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Abstract In this paper, we developed a collocation method based on cubic B-spline for solving

nonlinear inverse parabolic partial differential equations as the following form

ut = [f(u)ux]x + φ(x, t, u, ux), 0 < x < 1, 0 ≤ t ≤ T,

where f(u) and φ are smooth functions defined on R. First, we obtained a time

discrete scheme by approximating the first-order time derivative via forward finite
difference formula, then we used cubic B-spline collocation method to approximate
the spatial derivatives and Tikhonov regularization method for solving produced ill-
posed system. It is proved that the proposed method has the order of convergence

O(k+h2). The accuracy of the proposed method is demonstrated by applying it on
three test problems. Figures and comparisons have been presented for clarity. The
aim of this paper is to show that the collocation method based on cubic B-spline is
also suitable for the treatment of the nonlinear inverse parabolic partial differential

equations.
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1. Introduction

Inverse problems of parabolic type have been received much attention in various
fields of science and technology. They arise for example, in the study of heat con-
duction processes, chemical diffusion, control theory, thermo-elasticity and etc. They
have certainly been one of the fastest growing areas in applied mathematics and en-
gineering over the last two decades due to their variety of applications and have been
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studied by many authors [3–6, 11, 12, 15, 16, 22–26, 29]. Inverse problems are usually
difficult to solve analytically and therefore the numerical approaches are created to
overcome the complexities of analytical methods. One of the well-known numerical
approach is cubic B-spline collocation method. The theory of B-spline functions has
attracted attention in the literature for the numerical solution of linear and nonlinear
boundary value problems in science and engineering [2, 7, 14, 18, 19, 21, 28]. In this
paper, the B-spline scaling functions are used to find the approximate solution of the
surface heat flux histories and temperature distribution in an inverse heat conduction
problem (IHCP) [8].

Recently, Pourgholi and Saeedi [24] used cubic B-spline collocation method to solve
inverse partial differential equations as the following form

ut = φ(x, t, u, ux, uxx), 0 < x < 1, 0 ≤ t ≤ T.

In this work which is an extension of [24], the cubic B-spline is used to solve the
following inverse problem of parabolic type in the dimensionless form

ut = [f(u)ux]x + φ(x, t, u, ux), 0 < x < 1, 0 ≤ t ≤ T, (1.1)

where f(u) and φ are smooth functions defined on R such that

0 < µ1 ≤ f(u) ≤ µ2, |f ′(u)| ≤M for u ∈ R, (1.2)

and
∂φ

∂u
,
∂φ

∂ux
exist and are bounded with boundary conditions

u(0, t) = p(t), 0 ≤ t ≤ T, (1.3)

u(1, t) = q(t), 0 ≤ t ≤ T, (1.4)

initial condition

u(x, 0) = u0(x), 0 ≤ x ≤ 1, (1.5)

and the overspecified condition

u(β, t) = r(t), 0 ≤ t ≤ T, (1.6)

where 0 < β < 1 is a fixed point, u0(x) is a continuous known function, q(t) and
r(t) are known functions and T represents the final time, while p(t) and u(x, t) are
unknowns functions which remains to be determined from the overspecified data.

The outline of this study is as follows. In section 2, a description of the cubic
B-splines collocation method is explained. Procedure for implementation of present
method for equations (1.1)-(1.6) is described in section 3. In section 4, procedure for
obtaining an initial vector which is required to start our method is explained. To
regularize the resultant ill-posed linear system of equations, in section 5, we apply
the Tikhonov regularization (of 2nd order) method to obtain the stable numerical
approximation of our solution. The uniform convergence of the method is provided in
section 6. Finally in section 7 numerical experiment is conducted computationally to
demonstrate the viability and the efficiency of the proposed method and conclusion
is given in section 8 that briefly summarizes the numerical outcomes.
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2. Description of Method

In cubic B-splines collocation method the approximate solution can be written as
a linear combination of basis functions which constitute a basis for the approximation
space under consideration.

To construct numerical solution, we introduce a uniformly distributed set of nodes
0 = x0 < x1 < . . . < xN = 1 over the spatial domain [0, 1] and the spacial step length
is denoted by h = 1

N , h = xi+1 − xi, i = 0, 1, . . . , N − 1. To construct the cubic
B-spline, we need to extend the set of nodal points to

x−3 < x−2 < x−1 < x0 and xN < xN+1 < xN+2 < xN+3,

where

x−3 = −3h, xN+1 = (N + 1)h,

x−2 = −2h, xN+2 = (N + 2)h,

x−1 = −h, xN+3 = (N + 3)h.

The cubic B-spline Bi, i = −1, 0, . . . , N + 1, are defined as follows

Bi(x) =
1

h3



(x− xi−2)
3, x ∈ [xi−2, xi−1],

h3 + 3h2(x− xi−1) + 3h(x− xi−1)
2 − 3(x− xi−1)

3, x ∈ [xi−1, xi],

h3 + 3h2(xi+1 − x) + 3h(xi+1 − x)2 − 3(xi+1 − x)3, x ∈ [xi, xi+1],

(xi+2 − x)3, x ∈ [xi+1, xi+2],

0, otherwise,

(2.1)

where Bi(x) (i = −1, . . . , N + 1) form a basis for functions defined on the interval
[0, 1].

Each cubic B-spline function covers four elements so that an element is covered
by four cubic B-splines. All other B-splines are zero in this region. By using splines
defined in (2.1), the value of Bi(x) and its derivatives at the nodes xi’s are given by

Bm(xi) =


4, if m = i,
1, if |m− i| = 1,
0, if |m− i| ≥ 2,

B′
m(xi) =


0, if m = i,

− 3
h
, if m = i− 1,

3
h
, if m = i+ 1,

0, if |m− 1| ≥ 2,

B′′
m(xi) =


− 12

h2 , if m = i,
6
h2 , if |m− 1| = 1,

0, if |m| ≥ 2.

(2.2)

Our numerical scheme for above problem using the collocation method with the
cubic B-spline is to find an approximate solution U(x, t) to the exact solution u(x, t)
in the form

U(x, t) =
N+1∑
j=−1

cj(t)Bj(x), (2.3)
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where Bj ’s are the cubic B-splines in our proposed method, and cj ’s are time-
dependent parameters which are determined by solving the problem. By using (2.2)
and (2.3), the approximate values of u(x, t) and its two derivatives at the knots are
determined in terms of the time parameters cj as follows:

Uj = cj−1 + 4cj + cj+1, (2.4)

U
′

j =
3

h
(cj+1 − cj−1), (2.5)

U
′′

j =
6

h2
(cj−1 − 2cj + cj+1), (2.6)

where Uj = U(xj , t). Using (2.3) and boundary condition (1.4), we get the approxi-
mate solution at the boundary points as

U(xN , t) =
N+1∑

j=N−1

cjBj(x) = cN−1 + 4cN + cN+1 = q(t), (2.7)

and by using overspecified conditions (1.6), where β = xs, 1 ≤ s ≤ N − 1 and (2.3)
we have

U(xs, t) =
s+1∑

j=s−1

cjBj(x) = cs−1 + 4cs + cs+1 = r(t). (2.8)

3. Implementation of Method

Our numerical scheme for solving equations (1.1)-(1.6) using the collocation method
with cubic B-splines is to find approximate solutions U(x, t) and U(0, t), to the exact
solution u(x, t) and p(t) are given in (2.3), where cj(t) are time dependent quan-
tities which are determined from the boundary and overspecific conditions and the
collocation from the differential equation. Now, using (2.3) in (1.1), we have

Ut =

[
f(

N+1∑
j=−1

cj(t)Bj(x)) (
N+1∑
j=−1

cj(t)B
′

j(x))

]
x

+ φ

(
xj , t,

N+1∑
j=−1

cj(t)Bj(x),

N+1∑
j=−1

cj(t)B
′

j(x)

)
. (3.1)

By using (2.4)-(2.5) in (3.1) at x = xj , we have

Ut =

[
f(cj−1 + 4cj + cj+1) (

3

h
(cj+1 − cj−1))

]
x

+ φ

(
xj , t, (cj−1 + 4cj + cj+1),

3

h
(cj+1 − cj−1)

)
, (3.2)
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the time derivative is discretized in a forward finite difference scheme

(Ut)j =
U

(n+1)
j − U

(n)
j

k
,

where U
(n)
j = U(xj , t

(n)) and t(n) = nk, n = 0, 1, · · · , where k is the time step

(k = t(n+1) − t(n)). Then (3.2) becomes as

U
(n+1)
j − U

(n)
j = k

([
f
(
c
(n)
j−1 + 4c

(n)
j + c

(n)
j+1

) ( 3
h
(c

(n)
j+1 − c

(n)
j−1)

)]
x

+ φ

(
xj , t

(n), (c
(n)
j−1 + 4c

(n)
j + c

(n)
j+1),

3

h
(c

(n)
j+1 − c

(n)
j−1)

))
.

(3.3)

Introducing (2.4)-(2.6) into (3.3) yields

c
(n+1)
j−1 + 4c

(n+1)
j + c

(n+1)
j+1 = ψ

(n)
j , (3.4)

where

ψ
(n)
j =k

([
f(c

(n)
j−1 + 4c

(n)
j + c

(n)
j+1) (

3

h
(c

(n)
j+1 − c

(n)
j−1))

]
x

+ φ
(
xj , t

(n), (c
(n)
j−1 + 4c

(n)
j + c

(n)
j+1),

3

h
(c

(n)
j+1 − c

(n)
j−1)

))
+ c

(n)
j−1 + 4c

(n)
j + c

(n)
j+1, 0 ≤ j ≤ N.

There for we have a system as follow

AC = ψ, (3.5)

where

A =



0 . . . 0 1 4 1 0 . . . 0
1 4 1

1 4 1
. . . . . . . . .

. . . . . . . . .
. . . . . . . . .

. . . . . . . . .
... 1 4 1
0 . . . 1 4 1


,
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that A[1, s+ 1] = 1, A[1, s+ 2] = 4, A[1, s+ 3] = 1 by (2.8) and

C =



c
(n+1)
−1

c
(n+1)
0

c
(n+1)
1
...

c
(n+1)
N−1

c
(n+1)
N

c
(n+1)
N+1


, ψ =



ψ
(n)
−1

ψ
(n)
0

ψ
(n)
1
...

ψ
(n)
N−1

ψ
(n)
N

ψ
(n)
N+1


,

where

ψ
(n)
−1 =r(t(n)),

ψ
(n)
j =k

([
f(c

(n)
j−1 + 4c

(n)
j + c

(n)
j+1) (

3

h
(c

(n)
j+1 − c

(n)
j−1))

]
x

+ φ
(
xj , t

(n), (c
(n)
j−1 + 4c

(n)
j + c

(n)
j+1),

3

h
(c

(n)
j+1 − c

(n)
j−1)

))
+ c

(n)
j−1 + 4c

(n)
j + c

(n)
j+1, 0 ≤ j ≤ N,

ψ
(n)
N+1 =q(t(n)).

Here A is a (N + 3) × (N + 3) matrix, ψ and C are (N + 3) order vectors, which
depend on the boundary and overspesified conditions (1.4) and (1.6). With solving
(3.5) by Tikhonov regularization method, the coefficients cj are obtained and using
these coefficients, we can obtain the approximate solution and finally

p(t(n)) =c
(n)
−1 + 4c

(n)
0 + c

(n)
1 , n = 0, 1, ...,

U(xj , t
(n)) =c

(n)
j−1 + 4c

(n)
j + c

(n)
j+1, n = 0, 1, ..., j = 0, 1, ..., N.

4. The Initial Vector C0

The initial vector C0 can be obtained from the initial condition (1.5), boundary
and overspesified conditions (1.4), (1.6) as the following expressions

u(xs, 0) =c
(0)
s−1 + 4c(0)s + c

(0)
s+1 = r(0),

u(xj , 0) =c
(0)
j−1 + 4c

(0)
j + c

(0)
j+1 = u0(xj), 0 ≤ j ≤ N,

u(xN , 0) =c
(0)
N−1 + 4c

(0)
N + c

(0)
N+1 = q(0).

This yields a (N + 3)× (N + 3) system of equations, of the form

AC0 = B, (4.1)
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where

A =



0 . . . 0 1 4 1 0 . . . 0
1 4 1

1 4 1
. . . . . . . . .

. . . . . . . . .
. . . . . . . . .

. . . . . . . . .
... 1 4 1
0 . . . 1 4 1


,

C0 =



c
(0)
−1

c
(0)
0

c
(0)
1
...

c
(0)
N−1

c
(0)
N

c
(0)
N+1


, B =



r(0)
u0(x0)
u0(x1)

...
u0(xN−1)
u0(xN )
q(0)


,

that A[1, s + 1] = 1, A[1, s + 2] = 4, A[1, s + 3] = 1. The solution of (4.1) can be
obtained by Tikhonov regularization method.

5. Stability of solution

Mathematically, inverse problems belong to the class of ill-posed problems. The
matrix A is singular and ill-posed, thus the estimate of C0 by (4.1) will be unstable so
that the Tikhonov regularization method must be used to control this singularity. In
our computations, we adapt the Tikhonov regularization method to solve the matrix
system of equations (3.5) and (4.1). The Tikhonov regularized solutions to the systems
of linear algebraic equations (3.5) and (4.1) are given by

Fα(C) =∥AC − ψ∥22 + α∥R(z) C ∥22,

Fα(C
0) =∥AC0 −B∥22 + α∥R(z) C0∥22.

On the case of the first-, second-Tikhonov regularization method the matrix R(z), for
z = 1, 2, is given by, see e.g [20]

R(1) =


−1 1 0 . . . 0 0 0
0 −1 1 0 . . . 0 0
...

...
...

...
...

...
...

0 0 . . . 0 −1 1 0
0 0 0 . . . 0 −1 1

 ∈ R(M−1)×(M),
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R(2) =


1 −2 1 . . . 0 0 0
0 1 −2 1 . . . 0 0
...

...
...

...
...

...
...

0 0 . . . 1 −2 1 0
0 0 0 . . . 1 −2 1

 ∈ R(M−2)×(M),

where M = N + 3.

Definition 5.1. Let A ∈ Rm1×n1 and B ∈ Rm2×n1 with m1 ≥ n1 and

r = rank

([
A
B

])
.

Then the generalized singular value decomposition of A and B are defined by

A = U ΓV T , B = Y ΛV T ,

where Γ ∈ Rm1×n1 , Λ ∈ Rm2×n1 . Also, U = (u1, u2, . . . , um1) ∈ Rm1×m1 , Y =
(y1, y2, . . . , ym2) ∈ Rm2×m2 are orthogonal and V ∈ Rn1×n1 is invertible such that

UT AV = Γ =

 IA 0 0
0 SA 0
0 0 0

 ,

Y T B V = Λ =

 0 0 0
0 SB 0
0 0 IB

 .
Here, IA ∈ Rp×p, IB ∈ R(n1−r)×(n1−r). SA and SB ∈ R(r−p)×(r−p) are defined by

SA = diag(γp+1, γp+2, . . . , γr),

SB = diag(λp+1, λp+2, . . . , λr), (5.1)

with 1 > γp+1 ≥ γp+2 ≥ . . . ≥ γr > 0, 0 < λp+1 ≤ λp+2 ≤ . . . ≤ λr < 1, [10].

The matrices A and R(z) can be written as

A = U ΓV T , R(z) = Y ΛV T .

The generalized singular values of A and R(z) are

σi =
γi
λi
,

where

γ =
√
diag(ΓT Γ), λ =

√
diag(ΛTΛ).
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Therefore the Tikhonov regularized solutions to the systems of linear algebraic equa-
tions (3.5) and (4.1) are given by

Cα = [AT A+ α(R(z))T R(z)]−1ATψ =
N+3∑
i=1

γ2i
γ2i + α2 λ2i

uTi (ψ)

γi
v−T
i ,

C0
α = [AT A+ α(R(z))T R(z)]−1ATB =

N+3∑
i=1

γ2i
γ2i + α2 λ2i

uTi (B)

γi
v−T
i , (5.2)

In our computation, we use the Generalized cross-validation (GCV) scheme to deter-
mine a suitable value of α ( [1, 9, 13]).

6. Convergence Analysis

Let u(x, t) be the exact solution of the problem (1.1) with the boundary condi-

tion, initial condition, overspesific condition and also U(x, t) =
∑N+1

j=−1 cj(t)Bj(x)

be the B-spline collocation approximation to u(x, t). Due to round off errors in

computations we assume that Û(x, t) be the computed spline for U(x, t) so that

Û(x, t) =
∑N+1

j=−1 ĉj(t)Bj(x) where Ĉ = (ĉ−1, ĉ0, . . . , ĉN , ĉN+1, ). To estimate the er-

ror ∥u(x, t)−U(x, t)∥∞ we must estimate the errors ∥u(x, t)−Û(x, t)∥∞ and ∥Û(x, t)−
U(x, t)∥∞ separately. Following (3.5) for Û we have

AĈ = ψ̂, (6.1)

where

ψ̂ =

(
r(t), ψ̂0, ψ̂1, . . . , ψ̂N−1, ψ̂N , q(t)

)
,

and

ψ̂j =k

([
f(ĉj−1 + 4ĉj + ĉj+1) (

3

h
(ĉj+1 − ĉj−1))

]
x

+ φ
(
xj , t

(n), (ĉj−1 + 4ĉj + ĉj+1),
3

h
(ĉj+1 − ĉj−1)

))
+ ĉj−1 + 4ĉj + ĉj+1, 0 ≤ j ≤ N.

By subtracting (6.1) and (3.5), we have

A(C − Ĉ) = (ψ − ψ̂). (6.2)

Now, first we need to recall some theorems.

Theorem 6.1. Suppose f ∈ C4[a, b] and |f (4)(x)| ≤ L for x ∈ [a, b]. Let ∆ be a
partition ∆ = {a = x0 < x1 < · · · < xn = b} of the interval [a, b] with step size
h. If S∆ is the spline function which interpolates the values of the function f at the
knots x0, . . . , xn ∈ ∆, then there exist constants λj ≤ 2, which do not depend on the
partition ∆, such that for x ∈ [a, b],

∥f (j)(x)− S
(j)
∆ (x)∥ ≤ λj L h4−j , j = 0, 1, 2, 3, (6.3)

where ∥.∥ represents the ∞-norm.



CMDE Vol. 7, No. 3, 2019, pp. 434-453 443

Proof. For the proof see Stoer and Bulirsch [31]. �

Now, we find an upper bound for ∥ψ − ψ̂∥∞. For this, since∣∣∣∣ψ(xj)− ψ̂(xj)

∣∣∣∣ =∣∣∣∣k( ∂

∂x

(∂U
∂x

f(U)− ∂Û

∂x
f(Û)

)
+ φ

(
xj , U(xj), U

′
(xj)

)
− φ

(
xj , Û(xj), Û

′
(xj)

))
+ U(xj)− Û(xj)

∣∣∣∣,
by using the Cauchy-Schwarz inequality, we have∣∣∣∣ψ(xj)− ψ̂(xj)

∣∣∣∣ ≤k∣∣∣∣ ∂∂x
(
∂U

∂x
f(U)− ∂Û

∂x
f(Û)

)∣∣∣∣
+ k

∣∣∣∣φ(xj , U(xj), U
′
(xj)

)
− φ

(
xj , Û(xj), Û

′
(xj)

)∣∣∣∣
+

∣∣∣∣U(xj)− Û(xj)

∣∣∣∣
= k

∣∣∣∣ ∂∂x
(
∂U

∂x
f(U)− ∂U

∂x
f(Û) +

∂U

∂x
f(Û)− ∂Û

∂x
f(Û)

)∣∣∣∣
+ k

∣∣∣∣φ(xj , U(xj), U
′
(xj))− φ(xj , Û(xj), Û

′
(xj))

∣∣∣∣
+

∣∣∣∣U(xj)− Û(xj)

∣∣∣∣
≤ k

∣∣∣∣ ∂∂x
(
∂U

∂x

(
f(U)− f(Û)

))∣∣∣∣
+ k

∣∣∣∣ ∂∂x (f(Û))

(
∂

∂x
(U − Û)

)∣∣∣∣
+ k

∣∣∣∣φ(xj , U(xj), U
′
(xj)

)
− φ

(
xj , Û(xj), Û

′
(xj)

)∣∣∣∣
+

∣∣∣∣U(xj)− Û(xj)

∣∣∣∣
= k

∣∣∣∣ ∂∂x (f(U)− f(Û)
)∂U
∂x

+
∂2U

∂x2
(
f(U)− f(Û)

)∣∣∣∣
+ k

∣∣∣∣ ∂∂x (f(Û)) (
∂

∂x
(U − Û)) + f(Û)

∂2

∂x2
(U − Û)

∣∣∣∣
+ k

∣∣∣∣φ(xj , U(xj), U
′
(xj)

)
− φ

(
xj , Û(xj), Û

′
(xj)

)∣∣∣∣
+

∣∣∣∣U(xj)− Û(xj)

∣∣∣∣
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≤ k

∣∣∣∣∂U∂x
∣∣∣∣ ∣∣∣∣ ∂∂x (f(U)− f(Û))

∣∣∣∣+ k

∣∣∣∣∂2U∂x2
∣∣∣∣ ∣∣∣∣f(U)− f(Û)

∣∣∣∣
+ k

∣∣∣∣ ∂∂x (f(Û))

∣∣∣∣ ∣∣∣∣ ∂∂x (U − Û)

∣∣∣∣+ k

∣∣∣∣f(Û)

∣∣∣∣∣∣∣∣ ∂2∂x2 (U − Û)

∣∣∣∣
+ k

∣∣∣∣φ(xj , U(xj), U
′
(xj)

)
− φ

(
xj , Û(xj), Û

′
(xj)

)∣∣∣∣
+

∣∣∣∣U(xj)− Û(xj)

∣∣∣∣.
Now, by considering theorems (6.1) and [27, theorem 9.19], we obtain

∥ψ − ψ̂∥∞ ≤C k
(
λ0 Lh

4 + 2λ1 Lh
3 + λ2 Lh

2

)
+M k

(
λ0 Lh

4 + λ21 Lh
3

)
+ λ0 Lh

4, (6.4)

where ∥φ′∥∞ ≤M . Thus we can rewrite (6.4) as follows

∥ψ − ψ̂∥∞ ≤M1 h
2, (6.5)

whereM1 = C k (λ0 Lh
2 +2λ1 Lh+λ2 L )+M k (λ0 Lh

2+λ21 Lh) + λ0 Lh
2. Hence,

M1h
2 is an upper bound for ∥ψ − ψ̂∥∞.

It is obvious that the matrix A in (6.2) is an ill-posed matrix, thus by Tikhonov
regularization from (5.2) we have

(C − Ĉ) = [AT A+ α(R(z))T R(z)]−1AT (ψ − ψ̂). (6.6)

Taking the infinity norm and then by using (6.5) we find

∥C − Ĉ∥∞ ≤ ∥(AT A+ α(R(z))T R(z))−1AT ∥∞ ∥ψ − ψ̂∥∞ ≤M2h
2, (6.7)

where M2 = ∥(AT A+ α(R(z))T R(z))−1AT ∥∞M1. Now we will be able to prove the
convergence of our present method.

Lemma 6.2. The B-splines {B−1, B0, · · · , BN+1}, are satisfies the following in-
equality

|
N+1∑
i=−1

Bi(x)| ≤ 10, 0 ≤ x ≤ 1. (6.8)

Proof. For proof see [17]. �

Now, observe that we have

U(x)− Û(x) =
N+1∑
i=−1

(ci − ĉi)Bi(x),
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thus taking the infinity norm and using (6.7) and (6.8) we get

∥U(x)− Û(x)∥∞ = ∥
N+1∑
i=−1

(ci − ĉi)Bi(x)∥∞

≤ ∥ci − ĉi∥∞|
N+1∑
i=−1

Bi(x)| ≤ 10M2 h
2. (6.9)

Theorem 6.3. Let u(x) be the exact solution of the equation (1.1) with the boundary
condition (1.4) and initial condition (1.5) and overspesific condition (1.6) and also
U(x) be the B-spline collocation approximation to u(x) then the method has second
order convergence

∥u(x)− U(x)∥ ≤ ω h2,

where ω = λ0 Lh
2 + 10M2 is some finite constant.

Proof. From theorem (6.1) we have

∥u(x)− Û(x)∥ ≤ λ0 Lh
4. (6.10)

Thus substituting from (6.9) and (6.10) we have

∥u(x)− U(x)∥ ≤ ∥u(x)− Û(x)∥+ ∥U(x)− Û(x)∥
≤ λ0 Lh

4 + 10M2 h
2 = ω h2,

where ω = λ0 Lh
2 + 10M2. �

Theorem 6.4. The time discretization process (3.2) that we use to discretize equation
(1.1) in time variable is of the one order convergence.

Proof. See [30]. �
We suppose that u(x, t) be the solution of equation (1.1) and U(x, t) be the ap-

proximate solution by our present method then we have

∥u(x, tn)− U(x, tn)∥ ≤ Γ(k + h2),

(Γ is some finite constant), thus the order of convergence of our process is O(k+ h2).

7. Numerical Results and Discussion

In this section, we are going to study numerically the inverse problems (1.1)-(1.6)
with the unknown boundary condition. The main aim here is to show the applicability
of the present method for solving the inverse problems (1.1)-(1.5). As expected the
inverse problems are ill-posed and therefore it is necessary to investigate the stability
of the present method by giving a test problem. Thus we compute L2 error norm, by
using following formula

L2 =

√√√√ 1

n− 1
(

n∑
i=1

|(uexact)i − (Unum)i|2) ,

where ui = u(xj , ti) and n is the total number of estimated values.



446 H. ZEIDABADI, R. POURGHOLI, AND S. H. TABASI

Example 7.1. In this example let us consider the following inverse problem

ut =
[ u

100
exp(u)ux

]
x
+
( 1

10
exp(u) + 1

)
ux, 0 ≤ x ≤ 1, 0 ≤ t ≤ 1,

with given data

u(x, 0) = ln(x+ 1),

u(1, t) = ln(
1

−0.1 t+ 1
+

t+ 1

−0.1 t+ 1
− 0.01 ln(−0.1 t+ 1)

−0.1 t+ 1
),

u(0.5, t) = ln(
0.5

−0.1 t+ 1
+

t+ 1

−0.1 t+ 1
− 0.01 ln(−0.1 t+ 1)

−0.1 t+ 1
).

The exact solution of this problem is

u(x, t) = ln(
x

−0.1 t+ 1
+

t+ 1

−0.1 t+ 1
− 0.01 ln(−0.1 t+ 1)

−0.1 t+ 1
).

The results obtained for u(0, t) = p(t) and u(0.8, t) with k = 0.001, h = 0.1 and
β = 0.5 with noisy data (noisy data=input data+(0.0001) rand(1)) are presented in
Table 1 and Figures 1, 2.

Table 1. The comparison between exact solution and numerical so-
lution for p(t) with the noisy data by using cubic B-spline method
and Tikhonov2nd when β = 0.5 for Example 7.1.

p(t) u(0.8, t)

t Exact Numerical Error Exact Numerical Error

0.1 0.105452 0.105870 0.000418 0.651329 0.652989 0.001032

0.2 0.202693 0.204502 0.001809 0.712848 0.715174 0.001723

0.3 0.293058 0.295909 0.002851 0.771962 0.774256 0.001714

0.4 0.377586 0.381223 0.003637 0.828906 0.830686 0.001221

0.5 0.457100 0.460759 0.003659 0.883885 0.885054 0.000628

0.6 0.532266 0.535159 0.002892 0.937078 0.937477 0.000124

0.7 0.603626 0.605826 0.002199 0.988644 0.988413 0.000738

0.8 0.671631 0.673657 0.002025 1.038720 1.038681 0.000532

0.9 0.736661 0.738828 0.002166 1.087431 1.088095 0.000183

1 0.799034 0.801513 0.002478 1.134887 1.136035 0.000679

L2 0.002514 0.000997

Execution Time (second) 3.416

Regularization Parameter (α) 0.049759
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Figure 1. The plots of approximate solution, exact solution and
absolute error of p(t) for Example 7.1 with the noisy data.

Figure 2. The plots of approximate solution, exact solution and
absolute error of u(0.8, t) for Example 7.1 with the noisy data.

Example 7.2. In this example, consider the following inverse problem:

ut = 2[cosh2(3u)ux]x, 0 ≤ x ≤ 1, 0 ≤ t ≤ 1,
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with given data

u(x, 0) =
1

3
arcsinh(

x+ 0.25

2
√
2

),

u(1, t) =
1

3
arcsinh(

1.25

2
√
2− t

),

u(0.5, t) =
1

3
arcsinh(

0.75

2
√
2− t

).

The exact solutions in a closed form are given by

u(x, t) =
1

3
arcsinh(

x+ 0.25

2
√
2− t

).

For numerical computation, we take with β = 0.5, k = 0.001 and h = 0.1 for estimate
u(0, t) = p(t) and u(0.8, t) with noisy data (noisy data=input data+(0.0001) rand(1))
and results are reported in Table 2 and Figures 3, 4.

Table 2. The comparison between exact solution and numerical so-
lution for p(t) with the noisy data by using cubic B-spline method
and Tikhonov2nd when β = 0.5 for Example 7.2.

p(t) u(0.8, t)

t Exact Numerical Error Exact Numerical Error

0.1 0.030186 0.032651 0.002464 0.124042 0.123961 0.000112

0.2 0.031011 0.034422 0.003411 0.127285 0.127061 0.000258

0.3 0.031908 0.035575 0.003667 0.130797 0.130553 0.000281

0.4 0.032887 0.036842 0.003955 0.134617 0.134350 0.000307

0.5 0.033961 0.038248 0.004286 0.138794 0.138501 0.000336

0.6 0.035149 0.039820 0.004670 0.143386 0.143064 0.000370

0.7 0.036471 0.041591 0.005120 0.148468 0.148112 0.000409

0.8 0.037954 0.043607 0.005653 0.154134 0.153739 0.000454

0.9 0.039634 0.045926 0.006292 0.160505 0.160065 0.000507

1 0.041558 0.048628 0.007069 0.167743 0.167249 0.000570

L2 0.004577 0.0003608

Execution Time (second) 5.632

Regularization Parameter (α) 36.6301
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Figure 3. The plots of approximate solution, exact solution and
absolute error of p(t) for Example 7.2 with the noisy data.

Figure 4. The plots of approximate solution, exact solution and
absolute error of u(0.8, t) for Example 7.2 with the noisy data.

Example 7.3. We consider the following inverse problem

ut = 2[u4ux]x + (2u4 − 2)ux, 0 ≤ x ≤ 1, 0 ≤ t ≤ 1,
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with given data

u(x, 0) = (2− 0.5x)
1
4 ,

u(1, t) = (
0.5

t+ 1
+

1

8

ln(t+ 1)

(t+ 1)
+ 1)

1
4 ,

u(0.5, t) = (
1.5

2t+ 2
+

1

8

ln(t+ 1)

(t+ 1)
+ 1)

1
4 .

The exact solution of this problem is

u(x, t) = (
2− x

2t+ 2
+

1

8

ln(t+ 1)

(t+ 1)
+ 1)

1
4 ,

For numerical computation, we take with β = 0.5, k = 0.001 and h = 0.1 for estimate
u(0, t) = p(t) and u(0.8, t) with noisy data and results are reported in Table 3 and
Figures 5, 6.

Table 3. The comparison between exact solution and numerical so-
lution for p(t) with the noisy data by using cubic B-spline method
and Tikhonov2nd when β = 0.5 for Example 7.3.

p(t) u(0.8, t)

t Exact Numerical Error Exact Numerical Error

0.1 1.177120 1.182728 0.005607 1.116992 1.116657 0.000263

0.2 1.166619 1.174228 0.007609 1.110231 1.109882 0.000285

0.3 1.157399 1.166008 0.008609 1.104288 1.103936 0.000296

0.4 1.149230 1.158133 0.008902 1.099017 1.098672 0.000295

0.5 1.141934 1.150739 0.008804 1.094306 1.093974 0.000287

0.6 1.135375 1.143881 0.008506 1.090066 1.089752 0.000274

0.7 1.129441 1.137560 0.008119 1.086228 1.085932 0.000259

0.8 1.124044 1.131749 0.007704 1.082734 1.082457 0.000243

0.9 1.119113 1.126409 0.007296 1.07954 1.079280 0.000228

1 1.114587 1.121497 0.006910 1.076604 1.076362 0.000213

L2 0.007731 0.000263

Execution Time (second) 7.004

Regularization Parameter (α) 8.1825
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Figure 5. The plots of approximate solution, exact solution and
absolute error of p(t) for Example 7.3 with the noisy data.

Figure 6. The plots of approximate solution, exact solution and
absolute error of u(0.8, t) for Example 7.3 with the noisy data.

8. Conclusion

A numerical method, to estimate unknown boundary conditions is proposed and
the following results are obtained.

• The present study successfully applies the numerical method to inverse prob-
lems.

• Unlike some previous techniques using various transformations to reduce the
equation in to more simple equation, the current method does not require
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extra effort to deal with the nonlinear terms. Therefore, the equations are
solved easily and elegantly using the present method.

• Numerical examples also verified the efficiency and accuracy of the method
that can be obtained within a couple of minutes CPU time at Core(i5)–2.67
GHz PC.

• The present method has been found stable with respect to small perturbation
in the input data.

References

[1] R. C. Aster, B. Borchers, and C. Thurber, Parameter estimation and inverse problems. Text-

book, New Mexico, Tech., 2003.
[2] F. Auricchio, L. Beirao da Veiga, T. Hughes, A. Reali, and G. Sangalli, Isogeometric collocation

methods, Mathematical Models and Methods in Applied Sciences, 20(11) (2010), 2075–2107.
[3] J. R. Cannon, Determination of an unknown heat source from overspecified boundary data,

SIAM J. Numer. Anal., 5(2) (1968), 275–286.
[4] J. R. Cannon, Y. Lin, and S. Wang, Determination of a control parameter in a parabolic partial

differential equation, J. Aust. Math. Soc. Ser. B, 33 (1991), 149–163.
[5] M. Dehghan, An inverse problem of finding a source parameter in a semilinear parabolic equa-

tion, Appl. Math. Model., 25 (2001), 743–754.
[6] M. Dehghan, parameter determination in partial differential equation from the overspecified

data, Math. Comput. Model., 41(23) (2005), 196–213.
[7] M. Dehghan and M. Lakestani, The Use of cubic B-spline scaling functions for solving the

one-dimensional hyperbolic equation with a nonlocal conservation condition, Numer. Methods
Partial Differential Eq., 23(6) (2007), 1277–1289.

[8] M. Dehghan, S. A. Yousefi, and K. Rashdi, Ritz-Galerkin method for solving an inverse heat

conduction problem with a nonlinear source term via Bernstein multi-scaling functions and
cubic B-spline functions, Inverse Prob. Sci. Eng., 21 (2013), 500–523.

[9] L. Elden, A note on the computation of the generalized cross-validation function for ill-
conditioned least squares problems, BIT, 24 (1984), 467–472.

[10] K. Eric Chu, Singular Value and Generalized Singular Value Decompositions and the Solution
of Linear Matrix Equations, Linear Algebra and its Applications, 88 (1987), 83–98.

[11] A. G. Fatullayev and S. Cula, An iterative procedure for determining an unknown spacewise-
dependent coeifficient in a parabolic equation, Appl. Math. Lett., 22 (2009), 1033–1037.

[12] S. Foadian, R. Pourgholi, and S. H. Tabasi, Cubic B-spline method for the solution of an inverse
parabolic system, Applicable Analysis, 97(3) (2018), 438–465.

[13] G. H. Golub, M. Heath, and G. Wahba, Generalized cross-validation as a method for choosing
a good ridge parameter, Technometrics, 21(2) (1979), 215–223.

[14] H. Gomez and L. De Lorenzis, The variational collocation method, Computer Methods in Ap-
plied Mechanics and Engineering, 309 (2016), 152–181.

[15] Y. C. Hon and T. Wei, A fundamental solution method for inverse heat conduction problem,
Eng. Anal. Bound. Elem., 28 (2004), 489–495.

[16] V. Isakov, Inverse Problems for Partial Differential Equations, Springer, New York, 1998.
[17] M. K. Kadalbajoo, V. Gupta, and A. Awasthi, A uniformly convergent b-spline collocation

method on a nonuniform mesh for singularly perturbed one-dimensional time-dependent linear

convection diffusion problem, Journal of Computational and Applied Mathematics, 220 (2008),
271–289.

[18] K. A. Khalid, K. R. Raslan, and T. S. El-Danaf, Non-polynomial Spline Method for Solving
Coupled Burgers Equations, Comput. Methods Differ. Equ., 3(3) (2015), 218–230.

[19] M. Lakestani and M. Dehghan, Numerical solution of Fokker–Planck equation using the cubic
B-spline scaling functions, Numer Methods Partial Differential Eq., 25(2) (2009), 418–429.



CMDE Vol. 7, No. 3, 2019, pp. 434-453 453

[20] L. Martin, L. Elliott, P. J. Heggs, D. B. Ingham, D. Lesnic, and X. Wen, Dual reciprocity
boundary element method solution of the Cauchy problem for Helmholtz-type equations with
variable coefficients, J. Sound Vib., 297 (2006), 89–105.

[21] M. Montardini, G. Sangalli, and L. Tamellini, Optimal-order isogeometric collocation at
Galerkin superconvergent points, Computer Methods in Applied Mechanics and Engineering,
316 (2017), 741–757

[22] R. Pourgholi, N. Azizi, Y. S. Gasimov, F. Aliev, and H. K. Khalafi, Removal of numerical

instability in the solution of an inverse heat conduction problem, Commun. Nonlinear Sci.
Numer. Simul., 14(6) (2009), 2664–2669.

[23] R. Pourgholi, H. Dana, and S. H. Tabasi, Solving an inverse heat conduction problem using
genetic algorithm: sequential and multi-core parallelization approach, Appl. Math. Modelling,

38(7) (2014), 1948–1958.
[24] R. Pourgholi and A. Saeedi, Applications of cubic B-splines collocation method for solving non-

linear inverse parabolic partial differential equations, Numerical Methods for Partial Differential

Equations, 34(8) (2016), 1–17.
[25] A. G. Ramm, An inverse problem for the heat equation, J. Math. Anal. Appl., 264 (2004),

691–697.
[26] A. G. Ramm, Inverse problems, Springer, New York, 2005.

[27] W. Rudin, Principles of mathematical analysis, McGraw-Hill Inc., Third Edition, 1976.
[28] D. Schillinger, J. A. Evans, A. Reali, M. Scott, and T. Hughes, Isogeometric collocation: cost

comparison with Galerkin methods and extension to adaptive hierarchical NURBS discretiza-
tions, Computer Methods in Applied Mechanics and Engineering, 267 (2013), 170–232.

[29] A. Shidfar, G. R. Karamali, and J. Damirchi, An inverse heat conduction problem with a
nonlinear source term, Nonlinear Anal., 65 (2006), 615–621.

[30] G. D. Smith, Numerical solution of partial differential equation: finite difference method,
Learendom Press, Oxford, 1978.

[31] J. Stoer and R. Bulrisch, An introduction to numerical analysis, Springer-Verlag, 1991.


