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1. Introduction

The purpose of this article is to establish the existence of multiple solutions of the
following nonlocal elliptic system

−M1

(∫
Ω

1

p(x)
|∆u|p(x)dx

)
∆

(
|∆u|p(x)−2∆u

)
= λFu(x, u, v), in Ω,

−M2

(∫
Ω

1

q(x)
|∆v|q(x)dx

)
∆

(
|∆v|q(x)−2∆u

)
= λFv(x, u, v), in Ω,

u = v = ∆u = ∆v = 0, on ∂Ω.

(1.1)

where Ω ⊂ (RN ) (N ≥ 1) is a bounded domain with smooth boundary ∂Ω, p(.), q(.) ∈
C0(Ω), M1, M2 are continuous functions, λ > 0 and F ∈ C0(Ω× R2).

We confine ourselves to the case, where M1 = M2 := M for simplicity. Notice
that the results we prove in what follows remain valid for M1 6= M2 by adding some
hypothesis on M1 and M2. We give some new criteria for guaranteeing that the
problem (1.1) have at least three weak solutions by using a variational method and
some critical point theorems due to Ricceri. Three critical points theorem of B.Ricceri
has been widely used to solve differential equations, see for example [18, 20, 25].
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The fourth-order boundary value problem of nonlinearity furnishes a model to
study traveling waves in suspension bridges, so it is important to physics. Recently,
the existence of solutions to fourth-order boundary value problems have been studied
in many papers. Molica Bisci and Repovs̆ in [27] employing variational methods,
studied the existence of multiple weak solutions for fourth- order elliptic equations.
In [17, 24, 26], based on variational methods and critical point theory, the existence
of multiple solutions for a class of elliptic Navier boundary problems.

Problem (1.1) is called a non-local problem because of the presence of the term M,
which implies that the equation in (1.1) is no longer a pointwise identity.

Non-local operators can be seen as the infinitesimal generators of Lévy stable dif-
fusion processes [2]. Moreover, they allow us to develop a generalization of quantum
mechanics and also to describe the motion of a chain or an array of particles that are
connected by elastic springs as well as unusual diffusion processes in turbulent fluid
motions and material transports in fractured media(for more details see for example
[1, 2, 20] and the references therein). Non-local differential equations are also called
Kirchhoff-type equations, the study of Kirchhoff-type problems, which arise in vari-
ous models of physical and biological systems, have received more attention in recent
years. More precisely, Kirchhoff established a model given by the equation

ρ
∂2u

∂t2
−
(
ρ0

h
+

E

2L

∫ L

0

|∂u
∂x
|2
)
∂2u

∂x2
= 0, (1.2)

where ρ, ρ0, h, E and L are constants which represent some physical meanings.
Equation (1.2) extends the classical D’Alembert’s wave equation by considering the
effects of the changes in the length of the strings during the vibrations. see for example
[15, 29, 38]. There are also many existence results on stationary Kirchhoff problems.
For example, Autuori and Fiscella [3] obtained the existence of the asymptotic be-
havior of non-negative solutions for a class of stationary Kirchhoff problems driven
by a fractional integro-differential operator. Baraket and Molica Bisci [6] proved
the existence of multiple solutions for a perturbed Kirchhoff-type problem depending
on two real parameters. Fiscella and Valdinocib [16] proved that the existence of
non-negative solutions for a Kirchhoff type problem driven by a non-local integro-
differential operator.
In [21] the authors established the existence of a weak solution for the following sys-
tem: 

−
[
M1

(∫
Ω

|∆u|pdx
)]p−1

∆pu = f(u, v) + ρ1(x), in Ω,

−
[
M2

(∫
Ω

|∆v|qdx
)]p−1

∆qv = f(x, v) + ρ2(x), in Ω,

∂u

∂η
=
∂v

∂η
= 0, on ∂Ω,

(1.3)

where M1(t),M2(t) ≥ m0 > 0. We also recall that non-homogeneous p(x)-Kirchhoff
operators have been used in the last decades to model various phenomena, see [8, 35]
and the references therein. Indeed, recently, there has been an increasing interest in
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studying systems involving somehow non-homogeneous p(x)-Laplace operators, moti-
vated by the image restoration problem, by the modeling of electro-rheological fluids.
The study of elliptic problems involving p(x)-biharmonic operators has interested in
recent years, for the existence and multiplicity of solutions see [19, 22, 23, 28] for some
recent work on this subject.
In [1] the authors established the existence and multiplicity of solutions for the fol-
lowing system:

−M1

(∫
Ω

1

p(x)
|∆u|p(x)dx

)
∆

(
|∆u|p(x)−2∆u

)
= Fu(x, u, v), in Ω,

−M2

(∫
Ω

1

q(x)
|∆v|q(x)dx

)
∆

(
|∆v|q(x)−2∆u

)
= Fv(x, u, v), in Ω,

u = v = ∆u = ∆v = 0, on ∂Ω.

(1.4)

Motivated by the above works, we are devoted to the existence of three solutions to
problem (1.1). The article is organized as follows. We first present some necessary
preliminary results on variable exponent Sobolev spaces. Next, we give the main
results about the existence and multiplicity of weak solutions.

2. Preliminaries

For the reader’s convenience, we recall some background facts concerning the vari-
able exponent Lebesgue and Sobolev spaces and introduce some notation. For more
details, we refer the reader to [12, 13, 14, 30] and the references therein. Consider the
set

C+(Ω) = {h ∈ C(Ω), h(x) > 1 ∀x ∈ Ω},

and for every h ∈ C+(Ω), we define

max{2, N
2
} < h− := min{h(x);x ∈ Ω} ≤ h+ := max{h(x);x ∈ Ω}.

For every p ∈ C+(Ω), we define the variable exponent Lebesgue space

Lp(·)(Ω) =

{
u : Ω→ R measurable and

∫
Ω

|u(x)|p(x)dx <∞
}
.

This vector space is a Banach space if it is endowed with the Luxemburg norm, which
is defined by

|u|p(·) = inf

{
µ > 0;

∫
Ω

|u(x)

µ
|p(x) ≤ 1

}
.

Proposition 2.1. [31, 39] (Lp(·)(Ω), |u|p(·)) is separable, uniformly convex, reflexive

and its dual space is Lp
′(·)(Ω) where p′(·) is the conjugate function of p(.), i.e.

1

p(·)
+

1

p′(·)
= 1.

Moreover, for u ∈ Lp(·)(Ω) and v ∈ Lp′(·)(Ω)
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∣∣∣∣ ∫
Ω

u(x)v(x)dx

∣∣∣∣ ≤ (
1

p−
+

1

p′−
)|u|p(·)|v|p′(·) ≤ 2|u|p(·)|v|p′(·).

If L is a positive integer and p ∈ C+(Ω), we define the variable exponent Sobolev
space by

WL,p(·)(Ω) =

{
u ∈ Lp(·);Dαu ∈ Lp(·), |α| ≤ L

}
,

where Dαu = ∂|α|

∂α1x1...∂αN xN
for α = (α1, α2, ..., αN ) which is a multi-index and |α| =∑N

i=1 αi. The space WL,p(·)(Ω) equipped with the norm

‖u‖L,p(·) =
∑
|α|≤L

|Dαu|p(·),

becomes a separable, reflexive uniformly convex Banach space.

The space W
L,p(·)
0 (Ω) is the closure of C∞0 (Ω) in WL,p(·)(Ω).

Proposition 2.2. [9] W
L,p(·)
0 (Ω) is a separable, uniformly convex and reflexive Ba-

nach space.

The function space (W 2,p(·)(Ω) ∩W 1,p(·)
0 (Ω)) is a separable and reflexive Banach

space, where

‖u‖p(·) = inf

{
µ > 0 :

∫
Ω

|∆u(x)

µ
|p(x) ≤ 1

}
. (2.1)

Remark 2.3. According to [37], the norm ‖.‖2,p(·) is equivalent to the norm |∆.|p(·)
in the space W 2,p(·)(Ω) ∩W 1,p(·)

0 (Ω). Consequently, the norms ‖.‖2,p(·), ‖.‖p(·) and
|∆.|p(·) are equivalent.

In the following, we will use ‖.‖p(·) instead of ‖.‖2,p(·) on W 2,p(·)(Ω) ∩W 1,p(·)
0 (Ω).

Similarly, we use ‖.‖q(·) instead of ‖.‖2,q(·) on W 2,q(·)(Ω) ∩W 1,q(·)
0 (Ω).

We denote by

X :=

(
W 2,p(·)(Ω) ∩W 1,p(·)

0 (Ω)

)
×
(
W 2,q(·)(Ω) ∩W 1,q(·)

0 (Ω)

)
, (2.2)

equipped with the norm

‖(u, v)‖ = ‖u‖p(·) + ‖v‖q(·). (2.3)

Proposition 2.4. [31] Let

ρ(u) :=

∫
Ω

|u|p(x)dx.

For u, un ∈ Lp(.)(Ω), we have,

(1) |u|p(·) < 1(= 1;> 1)⇔ ρ(u) < 1(= 1;> 1),

(2) |u|p(·) > 1⇒ |u|p− ≤ ρ(u) ≤ |u|p+ ,
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(3) |u|p(·) < 1⇒ |u|p+ ≤ ρ(u) ≤ ‖u‖p− ,
(4) |un|p(·) → 0⇔ ρ(un)→ 0,
(5) |un|p(·) →∞⇔ ρ(un)→∞.

From Proposition 2.4 for u ∈ Lp(.)(Ω) the following inequalities hold:

‖u‖p
−
≤
∫

Ω

|∆u|p(x)dx ≤ ‖u‖p
+

, if ‖u‖ ≥ 1, (2.4)

‖u‖p
+

≤
∫

Ω

|∆u|p(x)dx ≤ ‖u‖p
−
, if ‖u‖ ≤ 1. (2.5)

Proposition 2.5. [36] If Ω ⊂ RN is a bounded domain, then the imbedding W 2,p(·)(Ω)∩
W

1,p(·)
0 (Ω) ↪→ C0(Ω) is compact whenever N

2 < p−.

From Proposition 2.5, we know that when p−, q− > N
2 , the embedding X ↪→

C0(Ω)× C0(Ω) is compact, and there exists a positive constant c such that

‖(u, v)‖∞ = ‖u‖∞ + ‖v‖∞ ≤ c‖(u, v)‖, ∀(u, v) ∈ X. (2.6)

Hereafter M(t) is supposed to verify the following assumption:

(M1) There exist m2 ≥ m1 > 0 and α > 1 such that

m1t
α−1 ≤M(t) ≤ m2t

α−1, ∀t ∈ R+.

Put

M̂(t) =

∫ t

0

M(τ)dτ (∀t ∈ R+).

We have
m1

α
tα ≤ M̂(t) ≤ m2

α
tα. (2.7)

Now, for every (u, v) ∈ X, we define the functionals Φ and Ψ

Φ(u, v) = M̂

(∫
Ω

1

p(x)
|∆u|p(x)dx

)
+ M̂

(∫
Ω

1

q(x)
|∆v|q(x)dx

)
,

Ψ(u, v) =

∫
Ω

F (x, u, v)dx.

Standard arguments show that I1 = Φ− λΨ is well defined on X and it is of class
C1 and for any (z, w) ∈ X,

Φ′(u, v)(z, w) = M

(∫
Ω

1

p(x)
|∆u|p(x)dx

)∫
Ω

|∆u|p(x)−2∆u∆zdx

+M

(∫
Ω

1

q(x)
|∆v|q(x)dx

)∫
Ω

|∆v|q(x)−2∆v∆wdx, ∀(u, v) ∈ X.

Ψ′(u, v)(z, w) = −
∫

Ω

Fu(x, u, v)zdx−
∫

Ω

Fv(x, u, v)wdx. ∀(u, v) ∈ X.
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(u, v) ∈ X is called a (weak) solution of the problem (1.1) if

Φ′(u, v)(z, w)− λΨ′(u, v)(z, w) = 0,

for every (z, w) ∈ X. We observe that a vector (u, v) ∈ X is a solution of the problem
(1.1) if and only if (u, v) is a critical point of the function I1.

Lemma 2.6. [10] Let I(u) =
∫

Ω
1

p(x) |∆u|
p(x)dx.

We have the following assertions:

(1) I ′ is a bounded homeomorphism and strictly monotone operator.
(2) I ′ is a mapping of type (S+), namely

un ⇀ u and lim sup
n→+∞

I ′(un)(un − u) ≤ 0 implies un → u.

Let X be a nonempty set and Φ,Ψ : X → R be two functions. For all r, r1, r2 >
infX Φ, r2 > r1 and r3 > 0,

ϕ(r) := inf
u∈Φ−1(−∞,r)

(supu∈Φ−1(−∞,r) Ψ(u))−Ψ(u)

r − Φ(u)
,

β(r1, r2) := inf
u∈Φ−1(−∞,r1)

sup
v∈Φ−1[r1,r2)

Ψ(v)−Ψ(u)

Φ(v)− Φ(u)
,

γ(r2, r3) :=
supu∈Φ−1(−∞,r2+r3) Ψ(u)

r3
,

α(r1, r2, r3) := max

{
ϕ(r1), ϕ(r2), γ(r2, r3)

}
.

A central role in our arguments will be played by the three critical points theorem [4,
Theorem 5.2]. For the reader’s convenience we here recall as follows.

Theorem 2.7. Let X be a reflexive real Banach space, Φ : X → R be a convex,
coercive and continuously Gâteaux differentiable functional whose Gâteaux derivative
admits a continuous inverse on X∗, Ψ : X → R be a continuously Gteaux differentiable
functional whose Gâteaux derivative is compact, such that

(M1) infX Φ = Φ(0) = Ψ(0) = 0,
(M2) for every u1, u2 ∈ X such that Ψ(u1) ≥ 0 and Ψ(u2) ≥ 0, one has

inf
s∈[0,1]

Ψ(su1 + (1− s)u2) ≥ 0.

Assume that there are three positive constants r1, r2, r3 with r1 < r2, such
that

(M3) α(r1, r2, r3) < β(r1, r2).

Then, for each λ ∈] 1
β(r1,r2) ,

1
α(r1,r2,r3) [ the functional Φ − λΨ admits three critical

points u1, u2, u3 such that u1 ∈ Φ−1(]−∞, r1[), u2 ∈ Φ−1(]r1, r2[) and u3 ∈ Φ−1(]−
∞, r2 + r3[).
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Definition 2.8. We say that u ∈ X is a bound state of (1.1) if u is a critical point
of I1. A bound state ũ is called ground state if its energy is minimal among all the
bound states, namely

I1(ũ) = min

{
I1(u) : u ∈ X \ {0}, I ′1(u) = 0

}
.

3. Main results

In this section we establish our main result on the existence of at least three weak
solutions for problem (1.1).
Fix x? ∈ Ω and choice a1, a2 with 0 < a1 < a2, such that B(x?, a2) ⊆ Ω denotes the
open ball in Ω of radius a2 and center x?. Put

ςp := max

{
[
12(N + 2)2(a1 + a2)

(a1 − a2)3
]p
−
, [

12(N + 2)2(a1 + a2)

(a1 − a2)3
]p

+

}
× 2kp

−
π
N
2 (aN2 − aN1 )

Γ(1 + N
2 )

,

and

%p := min

{
[
12(N + 2)2(a1 + a2)

(a1 − a2)3
]p
−
, [

12(N + 2)2(a1 + a2)

(a1 − a2)3
]p

+

}
× 2kp

−
π
N
2 (aN2 − aN1 )

Γ(1 + N
2 )

,

where Γ(.) is Gamma function.

Lemma 3.1. Assume that M satisfies (M1) and there exist positive constants θi, ϑi
and η, κ ≥ 1 in which for 1 ≤ i ≤ 3 such that

(M4) θ1 < %
1

p−
p η, η < min{(p

+

ςp
p−)

1

p+ θ
p−

p+

2 , θ2} and θ2 < θ3,

(M5) ϑ1 < %
1

q−
q κ, κ < min{( q

+

ςq
q−)

1

q+ ϑ
q−

q+

2 , ϑ2} and ϑ2 < ϑ3.

Then there exist two positive constants r1, r2 and (wη, wκ) ∈ X such that

r1 ≤ Φ(wη, wκ) ≤ r2. (3.1)

Proof. Let

wη(x) :=


0, x ∈ Ω \B(x0, a2),
η(3(l4−a42)−4(a1+a2)(l3−a32)+6a1a2(l2−a22))

(a2−a1)3(a1+a2) , x ∈ B(x0, a2) \B(x0, a1),

η, x ∈ B(x0, a1),

where l = dist(x, x0) =
√∑N

i=1(xi − x0
i )

2. We have

∂wη(x)
∂xi

=

{
0, x ∈ Ω \B(x0, a2) ∪B(x0, a1),
12η(l2(xi−x0

i )−l(a1+a2)(xi−x0
i )+a1a2(xi−x0

i ))
(a2−a1)3(a1+a2) , x ∈ B(x0, a2) \B(x0, a1),
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∂2wη(x)

∂x2
i

=

{
0, x ∈ Ω \B(x0, a2) ∪B(x0, a1),
12η(a1a2+(2l−a1−a2)(xi−x0

i )
2/l−(a1+a2−l)l)

(a2−a1)3(a1+a2) , x ∈ B(x0, a2) \B(x0, a1),

∑N
i=1

∂2wη(x)

∂x2
i

=

{
0, x ∈ Ω \B(x0, a2) ∪B(x0, a1),
12η((N+2)l2−(N+1)(a1+a2)l+Na1a2)

(a2−a1)3(a1+a2) , x ∈ B(x0, a2) \B(x0, a1).

It is easy to verify that (wη, wκ) ∈ X and in particular,

%pη
p−

p+cp−
≤
∫
B(x0,a2)\B(x0,a1)

1

p(x)
|∆wη(x)|p(x) ≤ ςpη

p+

p−cp−
,

and

%qκ
q−

q+cq−
≤
∫
B(x0,a2)\B(x0,a1)

1

q(x)
|∆wκ(x)|q(x) ≤ ςqκ

q+

q−cq−
.

By (2.7), one has

m1

α
(
%pη

p−

p+cp−
)α +

m1

α
(
%qκ

q−

q+cq−
)α ≤ Φ(wη, wκ) ≤ m2

α
(
ςpη

p+

p−cp−
)α +

m2

α
(
ςqκ

q+

q−cq−
)α.

Choose

r1 =
m1

α
(

1

p+
(
θ1

c
)p
−

)α +
m1

α
(

1

q+
(
ϑ1

c
)q
−

)α, (3.2)

and

r2 =
m1

α
(

1

p+
(
θ2

c
)p
−

)α +
m1

α
(

1

q+
(
ϑ2

c
)q
−

)α. (3.3)

By the assumptions (M4) and (M5), we obtain r1 < Φ(wη, wκ) < r2. �

Lemma 3.2. If conditions (M1), (M4), (M5) and

(M6) f(x, s, t) ≥ 0, for each (x, s, t) ∈ Ω× [−θ3, θ3]× [−ϑ3, ϑ3],
(M7)

max

{ ∫
Ω
F (x, θ1, ϑ1)

m1

α (
θp
−

1

p+ )α + m1

α (
ϑq
−

1

q+ )α
,

∫
Ω
F (x, θ2, ϑ2)

m1

α (
θp
−

2

p+ )α + m1

α (
ϑq
−

2

q+ )α
,

∫
Ω
F (x, θ3, ϑ3)

m1

α (
θp
−

3 −θ
p−
2

p+ )α + m1

α (
ϑq
−

3 −ϑ
q−
2

q+ )α

}

<

∫
B(x0,a1)

F (x, η, κ)dx−
∫

Ω
F (x, θ1, ϑ1)dx

m2

α (
ςpηp

+

p− )α + m2

α (
ςqκq

+

p− )α
,

are satisfied, then there exists one positive constant r3 such that

α(r1, r2, r3) < β(r1, r2).

Proof. From (M6) and the definition of Ψ, we see that

Ψ(wη, wκ) =

∫
Ω

F (x,wη(x), wκ(x))dx ≥
∫
B(x0,a1)

F (x, η, κ)dx. (3.4)

Let

r3 =
m1

α
(

1

p+
(
θp
−

3 − θ
p−

2

cp−
))α +

m1

α
(

1

q+
(
ϑq
−

3 − ϑ
q−

2

cq−
))α. (3.5)
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From the conditions (M4), (M5), we have θ2 < θ3 and ϑ2 < ϑ3, we achieve r3 > 0.
For all (u, v) ∈ X with Φ(u, v) < r1, from (2.4) and (2.5),

‖u‖p(.) ≤ max

{
(
α(p+)α

m1
(
m1

α
(

1

p+
(
θ1

c
)p
−

)α))
1

αp+ , (
α(p+)α

m1
(
m1

α
(

1

p+
(
θ1

c
)p
−

)α))
1

αp−

}
,

and

‖v‖q(.) ≤ max

{
(
α(q+)α

m1
(
m1

α
(

1

q+
(
ϑ1

c
)q
−

)α))
1

αq+ , (
α(q+)α

m1
(
m1

α
(

1

q+
(
ϑ1

c
)q
−

)α))
1

αq−

}
.

So, by Proposition 2.5, we have ‖u‖∞ < θ1 and ‖v‖∞ < ϑ1. From the definition
of r1, it follows that

Φ−1(−∞, r1) = {(u, v) ∈ X; Φ(u, v) < r1} ⊆ {(u, v) ∈ X; |u| ≤ θ1, |v| ≤ ϑ1}.

Thus, by using assumption (M6),

sup
(u,v)∈Φ−1(−∞,r1)

∫
Ω

F (x, u(x), v(x))dx ≤
∫

Ω

sup
{|s|θ1,|t|≤ϑ1}

F (x, s, t)dx

≤
∫

Ω

F (x, θ1, ϑ1)dx.

(3.6)

Similarly,

sup
(u,v)∈Φ−1(−∞,r2)

∫
Ω

F (x, u(x), v(x))dx ≤
∫

Ω

F (x, θ2, ϑ2)dx, (3.7)

sup
(u,v)∈Φ−1(−∞,r2+r3)

∫
Ω

F (x, u(x), v(x))dx ≤
∫

Ω

F (x, θ3, ϑ3)dx. (3.8)

Hence, since (0, 0) ∈ Φ−1(−∞, r1) and Φ(0, 0) = Ψ(0, 0) = (0, 0), considering (3.2)
and (3.6), one has

ϕ(r1) = inf
(u,v)∈Φ−1(−∞,r1)

sup(u,v)∈Φ−1(−∞,r1) Ψ(u, v)−Ψ(u, v)

r1 − Φ(u, v)

≤
sup(u,v)∈Φ−1(−∞,r1) Ψ(u, v)

r1

=
sup(u,v)∈Φ−1(−∞,r1)

∫
Ω
F (x, u(x), v(x))dx

r1

≤
∫

Ω
F (x, θ1, ϑ1)dx

m1

α ( 1
p+ ( θ1c )p−)α + m1

α ( 1
q+ (ϑ1

c )q−)α
.
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As above, we can obtain that

ϕ(r2) = inf
(u,v)∈Φ−1(−∞,r2)

sup(u,v)∈Φ−1(−∞,r2) Ψ(u, v)−Ψ(u, v)

r2 − Φ(u, v)

≤
sup(u,v)∈Φ−1(−∞,r2) Ψ(u, v)

r2

=
sup(u,v)∈Φ−1(−∞,r2)

∫
Ω
F (x, u(x), v(x))dx

r2

≤
∫

Ω
F (x, θ2, ϑ2)dx

m2

α ( 1
p+ ( θ2c )p−)α + m1

α ( 1
q+ (ϑ2

c )q−)α
,

and

γ(r2, r3) ≤
sup(u,v)∈Φ−1(−∞,r2+r3) Ψ(u, v)

r3

=
sup(u,v)∈Φ−1(−∞,r2+r3)

∫
Ω
F (x, u(x), v(x))dx

r3

≤
∫

Ω
F (x, θ3, ϑ3)dx

m1

α ( 1
p+ (

θp
−

3 −θ
p−
2

cp−
))α + m1

α ( 1
q+ (

ϑq
−

3 −ϑ
q−
2

cq−
))α

.

Moreover, for each (u, v) ∈ Φ−1(−∞, r1) one has

β(r1, r2) ≥

∫
B(x0,a1)

F (x, η, κ)dx−
∫

Ω
F (x, θ1, ϑ1)dx

Φ(wη, wκ)− Φ(u, v)

≥

∫
B(x0,a1)

F (x, η, κ)dx−
∫

Ω
F (x, θ1, ϑ1)dx

m2

α (
ςpηp

+

p−cp−
)α + m2

α (
ςqκq

+

p−cq−
)α

.

From (M7) we have α(r1, r2, r3) < β(r1, r2). �

Theorem 3.3. Assume (M1), (M4)− (M7) hold. Then for

λ ∈ Λ :=

( m2

α (
ςpη

p+

p−cp−
)α + m2

α (
ςqκ

q+

p−cq−
)α∫

B(x0,a1)
F (x, η, κ)dx−

∫
Ω
F (x, θ1, ϑ1)dx

,

min

{ m1

α ( 1
p+ ( θ1c )p

−
)α + m1

α ( 1
q+ (ϑ1

c )q
−

)α∫
Ω
F (x, θ1, ϑ1)

,

m1

α ( 1
p+ ( θ2c )p

−
)α + m1

α ( 1
q+ (ϑ2

c )q
−

)α∫
Ω
F (x, θ2, ϑ2)

,

m1

α ( 1
p+ (

θp
−

3 −θ
p−
2

cp−
))α + m1

α ( 1
q+ (

ϑq
−

3 −ϑ
q−
2

cq−
))α∫

Ω
F (x, θ2, ϑ2)

})
,

the problem (1.1) has at least three weak solutions (u1, v1), (u2, v2) and (u3, v3)
such that maxx∈Ω |(u1(x), v1(x))| < θ1 + ϑ1, maxx∈Ω |(u2(x), v2(x))| < θ2 + ϑ2 and
maxx∈Ω |(u3(x), v3(x))| < θ3 + ϑ3.
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Proof. Our approach is to apply Theorem 2.7 for the problem (1.1). We consider the
auxiliary problem

−M1

(∫
Ω

1

p(x)
|∆u|p(x)dx

)
∆

(
|∆u|p(x)−2∆u

)
= λF̂u(x, u, v), in Ω,

−M2

(∫
Ω

1

q(x)
|∆v|q(x)dx

)
∆

(
|∆v|q(x)−2∆u

)
= λF̂v(x, u, v), in Ω,

u = v = ∆u = ∆v = 0, on ∂Ω,

(3.9)

where F̂u ∈ C0(Ω× R2). Define

F̂u(x, u, v) :=

 Fu(x, 0, v), ξ < −θ3,
Fu(x, ξ, v), −θ3 ≤ ξ ≤ θ3,
Fu(x, θ3, v), ξ > θ3,

and

F̂v(x, u, v) :=

 Fv(x, u, 0), ζ < −ϑ3,
Fv(x, u, ζ), −ϑ3 ≤ ζ ≤ ϑ3,
Fv(x, ϑ3, v), ζ > ϑ3.

If (u, v) is a weak solution of (3.9) such that −θ3 ≤ u(x) ≤ θ3 and −ϑ3 ≤ v(x) ≤ ϑ3

for every x ∈ Ω, then, clearly it turns to be also a weak solution of (1.1). Hence, it is
sufficient to show that our conclusion holds for (1.1).

By the definitions of Φ, Ψ, we know that Ψ is a differentiable functional. As well
as it is sequentially weakly upper semicontinuous. Also, Ψ′ is compact.

For any (u, v) ∈ X,

Φ(u, v) = M̂

(∫
Ω

1

p(x)
|∆u|p(x)dx

)
+ M̂

(∫
Ω

1

q(x)
|∆u|q(x)dx

)
≥ m1

α

(∫
Ω

1

p(x)
|∆u|p(x)dx

)α
+
m1

α

(∫
Ω

1

q(x)
|∆u|q(x)dx

)α
≥ m1

α(p+)α
‖u‖αp

−

p(.) +
m1

α(q+)α
‖u‖αq

−

q(.) ,

which implies Φ is coercive. Moreover, Φ is continuously differentiable on X and its
derivative admits a continuous inverse X∗ (see [36, Lemma 1]). Furthermore, Φ is
sequentially weakly lower semicontinuous, and by Lemma 2.6 Φ′ is strictly monotone
operator, considering Proposition [5, 1.5.10], we conclude that Φ is a strictly convex
functional.
Therefore, we can use Theorem 2.7 to obtain the result. By Lemma 3.2, the condition
(M3) of Theorem 2.7 is clearly satisfied. Now, we verify that the assumption (M2)
holds. Let z1 = (u1, v1) and z2 = (u2, v2) be two local minima for Φ − λΨ. So
z1 and z2 are critical points for Φ − λΨ and then, they are weak solutions of (1.1).
Since we assumed f is non-negative, for fixed λ > 0 we have λf(x, sz1 + (1− s)z2) =
λf(x, su1 + (1 − s)u2, sv1 + (1 − s)v2) ≥ 0 for every s ∈ [0, 1]. Therefore, Theorem
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2.7 implies that for every

λ ∈
( m2

α (
ςpη

p+

p−cp−
)α + m2

α (
ςqκ

q+

p−cq−
)α∫

B(x0,a1)
F (x, η, κ)dx−

∫
Ω
F (x, θ1, ϑ1)dx

,

min

{ m1

α ( 1
p+ ( θ1c )p

−
)α + m1

α ( 1
q+ (ϑ1

c )q
−

)α∫
Ω
F (x, θ1, ϑ1)

,

m1

α ( 1
p+ ( θ2c )p

−
)α + m1

α ( 1
q+ (ϑ2

c )q
−

)α∫
Ω
F (x, θ2, ϑ2)

,

m1

α ( 1
p+ (

θp
−

3 −θ
p−
2

cp−
))α + m1

α ( 1
q+ (

ϑq
−

3 −ϑ
q−
2

cq−
))α∫

Ω
F (x, θ2, ϑ2)

})
,

Φ − λΨ has three critical points (ui, vi), i = 1, 2, 3, in X such that Φ(u1, v1) < r1,
Φ(u2, v2) < r2 and Φ(u3, v3) < r2 + r3, that is, maxx∈Ω |(u1(x), v1(x))| < θ1 + ϑ1,
maxx∈Ω |(u2(x), v2(x))| < θ2 + ϑ2 and maxx∈Ω |(u3(x), v3(x))| < θ3 + ϑ3. �

Here, is a remarkable consequence of Theorem 3.3.

Theorem 3.4. Assume that there exist positive constants θ1, θ2, ϑ1, ϑ4 and η, κ > 1

with θ1 < min{η
p+

p− , %
1

p−
p η}, ϑ1 < min{κ

q+

q− , %
1

q−
q κ}, η < min{( p+

2ςpp−
)

1

p+ θ
p−

p+

4 , θ4} and

κ < min{( q+

2ςqq−
)

1

q+ ϑ
q−

q+

4 , ϑ4} such that

(M8) f(x, s, t) ≥ 0, for each (x, s, t) ∈ Ω× [−θ4, θ4]× [−ϑ4, ϑ4],
(M9)

max

{ ∫
Ω
F (x, θ1, ϑ1)dx

m1

α (
θp
−

1

p+ )α + m1

α (
ϑq
−

1

q+ )α
,

2
∫

Ω
F (x, θ4, ϑ4)dx

m1

α (
θp
−

4

p+ )α + m1

α (
ϑq
−

4

q+ )α

}

<

∫
B(x0,a1)

F (x, η, κ)dx

m2

α (
(p+ςp+p−)ηp+

p−p+ )α + m2

α (
(q+ςq+q−)κp+

q−q+ )α
.

Then there exists an open interval Λ′ with the following property: for every

λ ∈ Λ′ :=

( m2

α (
(p+ςp+p−)ηp

+

p−p+cp−
)α + m2

α (
(q+ςq+q

−)κp
+

q−q+cq−
)α∫

B(x0,a1)
F (x, η, κ)dx

,

min

{ m1

α ( 1
p+ ( θ1c )p

−
)α + m1

α ( 1
q+ (ϑ1

c )q
−

)α∫
Ω
F (x, θ1, ϑ1)dx

,

m1

α ( 1
p+ ( θ4c )p

−
)α + m1

α ( 1
q+ (ϑ4

c )q
−

)α

2
∫

Ω
F (x, θ4, ϑ4)dx

})
,

problem (1.1) has at least three weak solutions (u1, v1), (u2, v2) and (u3, v3) such that
maxx∈Ω |(u1(x), v1(x))| < θ1 + ϑ1, maxx∈Ω |(u2(x), v2(x))| < 1

p−√2
θ4 + 1

q−√2
ϑ4 and

maxx∈Ω |(u3(x), v3(x))| < θ4 + ϑ4.
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Proof. Set θ2 = 1
p−√2

θ4, ϑ2 = 1
q−√2

ϑ4, θ3 = θ4 and ϑ3 = ϑ4. So, from (M9) one has

∫
Ω
F (x, θ2, ϑ2)dx

m1

α1
(
θp
−

2

p+ )α1 + m1

α1
(
ϑq
−

2

q+ )α1

=
2α1

∫
Ω
F (x, 1

q−√2
θ4,

1
q−√2

ϑ4)dx

m1

α1
(
θp
−

4

p+ )α1 + m1

α1
(
ϑq
−

4

q+ )α1

≤
2α1

∫
Ω
F (x, θ4, ϑ4)dx

m1

α1
(
θp
−

4

p+ )α1 + m1

α1
(
ϑq
−

4

q+ )α1

<

∫
B(x0,a1)

F (x, η, κ)

m2

β2
(

(p+ςp+p−)ηp+

p−p+ )β2 + m2

β2
(

(q+ςq+q−)κp+

q−q+ )β2

,

(3.10)

and ∫
Ω
F (x, θ3, ϑ3)dx

m1

α1
(
θp
−

3 −θ
p−
2

p+ )α1 + m1

α1
(
ϑq
−

3 −ϑ
q−
2

q+ )α1

=
2α1

∫
Ω
F (x, θ3, ϑ3)dx

m1

α1
(
θp
−

4

p+ )α1 + m1

α1
(
ϑq
−

4

q+ )α1

<

∫
B(x0,a1)

F (x, η, κ)

m2

β2
(

(p+ςp+p−)ηp+

p−p+ )β2 + m2

β2
(

(q+ςq+q−)κp+

q−q+ )β2

.

(3.11)

Moreover, since θ1 < η
p+

p− and ϑ1 < κ
q+

q− , from (M9)∫
B(x0,a1)

F (x, η, κ)dx−
∫

Ω
F (x, θ1, ϑ1)dx

m2

β2
(
ςpηp

+

p− )β1 + m2

β2
(
ςqκq

+

q− )β2

>

∫
B(x0,a1)

F (x, η, κ)dx

m2

β2
(
ςpηp

+

p− )β2 + m2

β2
(
ςqκq

+

q− )β2

−
∫

Ω
F (x, θ1, ϑ1)dx

m2

β2
(
ςpθ

p−
1

p− )β2 + m2

β2
(
ςqϑ

q−
1

q− )β2

>

∫
B(x0,a1)

F (x, η, κ)dx

m2

β2
(
ςpηp

+

p− )β2 + m2

β2
(
ςqκq

+

q− )β2

−
∫

Ω
F (x, θ1, ϑ1)dx

m1

α1
(
θp
−

1

p+ )α1 + m1

α1
(
ϑq
−

1

q+ )α1

>

∫
B(x0,a1)

F (x, η, κ)dx

m2

β2
(
ςpηp

+

p− )β2 + m2

β2
(
ςqκq

+

q− )β2

−

∫
B(x0,a1)

F (x, η, κ)

m2

β2
(

(p+ςp+p−)ηp+

p−p+ )β2 + m2

β2
(

(q+ςq+q−)κp+

q−q+ )β2

>

∫
B(x0,a1)

F (x, η, κ)

m2

β2
(

(p+ςp+p−)ηp+

p−p+ )β2 + m2

β2
(

(q+ςq+q−)κp+

q−q+ )β2

.

Thus, by (M9), (3.10) and (3.11) we have (M7) of Lemma 3.2, and it follows the
conclusion. �

Theorem 3.5. Let Fu, Fv be non-negative and nonzero functions such that

lim
u→0+

Fu(u, v)

|u|p−−1
= lim
u→+∞

Fu(u, v)

|u|p−−1
= 0, (3.12)
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and

lim
v→0+

Fv(u, v)

|v|p−−1
= lim
v→+∞

Fv(u, v)

|v|p−−1
= 0. (3.13)

Then, for every λ > µ where

µ = inf

{ (p+ςp+p−)ηp
+

p−p+cp−
+

(q+ςq+q
−)κq

+

q−q+cq−

meas(B(x0, a1))F (η, κ)
: η, κ ≥ 1, F (η, κ) > 0

}
,

problem
−M

(∫
Ω

1

p(x)
|∆u|p(x)dx

)
∆

(
|∆u|p(x)−2∆u

)
= λFu(u, v), in Ω,

−M
(∫

Ω

1

q(x)
|∆v|q(x)dx

)
∆

(
|∆v|q(x)−2∆u

)
= λFv(u, v), in Ω,

u = v = ∆u = ∆v = 0, on ∂Ω,

(3.14)

has at least two non-trivial weak solutions.

Proof. Fix λ > µ and let η, κ ≥ 1 such that F (η, κ) > 0 and

λ >

(p+ςp+p−)ηp
+

p−p+cp−
+

(q+ςq+q
−)κq

+

q−q+cq−

meas(B(x0, a1))F (η, κ)
.

From (3.12) and (3.12) there is θ1, ϑ1 > 0 such that

θ1 < min{η
p+

p− , ρ
1

p−
p η},

ϑ1 < min{κ
q+

q− , ρ
1

q−
q κ},

F (θ1, ϑ1)

θp
−

1

p+cp−
+

ϑq
−

1

q+cq−

<
1

λmeas(Ω)
,

and θ4, ϑ4 > 0 such that

η < min{( p+

2ςpp−
)

1

p+ θ
p−

p+

4 , θ4},

κ < min{( q+

2ςqq−
)

1

q+ ϑ
q−

q+

4 , ϑ4},

F (θ4, ϑ4)

θp
−

4

p+cp−
+

ϑq
−

4

q+cq−

<
1

2λmeas(Ω)
.

Therefore, all assumptions of Theorem 3.4 are fulfilled and it ensures the conclusion.
�
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4. Conclusion

Non-local operators can be seen as the infinitesimal generators of Lévy stable dif-
fusion processes. Moreover, they allow us to develop a generalization of quantum
mechanics and also to describe the motion of a chain or an array of particles that are
connected by elastic springs as well as unusual diffusion processes in turbulent fluid
motions and material transports in fractured media. On the other hand, fourth-order
boundary value problem of nonlinearity furnishes a model to study traveling waves in
suspension bridges, so it is important to physics. In this manuscript, we deal with find-
ing multiple weak solutions for nonlocal fourth-order Kirchhoff systems with Navier
boundary conditions. The techniques used are based on variational method. Firstly,
we presented the main results about the existence of at least three weak solutions for
(1.1).
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