Ω of Example 4.1.
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Example 4.1. Consider Eq. (1.1) with two sub-examples corresponding to sets of differ-
ent parameters of a = 1, b = 1, c = 0.7 and α, β ∈ {10n s.t. n = 3, 4, 5, 6} via various mesh
spatial and time steps h = 0.2, 0.1, 0.05 and δt = 0.01, 0.001 on the domain as Figure 1.
The corresponding exact solution of the collective parameters is given by

u1(x, t) = e−t sin(πx1) sin(πx2),

where x = (x1,x2), the functions f(u) = 2u− 1
2
u and u◦ is obtained using the exact solutions.

Table 1,2 presents − log10(r.l.s.e) comparing h = 0.2, 0.1, 0.05 for different values log10 α
and log10 β for δt = 0.01 and 0.001, respectively. In Figure 3, the red and blue points
respectively show the dispersion to different values of α and β. Planes A and B are the
regression plane based on the spatial common parameter h = 0.05 and the different time
parameters δt = 0.01 and δt = 0.001, respectively, which demonstrate growth of the accuracy
can be deduced from the growth of the accuracy when increasing auxiliary parameters α and
β.

Table 1. Comparing − log10(r.l.s.e) errors for δt = 0.01 of Example 4.1

by different parameters α, β and h for discretization GPS.

h = 0.2 h = 0.1 h = 0.05
log10 α = 3 4 5 6 log10 α = 3 4 5 6 log10 α = 3 4 5 6

log10(β) = 3 1.0068 1.1849 1.1016 1.1610 1.6915 1.7457 1.7275 1.5822 2.0350 2.0066 2.0884 2.1731
4 0.9591 1.0870 0.9259 1.1138 1.5353 1.5533 1.5498 1.6105 2.2161 2.2371 2.2305 2.1992
5 1.0091 0.9777 0.9948 0.9502 1.5764 1.6492 1.7772 1.5590 2.2061 2.0808 2.1387 2.2270
6 1.0810 1.1370 0.9840 0.9888 1.4690 1.5681 1.5836 1.6941 1.9866 2.3576 2.1330 2.1721
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Table 2. Comparing − log10(r.l.s.e) errors for δt = 0.001 of Example 4.1

by different parameters α, β and h for discretization GPS.

h = 0.2 h = 0.1 h = 0.05
log10 α = 3 4 5 6 log10 α = 3 4 5 6 log10 α = 3 4 5 6

log10(β) = 3 0.9216 0.9716 0.9025 1.0377 1.5478 1.6951 1.5257 1.5210 1.8673 2.0243 2.0847 2.0473
4 1.0688 1.1887 0.9037 1.0140 1.5052 1.5842 1.7244 1.7792 2.1786 2.2916 2.1720 2.3041
5 1.0522 1.1094 1.1734 1.0364 1.5290 1.5145 1.5334 1.5860 2.2218 2.0915 2.2546 2.1918
6 1.1349 0.9043 1.1242 0.9907 1.5667 1.5021 1.7506 1.7786 2.1441 2.3717 2.3798 2.2610

Figure 2. The above and below planes are estimated by multi-linear
regressions of the responses in − log10(r.l.s.e) on the predictors in(

log10(α), log10(β)
)

for the parameters h = 0.05, δt = 0.001 and h =
0.1, δt = 0.01, respectively.
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