Computational Methods for Differential Equations C
http://cmde.tabrizu.ac.ir

Vol. 7, No. 3, 2019, pp. 334-358 na

Analysis of the stability and convergence of a finite difference ap-
proximation for stochastic partial differential equations

Mehran Namjoo™

Department of Mathematics, Vali-e-Asr University
of Rafsanjan, Rafsanjan, Iran.

E-mail: namjoo@vru.ac.ir

Ali Mohebbian

Department of Mathematics, Vali-e-Asr University
of Rafsanjan, Rafsanjan, Iran.

E-mail: a.mohebbiyan@stu.vru.ac.ir

Abstract In this paper, an implicit finite difference scheme is proposed for the numerical solu-
tion of stochastic partial differential equations (SPDESs) of It type. The consistency,
stability, and convergence of the scheme are analyzed. Numerical experiments are
included to show the efficiency of the scheme.

Keywords. Stochastic partial differential equations, Stochastic finite difference scheme, Stability, Consis-
tency, Convergence.
2010 Mathematics Subject Classification. 60H15, 65M12.

1. INTRODUCTION

Stochastic partial differential equations play a prominent role in a range of applica-
tions, including biology, chemistry, epidemiology, mechanics, microelectronics and, of
course, finance. In general, obtaining analytical solutions for SPDEs is either difficult
or impossible, therefore researchers are very interested in effective numerical methods
for studying the behavior of these equations. In the literature, several methods have
been proposed to solve the SPDEs from either numerically or analytically points of
view. An analytical solution can be obtained in [3, 4, 8] for very few SPDEs. Allen [1]
has constructed finite element and difference approximation of some SPDEs. Walsh
[12] used the finite element methods for parabolic SPDEs and Roth [9] approximated
the solution of some stochastic hyperbolic equations by finite difference methods.
Kamrani and Hosseini [5] have studied explicit and implicit finite difference method
for general SPDEs. Soheili et al. [10] presented two methods for solving SPDEs based
on Saul’yev method and a high order finite difference scheme. Compact finite differ-
ence scheme for stochastic advection-diffusion equation has proposed by Soheili and
Bishehniasar in [2].

This paper is organized as follows. In section 2, a review of the Crank-Nicolson
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method for deterministic advection-diffusion equations and stability of the scheme is
analyzed. Afterward, we extend this finite difference scheme for an approximation
of stochastic advection-diffusion equations. In section 3, consistency, stability and
convergence of the proposed stochastic scheme have been discussed. Finally, in the
last section, some numerical simulations to demonstrate the validity of the theoretical
results are given.

2. FINITE DIFFERENCE APPROXIMATION FOR ADVECTION-DIFFUSION EQUATIONS

Consider the following stochastic advection-diffusion equation

up(x,t) + vug (x,t) = yuze(z,t) + ou(z, )W (t), z€][0,1], t€]0,1],
(2.1)

with initial condition u(x,0) = ug(z), 0 < < 1 and boundary conditions

u(ovt):fl(t)7 U(Lt):fQ(t)v te [Ov 1]7

where v and ~ are the positive parameters which are called the phase speed and the
viscosity coefficient, respectively, and W (¢) is an one-dimensional Wiener process such
that the white noise W (t) is a Gaussian distribution with zero mean [6]. Numerically,
finite difference methods have vast applications for approximating the solution of
SPDEs. These schemes discretize continuous space and time evenly into a distributed
grid system, and the values of the state variables are evaluated at every node of the
grid. By considering a uniform space Az and time At grids in the time-space lattice,
we can estimate the solution of the equation at the points of this lattice. The value
of the approximate solution at the point (kAz,nAt) will be denoted by u} where n,
k are integers.

2.1. The Crank-Nicolson finite difference scheme for deterministic advection-
diffusion equations. In this technique, the time and space derivatives in the partial
differential equation (PDE) are approximated by finite difference replacements as the
following

ul Tt —
us(kAx, nAt) ~ & A7 k.
u? — oy u7z+1 o un+1
ug (kAx, nAt) =~ k+14Ax Lt k+14A:r k=l
1 (upy = 2up +upsy | updy = 20 gt
s (KA, nAL) ~ o ( + A + =+ AT . (22

This implicit finite difference scheme simplifies the solution SPDE (2.1) in the absence
of the noise term takes the following form

VA PN n VA 9P\
- <4 + 2> Uk—_i_i + (]. +"}/p)uk+1 + <4 — ? Ukii

VA n n vA\ o,
— (G- (-5 ) @)

2 2
B
BE
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where A = ﬁ—fc and p = AA;Q. The Crank-Nicolson scheme can be shown to be

unconditionally stable by use of the Von Neumann method of stability analysis [11]
as follows. Assume that 4"*! is the Fourier-transformation of 4™ *!, then the Fourier
inversion formula gives us

un+1 / imAz&,&n—i-l d , 2.4

W= (€)d (24
where

A 1 S —imAzE, n

att = v Z e imATEy LA (2.5)

and ¢ is a real variable. Substituting in equation (2.3), we get
a"tH(E) = g(Azg, At, Ax)a" (),

where g(Az¢€, At, Az) is the amplification factor of the deterministic difference scheme.
For fixed v\ and ~p, the stability condition is |g(Ax¢, At, Az)| < 1. In this way, the
amplification factor for the Crank-Nicolson method is

(1 —yp) + (B + ) e8¢ 4 (1 — 1) gitat
(1 +7p) — (2 + ) e—idat 4 (L) _ 22 gidat

1 — 2ypsin? (Azg) i sin(Axf)

! + 2ypsin (Am5> +i Sin(Amf)

g(AzxE, At, Azx) =

Since |g(AzE, At, Ax)| < 1, for all \, p and Az, the scheme is unconditionally stable.

2.2. The Crank-Nicolson finite difference scheme for stochastic advection-
diffusion equations. We extend the proposed unconditional stable finite difference
scheme to approximate the solutions of the stochastic advection-diffusion equations
of the form (2.1) and investigate its performance in the stochastic case. Substituting
partial derivatives (2.2) in Eq. (2.1), we obtain the stochastic Crank-Nicolson implicit
finite difference scheme as follows:

vA e\ . n VA PN o,
_<+>uk+%+(1+7p) +1+<4_2 upfy

A A
= (V + w) up_1 + (1 —yp)up + <’)’2p V4 ) UkJrl + ouy AW, (2.6)

where A = ﬁ—i, p= A$2, AW, = W((n + 1)At) — W(nAt) and AW, is a Gaussian
distribution with mean 0 and variance At, i.e., AW, ~ N(0, At). In [7], the authors
have considered the approximation of stochastic advection diffusion equation using
a conditional stable stochastic difference scheme. It follows from [7] the stochastic
(<)
EE
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difference for (2.1) is given by
n+1 5 n 4 n
u, = (1+vA— 5P ) uk + 3P VA | ugy

—+ Yp <12uk_2 + guk—l - 12uk+2> + UUkAWn7 (27)

where A = % and p = AAI’;. Throughout this paper we assume that for the stochastic

finite difference scheme (2.6) the increments of Wiener process are independent of the
state uj. Essentially, it is important for the solution of stochastic difference scheme to
converge to the solution of the SPDE. Consider an SPDE of the form Lv = G, where
L denotes the differential operator and G is an inhomogeneity. Let u}} be a solution
that is approximated by a stochastic finite difference scheme denoted by L}, and
applying the stochastic scheme to the SPDE, we have Lj}u} = G}, where G} is the
approximation of the inhomogeneity. In order to get consistency, stability and conver-
gence results, we will need a norm. Hence for a sequence u = {...,u_1,ug,u1,...},
the sup-norm is defined as |luljcc = . /sup |ug|?. We refer the reader to [9] for the
k

following definitions of a stochastic difference scheme.

Definition 2.1. A stochastic difference scheme Lju} = G} is pointwise consistent
with the SPDE Lv = G at point (z,t), if we have for any continuously differentiable
function ® = &(x,t), in mean square

E[| (L& — G) |} — [LE@(kAz,nAt) — GR] |2 — 0,
as Az — 0, At — 0, and (kAz, (n + 1)At) — (z,t).
To investigate the stability of the stochastic difference scheme, we can apply
the Von Neumann method for the stochastic difference scheme. From substitut-

ing Eq. (2.5) in the stochastic difference equation and the equality of the Fourier-
transformation one obtains

a"H(E) = 4" (§)g(Axg, At, Ax),

where 4" is the Fourier-transformation of w™. So in this stability analysis a necessary
and sufficient condition of stability is

E|lg(Az¢, At, Az)|*> < 1+ KA.

Definition 2.2. A stochastic difference scheme Lju} = G} which approximate the
SPDE Lv = G is convergent in mean square at time ¢, if as (n + 1) At converges to ¢,
then E|u"*! — o™ *1|2 — 0, for (n + 1)At =t, Az — 0 and At — 0.

3. CONSISTENCY, STABILITY AND CONVERGENCE OF THE STOCHASTIC
CRANK-NICOLSON SCHEME

Theorem 3.1. The stochastic difference scheme (2.6) is consistent in mean square
with the stochastic partial differential equation (2.1).

(el
BE
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Proof. Let ®(x,t) be a smooth function, then we have

(n+1)At
L(®)|} = ®(kAx, (n+ 1)At) — O(kAz, nAt) + V/ O, (kAx, s)ds
nAt

(n+1)At (n+1)At
— fy/ D, (kAx, s)ds — 0/ O(kAz, s)dW (s),
nAt nAt

and from (2.3), we get

Ly® = &(kAx, (n+ 1)At) — ®(kAx, nAt)

L (®((k + 1)Az, ) — B((k —~ 1)Az, nA))

At
T 4Ax

b (R((k + 1A, (0 DAL — B((k DA, (0 + AN

1
A (fI)((k; +1)Az, nAt) — 20 (kAz, nAt)

2Az2

+o((k - 1)Ag;,nm)) + (<I>((k+ 1Az, (n+ 1)At)

1
2Ax?

— 20(kAz, (n + 1)At) + &((k — 1)Az, (n + 1)At))

— 0@ (kAz, nAt)(W((n + 1)At) — W(nAt)).
Therefore, if we use the square property of Ito integral, we will obtain

EIL(®)[; — Ly @[

=E
At

(n+1)At 1
1// <<I>z(kA:r, s) — <4Aac (@((k + 1)Az, nAt)
—&((k - 1)Ax, nAt))) + ﬁ (<I>((k +1)Az, (n+ 1)At)
(n+1)At

—&((k - DAz, (n + 1)At))>>ds - 7/m (cpm(mx, )

_ (lez (®(0k -+ 1) Az, ) — 2B(kAZ, nAL) + B((k — 1)Az,nAY))

+ (@((k+ 1Az, (n+ 1)At) — 28(kAz, (n + 1)At)

2Az2

(k- 1)Az, (n + 1)At))> ) ds

(n+1)At
. / (@(kAx, 5) — @(kAx,nAt))dW(s)
nAt

=
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< 4°E

(’I’LJrl)At 1
o, (kAz.s) — [ —— (((k + 1)Az, nA
V/nAt (kAz,s) 4Ax< ((k+ 1)Az,nAt)

— (k- 1)Am,nAt))) + (<I>((k: +1)Az, (n + 1)At)

4Ax
2

—&((k - DAz, (n + 1)At)>>>ds

(n+1)At
/ D, (kAz, 5)
nAt

- <2A1362 (‘I’((k +1)Az,nAt) — 2&(kAz, nAt) + ®((k — 1) Az, nAt))

+ 44°E

+ 5377 (@((k + AT, (0 + 1AL — 20(kAT, (0 + 1) A1)

+®((k — 1)Az, (n+ 1)At))> ) ds

2

(n+1)
+ 402/ E|®(kAz, s) — ®(kAz, nAt)|*ds.
nAt

Since ®(x,t) is a deterministic function, hence E|L(®)[} — L7®|?> — 0, as n, k —
0. O

Theorem 3.2. The stochastic Crank-Nicolson difference scheme (2.6) is uncondi-
tionally stable based on the Fourier-transformation analysis for the advection diffusion
equation (2.1).

Proof. Substituting (2.5) into Eq. (2.6) implies that
A ) A )
{ (1/4 + ”y2p) eI 4 (1 4+ yp) + (V4 — 72'0) e’AIﬂ a"t(€)

- [(Z\ + w) e A 4 (1—yp) + (W — ?) ATt aAWn] a(£).

2 2
Then we get
ey L () () ¢ (3 - 1) oo
— (B ) e B (14 p) + (B — ) Bt
n O’AWn An(g)
— (B +B) e Bt (14 p) + (B - F) eidat
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This means that the amplification factor of the stochastic Crank-Nicolson scheme is

(%_’_’YQ ) 77,Aw§+(1_,yp) (’Yf’ V)\)eiAa:ﬁ
= (P e+ (L) + (5 = F) eitet

o AW,
_ (IJAT/\ + 729) e—iATE (14 ~p) + (z//\ ¥) etAzE
Now by independence of the Wiener process and simple computations, we obtain
) ) 2

(B + ) e 4 (L—qp) + (¥ — ) 2t
—(F + ) B (L) + (1§ — ) eihat
2

g(AxE, At, Azx) =

Elg(Ax€, At, Ax)|* = l

o
+ . At.
—(FHP) et r 1t + (7 - %) B’A’”J
Hence for every v, p, v, A and Ax we get
. 2
(2 +3) 5 4 (L= 9p) + (3 - )
SR e (e T (F - F) o
2
1 — 2vpsin? ( ) i sin(Ax)
= <1,
1 + 2vypsin? ( ) + i %2 sin(Axg)
and
2
o
— (5 +B) e B+ (Lt yp) + (5 - F) eidat
2
- g <K.
1 + 2vypsin? (%) + % sin(Ax¢)
So
Elg(Azé, At, Ax)|> < 1+ KAL,
which proves the stability. O

Theorem 3.3. Let v € H', H?>, H® H*. The stochastic Crank- Nz’colson scheme
(2.6) for Eq. (2.1) is convergent wzth respect to || - ||so—norm when X < vp < 1.

Proof. We can rewrite the stochastic finite difference scheme (2.6) as

n n n+1 n+1

u — U u —Uu

k+1 k—1 k+1 k—1
n+1 _ ,Z_ VAt ( + + )

Uk 4Ax 4Azx

2A 2 2A 2
+ oup(W((n+ 1)At) — W(nAt)).

+1 +1 +1
L AL <u2+1—2u2+%‘_1 upin — 20 T 1)

=



CMDE Vol. 7, No. 3, 2019, pp. 334-358 341

We can represent the solution v by the Taylor’s expansion v, (z, s) and v, (, s)
with respect to the space variable as

(n+1)At (n+1)At
UZ-H =] — 1// Ve (2, 8)|p=a, ds + 'y/ Vo (T, 8)|wma, ds
nAt nAt

(n+1)At
+U/ v(x, $)|g=z, AW (s)

At
. V/(nJrl)At Vi~ Vh_y Uzjrrll _ U}rill
* nAt 4Ax AAL
Ag2
_ 4%3' (me((k + a1)Ax, 8) + Vpgr (K + a2) Az, s)

+ Vgre ((k + a3) Az, s + At)

A
+ Vgae ((k + aq) Az, s + At)) — ?tvzt(kAx, s+ nAt)) ds

n+1)At n n n n+l o, n+l n+1
(n+1) Vg —20p Fopy vy — 20 Fopty
+7
n

At 2A12 2Az2
Az?
- m (Um:vzz((k + ﬁl)A$7 3)

+ Uxa:ww((k + BQ)AZ‘, 3) + Umwww((k + BS)A:K’ S+ At)

+ Vpza ((k + Ba) Az, s + At)) — %vmt(kA% s+ §At)> ds

(n+1)At
+ a/ v(x, 8)|z=z, AW (s),

where ay, ag, as, ag, 0, B1, B2, B3, Ba, d € (0,1). Therefore we get

n+1)At n ) n+l _  n+l
I R () Ykt1 —Yk—1 | Yk41 Yk
k k nAL 4Ax 4Ax

Ag2
— 473:3' ('Uzww((k' + a1)Ax, 8) + Vpgr (K + a2) Az, s)

+ gz ((k + a3) Az, s + At)

At
+ Vgae ((k + cq) Az, s + At)) + V?vm(kAa:, s+ nAt)
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At
_ 77vmx(kAm, s+ UAt)> ds

nt1)At e n n n+1l n+1 n+1
(n+1) U — 20 gy v 2071 4 ]
+7
n

At 2A12 2A 72

2
a % (v””((k + B1)AL, 8) + Vegan (K + B2) Az, 5)

+ vwwww((k + ﬂg)AJj’ s 4+ At)

A
+ Urara (k- B) Az, s+ Af)) + u{vm(mx, s+ 6At)

2

At (n+1)At
+ Vo N V2 (T, 8)|pme, AW (5)
At [(rTDAL
05 Vaa (T, 8) | oz, AW ()
nAt

(n+1)At
+J/ U(x7s)|m:zde(8).
nAt

At
- ryivxa:xx(kA.T, s+ 6At)> ds

n_ .,n n
Let zp = vy — uy, then

nthAat [ on n ntl _  ntl
St _n (n+1) 21— Zh_q N Zpii — Zpq
RN 1As TAs

Az?
_ ﬁxgl ('Uzmx((k + Oz1)A$, s) + vzm((k + QQ)A% s)

+ Voo ((k + az) Az, s + At)

+ Vaao ((k + 0a) Az, s + At)) + V%”zz(kﬁAw, s+ nAt)

A
- ngxm(mx, s+ nAt)> ds

nthAL [0 n o.n ntl _ o ntl | ntl
( ) zk+1 — ZZk + 2 _1 Zk+1 2Zk: + Zk,1
+

n

At 2Az2 2Ax2

2
N % ('U:vmxx((k’ + ﬂl)A"E, S) + Umram((k + ﬂz)A%, S)

+ Vawaa (K + B3)Ax, s + At)

=
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+ Vozaw (K + Ba) Az, s + At)) + I/%’szz(kAl’, s+ 0At)

At
_ VTvMM(kAx, s+ 5At)> ds
At (n+1)At
+ vo— Vg (T, 8)| e, AW ()
nAt
At (n+1)At
T Vg (2, 8) |oma, AWV ()
nAt
(n+1)At
to / (0(@, 8) ey — )V ().
nAt

Easily it follows that
VA P VA p
(L +7yp)2 ™ — <4 + 2> CHars <4 - 2) e
n, (YA PN n VAN
=(L=p)z + <4 + 2> Zj—1 + (2 - ) R

(n+1)At Ag?
71// — m(vxmc((k+0é1)Al‘,S) +Uacacgc((k+0é2)Al‘75)
nAt !

+ Vgza ((k + ag) Az, s + At)

+ Vgza ((k + aq) Az, s + At)) + I/%vm(kAx, s+ nAt)

At
— 7~ Vawa (kAx, s + nAt) |ds
(n+1)At Ax2
+’7/ - 7(Ummxz((k+ﬂl)Al‘a8) +’Umxzz((k+ﬂ2)Ax78)
DAL 2 x 4!

+ Vgzae (K + B3) Az, s + At)

A
+ Vpgaa ((k + Ba) Az, s + At)) + I/Ttvwm(kAx, s+ 0AL)

At
- ’Y?Uacxxac(kAnT; S+ 5At) ds
At (n+1)At
tro—- Vg (2, 8)|p=a,, AW (5)
2 nAt
Ap [(nTDAL
o 707 At Uﬂm(xa 5)|%:zkdw(5)
(n+1)At
nAt



344 M. NAMJOO AND A. MOHEBBIAN

Applying E| - |2 to (3.1) and by use of the inequality
E|X +Y + Z + R+ S|? <4E|X > + 8E|Y|> + 16E|Z|*> + 16E|R|* + 2E|S|?,

we get

2
n VA PN VA 9P\
E ‘(1 +yp) 2t — <4 + 2) it + <4 -5 iy

2

VA P P VA
<4E ‘(1 —p)2K + (4 + 2) zZpg + (2 -7 2l
(n+1)At Az
+8E —l//’r;At — m(vﬁxx((k‘Fal)Am,S)

FUgza ((k + o)Az, 8) + Vypa ((k + a3) Az, s + At)

+ Vgaa ((k + aq) Az, s + At)) + V%sz(kAx, s+ nAt)
— vgvmm (kAx, s +nAt) |ds

2
(n+1)At A2
+71;t o4l

+ meww((k + B2)Ax; 8) + 'Umvmw((k' + ﬁg)AJﬁ, s+ At)

(vmm((k + B1)Az, s)

At
+ Vprwa((k + Ba) Az, s + At)) + V— Vg (kAx, s + 0AL)

2
At ’
(n+1)At
+4(V0'At)2/ ]E|’Ux(1‘78)|x:xk|2d3
nAt
(n+1)At
+4(’70At)2/ E'“zm(xa8)|I:$k‘2dS
nAt
(n+1)At
+202/ E|W($,s)|x=xk _UZ —|—1JZ —uz‘QdS
nAt
2
w (VA 0N . WP PAN
<4E ‘(1 —vp)zp + <4 + 2) Zp_1+ (2 e Pl+1

(<)
EE
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(n+1)At Az
—V/,,;At B 4 x 3!

FUgza ((k + o)Az, 8) + Vypa ((k + a3) Az, s + At)

-+ 8K

(’Umm((k' + a1)Az, s)

+ Vgaa ((k + aq) Az, s + At)) + V%vm(l@Azx, s+ nAt)

At
(n+1)At Ax?
o /nAt Toxdl (Um:m((k + f1)Az, s)

+ waww((k + 62)A-T; 8) + 'Umvmw((k + ﬁg)Aﬂ?, s+ At)

A
+ Vggwa (k + Ba) Az, s + At)) n ngmx(kAx, s+ OAL)

2

At
(n+1)At
+4(V0'At)2/ ]E|vx(x75)|x=3?k|2d8
nAt
(n+1)At
+4(’70At>2/ E'”zx(xa8)|liwk‘2ds
nAt

) (n+1)At )
+ 4o /A Elv(z, $)|p=z, — v |“ds
nAt

(n+1)At
+ 40 /A Elvf — uf|*ds.
nAt

|20 [2At

Therefore

2
VA P VA p
E ‘(1 +yp) 2t — (4 + 2) 2+ <4 - )@

2
VA AN
<4 |(({|1—="pl+ PALDP L 122 _TR)  o2A sup E|zp |2
4 2 2 4 .
(n+1)At Ag2
8 E - - 7( TTT k A 9
+ Sllip V/nAt T\ ((k+ a1)Az, s)

FUzaz((k + a2) Az, 8) + Vpgo (K + ag)Ax, s + At)
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+ Vgaa ((k + cq) Az, s + At)) + I/%vm(kAx, s+ nAt)

(n+1)At Ax?
o /nAt Toxdl (Um:m((k + f1)Az, s)

+ Ua:www((k + BQ)ALU, S) + vzwwz((k + ﬂg)AJﬁ, s+ At)

A
+ Vprwa((k + Ba)Ax, s + At)) + V;vwm(kAx, s+ dAL)
2

Bl e (B, 5+ 6AY)

5 ds

(n+1)At
+ 4(1/0At)2 sup/ Elvz (2, 8)|e=ay ‘st
k nAt

(n+1)At
+4(70At)2 sup/ ]E|Uz:c(x75)|x=xk|2ds

k Jnat
(n+1)At
+ 402 sup/ Elv(z, 8)|z=z, — vi|*ds.
k nAt

Let us introduce the notations ¥ = ez ((k + a1)Az,8) < 00, Yo, = Vagz((k +
a)Ax, s) < 00, Y3 = Vyro((k + ag)Az, s + At) < 00, Y = Vpua((k + aq)Az, s +
At) < 00, Y5 = Vge(kAx, s + nAL) < 00, Vg = VUgee (KA, s + NAL) < 00, O1) =
vmmmr((k +51)ALE,S) < 09, @2k = vzmxm((k + ﬂZ)A‘T’S) < 09, @3k = vmrxm((k +
B3)Ax, s + At) < 00, O, = Vpgax((k + fa)Az, s + At) < 00, Os = Vgga(kAz, s +
dAt) < 00, Opr = Vgzaa(kAx,s + IAL) < o0, V), = vg(z,s) < co and ¥, =
Vg (2, 8) < 0o. Considering

(n+1)At (n+1)At
J I e N UTCS P
nAt nAt

< sup [0(2, 8)|omz, — v(EAT, nAL)2AL < ' At,

s€[nAt,(n+1)At]

and using the hypothesis ”7)‘ < ~vp < 1, we obtain

4 2 4 2
<4 (14 o*At) supE|z}?
k

n VA P VA 9P\ .
sgpIE ’(1 + ’YP)Zk'H — ( + ) zkfll + ( - = ZkLl

(<)
EE
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(n+1)At A2
—V/ { - (%k + Yo + Y3 + ¢4k>

8 E -
+ Slklp At 4 x 3!

At At
+V71/)5k - ’721/)%] ds

(n+1)At A2
+Py/nm {2 x 4! (@“‘ + Oz + O3y, +@4k)

At 2

At
+V795k - 72@6k:| ds

(n+1)At
+ 4SUP/ [(vo At)E[¢,,* + (vo At)*E|¢py|*] ds
k n

At
+ 402 At.
Hence
2
vA el |vA W)) 1|2
14+v9p| = |—+ |+ |—— — =) supE|z
(1001 - |5 + 2|+ |5 - %) st

< 4(1 4 o%At)sup E|2}|* + 8sup E|¥, |2 At
k k
+ 4sup E| W52 At + U AL,
k

and consequently

E”ZnJrl”io _ Sl;pE|ZLL+1|2 <401+ O'QAt) sng|zg|2 + WAL
< A(1+ P AOE| "2, + AL

n+l n
t )
< <1 +o? > > (AUAL) + WAL
n+1 por

<ot zn:(szAt)j + UAL.
j=1
When time step, i.e., At, is tending to zero, we obtain
E[2" T2 < (n—1)e” HADAL)? + 4¢” DAL + TAL
< te” H(AW)2 At + 4e” UAL + WAL
= (te” H(AT)2 + 4e7 1T + V)AL,

or E||z" Y%, — 0. O

4. NUMERICAL ASPECTS

Analytical studies always remain incomplete without numerical verification of the
results. In this section, we present the numerical results of the stochastic difference
scheme (2.6) on three test problems. Also, the convergence and stability of the sto-
chastic difference scheme (2.6) are numerically investigated. Since AW,, ~ N (0, At),

(el
BE
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FI1GURE 1. Comparison between deterministic and stochastic numer-
ical solution of (4.1) using the Crank-Nicolson scheme with v = 0.05,
o = 12, Az = 0.01, At = 0.002 and with v = 0.001, ¢ = 2,
Az =0.008, At =0.1.

—-—-— Numerical Solution

0451 "’ \ Exact Solution

0
0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1
X X

(a) v =0.05, 0 = 1.2, Az = 0.01, At = 0.002.  (b) v =0.001, 0 =2, Az = 0.008, At = 0.1.

hence to generate Wiener increments AW,, in MATLAB environment of random num-
bers the generator, randn(# traj,# step) is used, such that each call to randn(# traj,#
step) creates a #traj x #step matrix of independent N (0, 1) samples.

Example 4.1. Consider the stochastic diffusion equation of the form

up(z,t) = yuge(z,t) + oul(z, )W(t), =x€l0,1], te]0,1], (4.1)

with initial condition
—0.2)2
U(x70) = exp <_(‘T,y)) 3

and boundary conditions

1 0.04
0.0 = T o <_7(4t + 1)) ’
G- ( 0.64 >
/T y(4t+1) )"

In absence of the noise term, the exact solution is

1 ( (z— 0.2)2>
———exp|——" .
Vit +1 ~v(4t + 1)
In this example, in order to qualify numerical results of the considered stochastic
diffusion equation, we plot in Figure 1 the stochastic solution using stochastic Crank-
Nicolson scheme (2.6) with v = 0.05, 0 = 1.2, Az = 0.01, At = 0.002 and with
v =0.001, 0 =2, Az = 0.008, At = 0.1 as well the exact solution. In Table 2, some
numerical results are presented for solving the stochastic diffusion equation (4.1) using
the unconditional stable Crank-Nicolson scheme. Because of the significant property
an
(0] €]

u(x,t) =
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of stability of this stochastic implicit method, we have not any restriction for con-
sidering the space and time step sizes and refinement of the computational domain
does not impose any restriction on the stability scheme. So numerically implicit and
unconditional stability of this stochastic method could be used to approximate the solu-
tion of stochastic diffusion equation. In Table 1, some numerical results are presented
for solving the stochastic diffusion equation (4.1) using the conditional stable scheme
(2.7). The exact deterministic solution and numerical solution of the stochastic diffu-

TABLE 1. Test white noise SPDE (4.1) by the stochastic scheme (2.7).

N E(u(02,1) E((u0.2,1))7

5 —1.2703 1.6137
15 0.1389 0.0193
25 0.4101 0.1682
40 0.4498 0.2023
50 0.4961 0.2461
60 0.4639 0.2152

sion equation (4.1) using the stochastic Crank-Nicolson scheme are shown in Figure 3
and Figure 4 on a 500 x 500 grid during the time interval [0, 1] for v = 0.001, o = 0.01
and for v = 0.002, o = 0.03, respectively. Also by fir v = 0.001, 0 =2 and M =125
the stochastic scheme is convergent with N > 16. We have shown this in Table 3. For
~ =0.001, 0 = 2, Ax = 0.008 and At = 0.1, numerical solution (2.7) is shown in
Figure 2. From the numerical results of this example, we get that the obtained results
from the scheme (2.6) quite agreed with the exact one.

TABLE 2. Test white noise SPDE (4.1) by the stochastic Crank-
Nicolson scheme.

v o At Az E(u(0.2,1) FE((u(0.2,1))?
0.005 1 0.005 0.01 0.4680 0.2190
005 1.2 0.02 001 0.4353 0.1895
0.001 2 0.04 0.008 0.4736 0.2243
001 15 01 001 0.4599 0.2115

Example 4.2. We consider another test example to approximate the solution of
stochastic diffusion equation driven by the white noise of the form

U (,1) = YUge (x,t) + ou(z, )W (t), = €0,1], telo,1], (4.2)
with initial condition

u(z,0) = sin(wz), z € 0,1],

and boundary conditions u(0,t) = u(1,t) = 0, by use of the stochastic Crank-Nicolson
scheme. The problem has an exact solution given by

u(z,t) = et sin(mx).



350 M. NAMJOO AND A. MOHEBBIAN

FIGURE 2. Numerical solution of stochastic advection-diffusion equa-
tion by use of the scheme (2.7).

25

u(x,1)

X

v =0.001, o =2, Az = 0.008, At =0.1.

FIGURE 3. The exact solution and numerical solution of (4.1) using
the stochastic Crank-Nicolson method.

(a) The exact solution with v = 0.001. (b) The numerical solution with v = 0.001 and
o = 0.01.

Figure 6 shows that the approximation of the stochastic advection diffusion equation
using the stochastic difference scheme with v = 0.002, 0 = 1.8, Az = 0.01, At = 0.02
and with v = 0.001, ¢ = 1.5, Az = 0.01, At = 0.02 as well the exact solution. In
order to examine the behavior of numerical solutions, we provide, in Table 6, averaged
solution of (4.2) with some different values for diffusion and stochastic coefficients.
In Table 4, some numerical results are presented for solving the stochastic diffusion
equation (4.2) using the conditional stable scheme (2.7). Using above values, we
[c]v)

EE
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FIGURE 4. The exact solution and numerical solution of (4.1) using
the stochastic Crank-Nicolson method.

(a) The exact solution with v = 0.002. (b) The numerical solution with v = 0.002 and
o = 0.03.

TABLE 3. Test white noise SPDE (4.1) by the stochastic Crank-
Nicolson scheme.

N FE(u(0.2,1)) E((u(0.2,1))?
2

0.3970 0.1576
5 0.4474 0.2002
10 0.4598 0.2114
15 0.5111 0.2612
16 0.4629 0.2142
30 0.4114 0.1693
40 0.4184 0.1751

TABLE 4. Test of white noise SPDE (4.1) by the stochastic scheme (2.7).

N E(u(0.5,1)) E((u(0.5,1))?

) 1.2487 1.5591
10 1.2170 1.4810
15 1.1106 1.2333
30 1.0390 1.0796
40 1.0363 1.0740
45 1.0503 1.1031

see that stability conditions are hold for the scheme (2.7). If we choose v = 0.001,
o =15, Az = 0.01 and At > 0.04, i.e., N < 25, we will see the scheme (2.7) is
unstable. Figure 5 shows the approzimation of the stochastic advection diffusion (4.2)
using the stochastic difference scheme (2.7) with N = 10. In Table 5, some numerical
results are demonstrated for solving the stochastic diffusion equation (4.2) using the
conditional stable scheme (2.7).

(el
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FIGURE 5. Numerical solution of stochastic advection-diffusion equa-
tion using the scheme (2.7).

80
60 -

401“”

2

o
T

u(x,1)
o

-20 "

-60

o
V

80 . . . . . . . . .
0 01 02 03 04 05 06 07 08 09 1

X

v =0.001, o = 1.5, Az = 0.01, At = 0.1.

TABLE 5. Test white noise SPDE (4.1) by the stochastic scheme (2.7).

N E(u(0.5,1) E((u(0.5,1))2

) 1.2487 1.5591
10 1.2170 1.4810
15 1.1106 1.2333
30 1.0390 1.0796
40 1.0363 1.0740
45 1.0503 1.1031

The exact deterministic solution and numerical solution of the stochastic diffusion
equation (4.2) using the stochastic Crank—Nicolson scheme have been shown in Figures
8-9 on a 500 x 500 grid during the time interval [0, 1] for v = 0.002, o = 0.03 and for
v =0.001, o = 0.001, respectively. If v =0.001, ¢ = 1.5 and M = 100, the stochastic
scheme is convergent if N > 10. This is obvious from Table 7. Figure 7 shows
numerical solution of the scheme (2.7) for values v = 0.001, o = 1.5, Az = 0.01 and
At = 0.02.

Example 4.3. Consider the following SPDE
U (,1) + vug (2, 1) = Yupe (z, 1) + ou(z, )W (), = €[0,1], te[0,1], (4.3)
with the following initial condition

.0 = o (~EZ09),

(<)
EE
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FiGURE 6. Comparison between deterministic and stochastic numer-
ical solution of (4.2) using the Crank-Nicolson scheme with v = 0.002,
o = 1.8, Ax = 0.01, At = 0.02 and with v = 0.001, ¢ = 1.5,
Az =0.01, At = 0.02.

1 1
_ —-—-— Numerical Solution ~+7 7777~ ——"— Numerical Solution
09 > . Exact Solution 0.9 gl Exact Solution 1
08 7 08 % N\
. 2 \
// \ 74 )
07 - \ 0.7 /) 2
) \ % D\

06 / A\ 06 4 R
= / " —~ / \
a f N 5! 4 N
%05 / \ %05 / \
El // \ El / A\

0.4 a4 3 0.4 1 A

iV \\
; A
03 // 2\ 03 /
/ 3
02f / \ 0.2
0.1 0.1
0 0
0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1
X X

(a) v =0.002, 0 = 1.8, Az = 0.01, At =0.02.  (b) v=0.001, ¢ = 1.5, Az = 0.01, At = 0.02.

F1GURE 7. Numerical solution of stochastic advection-diffusion equa-
tion using the scheme (2.7).

12

0 . . . . . . . . .
0 01 02 03 04 05 06 07 08 09 1

X

v =0.001, 0 = 1.5, Az = 0.01, At = 0.02.

with the boundary conditions

w(0,1) = ——— exp <(—05—Vt)2> 7

At +1 ~At + 1)

1 (0.5 — vt)?
1,t) = —— —_— .
w1, ?) 4t+leXp< 7(4t—|—1)>
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TABLE 6. Test of white noise SPDE (4.2) by the stochastic Crank-
Nicolson scheme.

5y o At Az E(u(0.5,1)) E((u(0.5,1))
0.01 0.5 0.005 0.005 0.9249 0.8554
0.01 1.5 0.02 0.01 0.8695 0.7561
0.001 1.2 0.1 0.025 1.0148 1.0299
0.005 0.8 0.01 0.02 0.9476 0.8979

FIGURE 8. Exact solution and numerical solution of (4.2) using sto-
chastic Crank-Nicolson scheme.

u(x,1)

(a) The exact solution with v = 0.002. (b) The numerical solution with v = 0.002 and
o = 0.03.

FIGURE 9. Exact solution and numerical solution of (4.2) using sto-
chastic Crank-Nicolson scheme.

(a) The exact solution with v = 0.001. (b) The numerical solution with v = 0.001 and
o = 0.001.

It is easy to verify that in the absence of the noise term, the exact solution is

1 _(z—-05-wt)?
u(@t) = 4t+1eXp< v(4t + 1) )

E=
EE
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TABLE 7. Test of white noise SPDE (4.2) by the stochastic Crank-

Nicolson scheme.

N E((05,1)) E((u(05,1))?
2 0.9421 0.8876
5 0.9998 0.9997
10 1.0192 1.0387
15 1.0525 1.1077
20 1.1183 1.2507
40 1.0152 1.0307
100 1.1005 1.2111

TABLE 8. Test of white noise SPDE (4.3) by stochastic scheme (2.7).

N E@(06,1)) E((u(0.6,1))?
80 —2.6964F + 20 7.2704F + 40
90  —1.2982E +19 1.6853E + 38
100 —8.4556E + 16 7.1497E + 33
150 0.1114 0.0124
152 0.1162 0.0135
200 0.1068 0.0114

TABLE 9. Test white noise SPDE (4.3) by the stochastic Crank-

Nicolson scheme.

y v o At Az E(u(0.6,1)) E((u(0.6,1))2
0.005 0.1 1 0.0056 0.01 0.4681 0.2191
0.06 005 1.2 0.01 0.01 0.4520 0.2043
0.05 0.01 2 0.1 0.02 0.4439 0.1970
0.01 0.03 1.5 0.05 0.008 0.4584 0.2101

TABLE 10. Test white noise SPDE (4.3) by the stochastic Crank-

Nicolson scheme.

N Bu(0.6,1)) BE((u(0.6,1))?
2 0.3882 0.1507
5 0.3236 0.1047
10 0.4339 0.1882
20 0.3343 0.1117
40 0.3900 0.1521
150 0.3910 0.1529
200 0.3940 0.1552

In Figure 10 the approximated solution of the stochastic advection-diffusion equation
(4.3) by use of the stochastic Crank-Nicolson scheme is represented for v = 0.01,

(el
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FiGURE 10. Comparison between deterministic and stochastic nu-
merical solutions of (4.3) using the Crank-Nicolson scheme with
v =0.01, v = 0.01, 0 = 2.5, Az = 0.01 and At = 0.001 and with

v =0.001, v = 0.02, 0 = —2, Az

—-—— Numerical Solution
Exact Solution i

01 02 03 04 05 06 07 08 09

X

(a) v = 0.01, v = 0.01, o0 = 2.5, Az = 0.01,
At = 0.001.

1

= 0.004 and At = 0.01.

—-—-— Numerical Solution
Exact Solution

01 02 03 04 05 06 07 08 09

X

(b) v = 0.001, v = 0.02, 0 = —2, Az = 0.004,
At =0.01.

1

FIGURE 11. Numerical solution of stochastic advection diffusion

equation using the scheme (2.7).

18
2><10 i
15F
b
05F
a
N E—
1 v i
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15F
0 01 02 03 04 05 06 07 08 09 1

4 =0.001, v = 0.02, 0 =

X

—2, Az = 0.004, At = 0.01.

v =0.01, 0 = 2.5, Az = 0.01, At = 0.001 and for v = 0.001, v = 0.02, 0 = -2,

Az = 0.004, At = 0.01.

In Table 8, some numerical results are presented for solving the stochastic diffusion
equation (4.2) by use of the conditional stable scheme (2.7).

(&l
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FIGURE 12. Exact solution and numerical solution of (4.3) using the
stochastic Crank-Nicolson scheme.

(a) Exact solution with v = 0.002 and v = 1.2.  (b) The numerical solution with v = 0.002, v =
1.2 and o = 0.01.

FIGURE 13. Exact solution and numerical solution of (4.3) using the
stochastic Crank-Nicolson scheme.

(a) The exact solution with v = 0.001 and v = (b) The numerical solution with v = 0.001, v =
1. 1 and o = 0.01.

The computational results for approximating the solution of SPDE (4.3) are shown
in Table 9 by consideration several values for time step and space size, v, v and o.
In Figures 12-13 we have shown the exact deterministic solution and the approrima-
tion of the stochastic advection diffusion equation using the stochastic Crank-Nicolson
scheme on a 500 x 500 grid with v = 0.002, v = 1.2, ¢ = 0.01 and v = 0.001, v =1,
o = 0.01 during the time interval [0,1]. If we choose v =0.01, v =0.1, 0 = —2 and
M = 200, we will conclude the convergence of the stochastic scheme for N > 40. It
is obvious from Table 10. Figure 11 shows numerical solution of the scheme (2.7) for
values v = 0.001, v = 0.02, 0 = =2, Az = 0.004 and At = 0.01. The numerical
results obtained by the scheme (2.6), compared to the scheme (2.7), show that the
scheme (2.6) is significantly more effective and reliable than the scheme (2.7).

(][]
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5. CONCLUSION

In this paper, a stochastic finite difference scheme has been applied for the solution
of stochastic advection-diffusion equation. Also, we have provided analysis of consis-
tency, stability, and convergence of the stochastic difference scheme. The scheme has
applied to three problems have given in the paper, each with different boundary con-
ditions and has given an initial condition. The numerical results have obtained by
the stochastic difference scheme is compared with the exact solution and the scheme
in [7], to verify the accuracy and efficiency of the stochastic difference scheme.
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