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Abstract In this paper, we consider a mathematical model of leptospirosis disease which is an
infectious disease. The model we are considering is a system of nonlinear ordinary
differential equations and it is difficult to find exact solution. He’s homotopy per-
turbation method is employed to compute an approximation to the solution of the

system of nonlinear ordinary differential equations governing on the problem. The
findings obtained by HPM are compared with nonstandard finite difference (NSFD)
and Runge-Kutta fourth order (RK4) methods. Some plots are presented to show
the reliability and simplicity of the method.
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1. Introduction

Mathematical modeling has become an important tool in analyzing the spread and
control of infectious diseases [12, 13]. These models help us to understand different
factors like the transmission and recovery rates and predict how the diseases will
spread over a period of time. In the past decades, leptospirosis infection has arisen as
a globally important contagious disease. This type of disease occurred in the urban
regions of developed and industrialized countries and in the rural areas as well across
the globe. Individual belonging to very crowded area especially in a city and not
using clean water are usually infected with this disease. Sewer cleaners, rice planters,
agriculture labor and workers that cleans the canals can easily contact with this
infection. There are two main reasons which are responsible for significant mortality
rate due to leptospirosis: delays in diagnosis of the disease and pathogenicity of some
leptospiral rinsing.

Numerous models have been investigated which represents the dynamics of both
human and vector populations of SIR type as described in [3–5]. In order to study
the dynamical aspects of leptospirosis disease, Pongsuumpun et al. in [14] proposed
a very simple mathematical model. In their work, they studied the dynamics of
both rats and human populations as the time evolve. The human population was
further stratified into two groups; adults and juveniles. A deterministic model for
the dynamics of leptospirosis disease was proposed by Triampo et al. [17]. They
consider a case study of leptospirosis in Thailand and present some numerical results.
Zaman [18] considered the real data of [17] and studied the transmission dynamics
and the role of optimal control theory of leptospirosis.

Since, most of the mathematical models raised from biological problems are non-
linear by nature and it is difficult to find the analytical solution of such problems.
Therefore, it is a great challenge for mathematicians and researchers to find such nu-
merical and perturbation methods which give the best approximation to the solution
of such nonlinear problems. Convergence and accuracy are the key concepts while
developing and implementing a numerical scheme otherwise results will be inappro-
priate. As far as the analytical perturbation methods are concerned, a parameter
(negligibly small) needs to be exerted in the equation. Exertion and production of
such parameter is a difficult task in these methods. Recent research provided powerful
methods like artificial parameter method in which this small parameter is absent.

An approximate solution of nonlinear differential equations can be effectively ob-
tained using the well-known Homotopy Analysis Method (HAM). The method is used
with perturbation methods in recent decades. The basic and fundamental scheme of
the method was first introduced by Liao and He. The method uses a free parameter
whose appropriate selection yields fast convergence of the algorithm. At initial stage,
He in [7] introduced HPM and applies the procedure to some interesting problems.
Ali et al. used optimal Homotopy Analysis Method (OHAM) in order to obtain the
solution of multi-point boundary value problem. The methods mentioned above are
free from the choice of small parameter and have all the advantages of perturbation
methods.
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This work is an extension of [8–11] by considering HPM applied to leptospirosis
epidemic model. We will compare the results obtained by HPM with Runge-Kutta
fourth order (RK4) method. The motivations of this method are: the method can be
applied both to linear and nonlinear problems with no discretization or linearization.
Numerous problems of nonlinear nature can be solved accurately and effectively using
HPM because of its rapid convergence [1, 2, 6, 15,16].

The rest of manuscript is as follow. In section 2 we included the basic concept of
HPM. The model is formulated and solved by HPM in section 3. Sample numerical
result and discussion is given in section 4. Conclusion is presented at the end of the
paper.

2. Analysis of Homotopy Perturbation Method (HPM)

To illustrate the basic idea of HPM, consider the general nonlinear differential
equation

A(µ)− f(r) = 0, r ∈ Ω, (2.1)

with the boundary condition,

β(µ,
δµ

δn
) = 0, r ∈ Γ, (2.2)

where A is a general differential operator, β is a boundary operator, f(r) a known
analytic function, Γ is the boundary of the domain Ω. The operator A is divided into
linear part L and nonlinear part N . Therefore, equation (2.1) can be written as,

L(u) +N(u)− f(r) = 0. (2.3)

By using the homotopy technique, one can construct a homotopy

υ(r, p) : Ω× [0, 1] −→ R (2.4)

which satisfies

H(υ, p) = (1− p)[L(υ)− L(µ0)] + p[A(υ)− f(r)] = 0, (2.5)

or

H(υ, p) = L(υ)− L(µ0) + pL(υ0) + p[N(υ)− f(r)] = 0, (2.6)

where p ∈ [0, 1] is an embedding parameter and µ0 is the initial approximation of
given equation that satisfies the boundary conditions. Clearly, we have

H(υ, 0) = L(υ)− L(µ0) = 0, (2.7)

H(υ, 1) = A(υ)− f(r) = 0. (2.8)

The changing process of p from zero to one is just that of υ(r, p) changing from µ0(r)
to µ(r). This is called deformation, and also L(υ)−L(µ0) and A(υ)− f(r) are called
homotopic in topology. If the embedding parameter p (0 ≤ p ≤ 1) is considered as
a small parameter, applying the classical perturbation technique, we can naturally
assume that the solution of the equation can be given as a power series in p,

υ = υ0 + pυ1 + p2υ2 + p3υ3 + ........... (2.9)
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Setting p = 1 results in the approximate solution as

υ = lim
p→1

υ = υ0 + υ1 + υ2 + υ3 + ........... (2.10)

3. Mathematical formulation

In this section, we extend the model presented in [6] by taking into account the
interaction of susceptible human with infected vector and disease related death rate in
both infected human and vectors. To understand the basic properties of the epidemic
model, we first formulate the model in detail and define the parameter involve in the
model. To this end, we assume that Sh(t) represents number of susceptible human
at time t; Ih(t) represents number of human in the population, which is infected
from the leptospirosis disease at time t; Rh(t) represents number of human in the
population which is recovered at time t; we denote the total population size by Nh,
with Nh(t) = Sh(t) + Ih(t) + Rh(t). For vector population, let Sv(t) is susceptible
vector and Iv(t) is infectious vector at time t. The total population size of vector
population is denoted by Nv with Nv(t) = Sv(t) + Iv(t).

dSh

dt = b1Nh − µhSh − β2ShIv
Nv

− β1ShIh
Nh

+ λhRh,

dIh
dt = β2ShIv

Nv
+ β1ShIh

Nh
− µhIh − δhIh − γhIh,

dRh

dt = γhIh − µhRh − λhRh,

dSv

dt = b2Nv − γvSv − β3SvIh
Nh

,

dIv
dt = β3SvIh

Nh
− γvIv − δvIv,

(3.1)

with initial conditions

Sh(0) ≥ 0, Ih(0) ≥ 0, Rh(0) ≥ 0, Sv(0) ≥ 0, Iv(0) ≥ 0. (3.2)

Here b1 is the recruitment rate of human population, susceptible human can be in-
fected by two ways of transmission, β1 which represents the direct transmission from
infected human and β2 is the rate of transmission from infected vector. µh is the
natural mortality rate of human, λh is the recovery rate of human. In this work, we
assumed that disease may be fatal to some infectious host, so δh represents the disease
related death rate of infected individuals. The rate of recovery from the infection is
shown by γh. b2 is the recruitment rate of vector population. γv is the natural mor-
tality rate of vector population. The infectious vector die due to disease at a rate of
δv, β3 represents the disease carrying of susceptible vector per host per unit time.
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Now, we apply the homotopy perturbation technique to our model (3.1). To do
this, first we define the operator L = d

dt . The homotopy of above system is

LSh(t)− LSh0(t) = p

[
b1Nh − µhSh − β2ShIv

Nv
− β1ShIh

Nh
+ λhRh − LSh0(t)

]
,

LIh(t)− LIh0(t) = p

[
β2ShIv

Nv
+ β1ShIh

Nh
− µhIh − δhIh − γhIh − LIh0(t)

]
,

LRh(t)− LRh0(t) = p

[
γhIh − µhRh − λhRh − LRh0(t)

]
,

LSv(t)− LSv0(t) = p

[
b2Nv − γvSv − β3SvIh

Nh
− LSv0(t)

]
,

LIv(t)− LIv0(t) = p

[
β3SvIh

Nh
− γvIv − δvIv − LIv0(t)

]
.

(3.3)

We assume that the solution of the system (3.3) is in the form,

Sh(t)=Sh0 + pSh1 + p2Sh2 + .........
Ih(t)=Ih0 + pIh1 + p2Ih2 + .........

Rh(t)=Rh0 + pRh1 + p2Rh2 + .........
Sv(t)=Sv0 + pSv1 + p2Sv2 + .........
Iv(t)=Iv0 + pIv1 + p2Iv2 + .........

(3.4)

Considering (3.4) in (3.3), and comparing the same coefficient, we obtain,

LSh1
= b1Nh − µhSh0 − β2Sh0Iv0

Nv
− β1Sh0Ih0

Nh
+ λhRh0 − LSh0,

LIh1 = β2Sh0Iv0

Nv
+ β1Sh0Ih0

Nh
− µhIh0 − δhIh0 − γhIh0 − LIh0,

LRh1 = γhIh0 − µhRh0 − λhRh0 − LRh0,

LSv1 = b2Nv − γvSv0 − β3Sv0Ih0

Nh
− LSv0,

LIv1 = β3Sv0Ih0

Nh
− γvIvo − δvIv0 − LIv0,

(3.5)
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and

LSh2 = µhSh1 − β2Sh1Iv0

Nv
− β1Sh0Ih1

Nh
− β1Sh1Ih0

Nh
− β2Sh0Iv1

Nv
,

LIh2 = β2Sh1Iv0

Nv
+ β2Sh0Iv1

Nv
+ β1Sh0Ih1

Nh
+ β1Sh1Ih0

Nh
− µhIh1 − δhIh1 − γhIh1,

LRh2 = γhIh1 − µhRh1 − λhRh1,

LSv2 = −γvSv1 − β3Sv0Ih1

Nh
− β3Sv1Ih0

Nh
,

LIv2 = β3Sv1Ih0

Nh
+ β3Sv0Ih1

Nh
− γvIv1 − δvIv1.

(3.6)

In order to obtain the solution of the zeroth order problem, we consider the fol-
lowing cases.

Zeroth Order Problem or P0

Sh0 = 130, Ih0 = 90, Rh0 = 70, Sv0 = 150, Iv0 = 60, Nh = 290, Nv = 210.

(3.7)

First Order Problem or P1

Sh1 = (b1Nh − µhSh0 − β2Sh0Iv0

Nv
− β1Sh0Ih0

Nh
+ λhRh0)t,

Ih1 = (β2Sh0Iv0

Nv
+ β1Sh0Ih0

Nh
− µhIh0 − δhIh0 − γhIh0)t,

Rh1 = (γhIh0 − µhRh0 − λhRh0)t,

Sv1
= (b2Nv − γvSv0 − β3Sv0Ih0

Nh
)t,

Iv1 = (β3Sv0Ih0

Nh
− γvIvo − δvIv0)t.

(3.8)

Second Order Problem or P2

Sh2 =

[
µh(b1Nh−µhSh0−

β2Sh0Iv0
Nv

−β1Sh0Ih0
Nh

+λhRh0)−
β2

Nv
(b1Nh−µhSh0

− β2Sh0Iv0
Nv

− β1Sh0Ih0
Nh

+ λhRh0)Iv0 −
β1Sh0

Nv
(
β2Sh0Iv0

Nv
+

β1Sh0Ih0
Nh

−µhIh0−δhIh0−γhIh0)−
β1Ih0
Nh

(b1Nh−µhSh0−
β2Sh0Iv0

Nv
−β1Sh0Ih0

Nh
+λhRh0)

− β2Sh0

Nv
(
β3Sv0Ih0

Nh
− γvIvo − δvIv0)

]
t2/2, (3.9)
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Ih2 =

[
β2

Nv
(b1Nh−µhSh0−

β2Sh0Iv0
Nv

−β1Sh0Ih0
Nh

+λhRh0)Iv0+
β1Sh0

Nv
(
β2Sh0Iv0

Nv

+
β1Sh0Ih0

Nh
−µhIh0−δhIh0−γhIh0)+

β1Ih0
Nh

(b1Nh−µhSh0−
β2Sh0Iv0

Nv
−β1Sh0Ih0

Nh

+ λhRh0) +
β2Sh0

Nv
(
β3Sv0Ih0

Nh
− γvIvo − δvIv0) + (µh + δh + γh)

(
β2Sh0Iv0

Nv
+

β1Sh0Ih0
Nh

− µhIh0 − δhIh0 − γhIh0)

]
t2/2, (3.10)

Rh2 =

[
γh(

β2Sh0Iv0
Nv

+
β1Sh0Ih0

Nh
− µhIh0 − δhIh0 − γhIh0)

− (µh + λh)(γhIh0 − µhRh0 − λhRh0)

]
t2/2, (3.11)

Sv2 =

[
− γv(b2Nv − γvSv0 −

β3Sv0Ih0
Nh

)− β3Sv0

Nh
(
β2Sh0Iv0

Nv
+

β1Sh0Ih0
Nh

− µhIh0 − δhIh0 − γhIh0)−
β3Ih0
Nh

(b2Nv − γvSv0 −
β3Sv0Ih0

Nh
)

]
t2/2, (3.12)

Iv2 =

[
β3Sv0

Nh
(
β2Sh0Iv0

Nv
+

β1Sh0Ih0
Nh

− µhIh0 − δhIh0 − γhIh0) +
β3Ih0
Nh

(b2Nv

− γvSv0 −
β3Sv0Ih0

Nh
)− (γv + δv)(

β3Sv0Ih0
Nh

− γvIvo − δvIv0)

]
t2/2. (3.13)

To find the solution we consider p = 1 in the system (3.4), we get

Sh(t)=Sh0 + Sh1 + Sh2 + .........
Ih(t)=Ih0 + Ih1 + 2Ih2 + .........

Rh(t)=Rh0 +Rh1 + 2Rh2 + .........
Sv(t)=SV 0 + SV 1 + 2SV 2 + .........
Iv(t)=IV 0 + IV 1 + 2IV 2 + .........

(3.14)
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Sh(t) = Sh0 + (b1Nh − µhSh0 −
β2Sh0Iv0

Nv
− β1Sh0Ih0

Nh
+ λhRh0)t

+

[
µh(b1Nh − µhSh0 −

β2Sh0Iv0
Nv

− β1Sh0Ih0
Nh

+ λhRh0)

− β2

Nv
(b1Nh−µhSh0−

β2Sh0Iv0
Nv

− β1Sh0Ih0
Nh

+λhRh0)Iv0−
β1Sh0

Nv
(
β2Sh0Iv0

Nv

+
β1Sh0Ih0

Nh
− µhIh0 − δhIh0 − γhIh0)−

β1Ih0
Nh

(b1Nh − µhSh0 −
β2Sh0Iv0

Nv

− β1Sh0Ih0
Nh

+ λhRh0)−
β2Sh0

Nv
(
β3Sv0Ih0

Nh
− γvIvo − δvIv0)

]
t2/2, (3.15)

Ih(t) = Ih0 + (
β2Sh0Iv0

Nv
+

β1Sh0Ih0
Nh

− µhIh0 − δhIh0 − γhIh0)t

+

[
β2

Nv
(b1Nh−µhSh0−

β2Sh0Iv0
Nv

− β1Sh0Ih0
Nh

+λhRh0)Iv0+
β1Sh0

Nv
(
β2Sh0Iv0

Nv

+
β1Sh0Ih0

Nh
− µhIh0 − δhIh0 − γhIh0) +

β1Ih0
Nh

(b1Nh − µhSh0 −
β2Sh0Iv0

Nv

− β1Sh0Ih0
Nh

+ λhRh0) +
β2Sh0

Nv
(
β3Sv0Ih0

Nh
− γvIvo − δvIv0) + (µh + δh + γh)

(
β2Sh0Iv0

Nv
+

β1Sh0Ih0
Nh

− µhIh0 − δhIh0 − γhIh0)

]
t2/2, (3.16)

Rh(t) = Rh0 + (γhIh0 − µhRh0 − λhRh0)t+

[
γh(

β2Sh0Iv0
Nv

+
β1Sh0Ih0

Nh

− µhIh0 − δhIh0 − γhIh0)− (µh + λh)(γhIh0 − µhRh0 − λhRh0)

]
t2/2,

(3.17)

Sv(t) = Sv0 + (b2Nv − γvSv0 −
β3Sv0Ih0

Nh
)t+

[
− γv(b2Nv − γvSv0−

β3Sv0Ih0
Nh

)− β3Sv0

Nh
(
β2Sh0Iv0

Nv
+

β1Sh0Ih0
Nh

− µhIh0 − δhIh0 − γhIh0)

− β3Ih0
Nh

(b2Nv − γvSv0 −
β3Sv0Ih0

Nh
)

]
t2/2, (3.18)
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Iv(t) = Iv0 + (
β3Sv0Ih0

Nh
− γvIvo − δvIv0)t+

[
β3Sv0

Nh
(
β2Sh0Iv0

Nv
+

β1Sh0Ih0
Nh

− µhIh0 − δhIh0 − γhIh0) +
β3Ih0
Nh

(b2Nv − γvSv0 −
β3Sv0Ih0

Nh
)

− (γv + δv)(
β3Sv0Ih0

Nh
− γvIvo − δvIv0)

]
t2/2. (3.19)

Table 1. Description of parameter and its value.

Notation Description of Parameters Values
µh A natural death rate of a human 0.019
δh Disease death rate of a human 0.725
λh The rate at which the individuals become susceptible

again
1.438

β1 Direct transmission between susceptible human and
infected human

1.058

β2 Transmission between susceptible human and in-
fected vector

0.173

β3 Transmission between susceptible vector and in-
fected human

0.984

δv Disease death rate of Vector 0.954
γh A recovery rate of infection of human 0.198
b2 Birth rate for vector population 0.485
γv Natural death rate of vector 0.755
b1 Recruitment rate of human population 0.012

4. Numerical results and discussion

In this section, we find the numerical simulation of the model (3.1) by using HPM,
and the results are compared with others standards methods NSFD and RK4. The
results obtained from HPM have good agreement with NSFD and RK4. The values
of the parameters used in the numerical simulations are presented in Table 1. Figure
1 represents the population of susceptible vector. Figure 2 represents the infected
vector and Figure 3 represents the population of susceptible individuals. Figure 4
represents the infected human and Figure 5 represents the population of recovered
human.
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Figure 1. The plot represents the population of susceptible vector
in the model.
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Figure 2. The plot shows the population of infected vector in the model.
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Figure 3. The plot represents the population of susceptible human
in the model.
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Figure 4. The plot represents the population of infected human in
the model.
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Figure 5. The plot shows the population of recovered human in the
model.
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5. Conclusion

In this article, the solution of leptospirosis epidemic model is accomplished. We
used a semi analytical approach for the solution of proposed model, that is Homotopy
Perturbation Method. We obtained the solution by Homotopy Perturbation Method
and compared the results with Runge-Kutta fourth order and NSFD method, which
shows that Homotopy Perturbation Method is a powerful technique for the solution
of such type of nonlinear epidemic models.
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