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Abstract In this paper, a new interval version of Runge-Kutta methods is proposed for time
discretization and solving of optimal control problems (OCPs) in the presence of

uncertain parameters. A new technique based on interval arithmetic is introduced

to achieve the confidence bounds of the system. The proposed method is based on
the new forward representation of Hukuhara interval difference and combining it with

Runge-Kutta method for solving the OCPs with interval uncertainties. To perform
the proposed method on OCPs, the Lagrange multiplier method is first applied to

achieve the necessary conditions and then, using some algebraic manipulations, they

are converted to an ordinary differential equation to achieve the interval optimal
solution for the considered OCP with uncertain parameters. Shooting method is

also employed to cover the Runge-Kutta methods restrictions in solving the OCPs

with boundary values. The simulation results are applied to some practical case
studies for demonstrating the effectiveness of the proposed method.

Keywords. Optimal control, Interval analysis, Lagrange multiplier method, Runge-Kutta methods, Hukuhara
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1. Introduction

Optimal control problems are generally described as deterministic problems and the
coefficients in mathematic models are usually assumed as deterministic parameters
when solving these models [21]. However, there are always some parameters with
uncertainties which are made by different reasons, like having no exact index based
on inexact coefficients in the system dynamic, neglecting some unknown parameters,
unrecognized dynamics, etc. which should be considered in the performance index
of the OCPs [20]. In this situation, it is clear that the results may be not well
convincing for the desired control rule, or even they may give a wrong solution due
to the uncertainties on the system dynamics. Therefore, the traditional methods
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can not be used for solving these problems. This problem leads researchers to utilize
decision-making methods under uncertainties [33]. Recently, to cover this weakness in
deterministic methods, some methods like stochastic method, fuzzy programming and
interval arithmetic are proposed by considering the uncertain parameters [8, 15, 25].
The fuzzy and stochastic methods can be used when the probabilistic distribution and
membership functions are clear. Since, if there is no information about distribution
and memberships, the best way is to employ the interval method. In other words,
interval optimal control problems are interesting from a theoretical point of view [26].
Interval arithmetic can be utilized for the problems with uncertainties only with some
knowledge about the lower and upper bounds.
Interval methods have been introduced over the years [10]. But until 1996, the interval
analysis was just summarized in simple propositions [24]. In this paper, a discrete time
interval based method is proposed for solving the OCPs with interval uncertainties.
Time discretization of the OCPs has been introduced since the 1960s [9]. A survey
of some of the earlier works can be found in [27]. For instance, properties of Runge-
Kutta methods have been analyzed in [19, 30]. Since, Runge-Kutta methods have
a significant role in the numerical treatment of differential systems [16], the main
purpose of our study is to propose an interval version of Runge-Kutta methods for
solving OCPs with interval uncertainties. The optimal control problem in this study
is

min
u(t), x(t)∈∆

J(x(t), u(t),∆) =

tf∫
t0

L (t, x(t), u(t),∆) dt ,

subject to : ẋ(t) = f (t, x(t), u(t),∆) , t ∈ (t0, tf ) ,

x (t0) = X0,

x (tf ) = Xf ,

(1.1)

where, x(t) and u(t) are state and control parameters respectively, ∆ = [δ1, δ2, ..., δn]
is the interval uncertainties in the system dynamic and the performance index, X0

and X1 are the initial and final states respectively and can be considered as interval
integers, L (x(t), u(t),∆) =

[
l− (x(t), u(t), V ) , l̄ (x(t), u(t),∆)

]
is the interval-valued performance

index.
This paper will propose a generalized interval based Runge-Kutta method (GIRKM)
for the numerical solution of OCPs under interval uncertainties. The final results
have been compared by a new introduced Euler method by Wu et. al. [34].
The rest of the paper is organized as follows: After introducing the preliminaries
about interval arithmetic in section 1, we introduce the basic theories of the general-
ized Hukuhara (gH) difference in section 2. In section 3, some theories are discussed.
In Section 4, the new generalized interval representations Runge-Kutta method is
introduced for solving the interval differential equations; Hukuhara difference is uti-
lized for improving the system deficiency. In section 5, interval valued optimal control
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problem (OCP) is introduced and the methods for solving this kind of OCP is dis-
cussed. Section 6 presents the numerical examples to validate the proposed IRKM
for OCPs. The paper is finally concluded in section 7.

2. Interval arithmetic

In the following, the main description of the classical and the modal interval arith-
metic are illustrated.

2.1. Classical Interval arithmetic. A classical definition for the interval integers
over the field of real numbers can be derived as follows:

I (R) =
{
X|X = [x−, x̄]

}
,

X =
{
x|x ∈ R ∪ {−∞,∞} , x− � x � x̄

}
.

(2.1)

where, X is an interval integer over I(R) and x−, x̄ are its lower and upper bounds,

respectively. For simplicity, in this paper, all of the interval integers are defined by
uppercase symbols and bold cases will show the vector mode. Here, the intervals
with the same lower and higher bounds (degenerate interval integers) are illustrated
as {x} = [x, x]. The center value, width of interval number and the radius of the
interval integer X can be described as follow:

xc =
1

2

(
x̄+ x−

)
, (2.2)

xw = x̄− x−, (2.3)

xr =
xw
2
. (2.4)

Theorem 2.1. An interval integer can be described as forward and backward repre-
sentation by the following definition:

X = x− + xwIF , (2.5)

X = x̄+ xwIB , (2.6)

where IF = [0, 1] and IB = [−1, 0] are unit intervals.

Proof. By considering X =
[
x−, x̄

]
:

X = x− + xwIF

xw = x̄− x−, IF = [0, 1]

}
⇔ X = x− +

(
x̄− x−

)
[0, 1] =

[
x−, x−

]
+
[
0, x̄− x−

]
=
[
x−, x̄

]
.

�
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For example, X = [−1, 3] : X = −1 + 4IF . By considering two interval variables
X and Y, the basic arithmetic operations between them can be defined as follows:

X + Y = [+
x
ȳ] + [xw + yw]IB := [x− + y

−
, x̄+ ȳ], (2.7)

X − Y := [x− − ȳ, x̄− y−], (2.8)

X × Y = [x̄ȳ] + [x̄yw + ȳxw − xwyw]IB

:= [min{xy, x̄y
−
, x−ȳ, x̄ȳ}, max{xy, x̄y

−
, x−ȳ, x̄ȳ}],

(2.9)

X/Y = X × 1

Y
,

1

Y
=

[
1

ȳ
,

yw
ȳ (yw − ȳ)

]
:= [

1

ȳ
,

1

y
−

],

0 /∈ [y
−
, ȳ].

(2.10)

More details about classic interval arithmetic can be found in [24]. Note that
for multiplication and division the intervals including negative and zero integers, the
interval should be first transferred into a positive interval value; in other words, we
first transfer the main interval into a negative degenerate value plus a positive interval
value and then the operations will be applied on them.

2.2. Modal Interval arithmetic. Modal interval method has been introduced by E.
Gardens in 1985 [12]. This method can be considered as an extension of the classical
intervals [11]. The main disadvantage of the classic interval arithmetic is that for any
number of interval operands, when even exact arithmetic is used, the enclosure of its
interval computation is often greater than a reasonably expected approximation. This
issue will be made when some variables appear multiple times in the computation of
the real function. For instance, consider X=[1, 3] .
The ideal solution for self-differencing (X-X ) and self-division (X/X ) is that these
operations should have degenerate {0} and {1} values respectively. But, using the
classic interval arithmetic, we have: X − X = [1, 3] − [1, 3] = [−2, 2] and X/X =
[1, 3] / [1, 3] =

[
1
3 , 3

]
, respectively.

This phenomenon is called amplification of dependence [15]. Amplification of de-
pendence issue can be resolved by the modal interval analysis. In the interval analysis,
by considering the condition in Eq. (2.1), the difference and division operations for
two interval values like X and Y can be achieved as follows:

X − Y = X −Dual (Y ), (2.11)

X/Y = X/Dual (Y ). (2.12)
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where Dual

(
[y
−
, ȳ]

)
= [ȳ, y

−
] . For instance, for the example above, X − X =

[1, 3]− [3, 1] = {0} and X/X = [1, 3]/[3, 1] = {1}.
More information can be achieved from [15].

3. Generalized Hukuhara (gH) Difference

Another method for compensating the amplification of dependence for difference
operation is to utilize the H-difference. H-difference is first introduced in 1967 by
Hukuhara, as a set Z which X 	 Y = Z ⇔ X = Y + Z and the important feature of
this approach was that X 	X = {0} [14, 17, 22, 23].
H-difference exists if and only if for X 	 Y = Z, X contains a translate {Z} + Y of
Y. In 2010 Stefanini proposed a generalized version of the H-difference and called it
gH-difference [31].

Definition 1. [32] Consider two interval values X and Y where X = [x−, x̄] and

Y = [y
−
, ȳ]. The gH-difference between these two interval sets can be defined as

follows:

X	gY = Z ⇔

{
(I) X = Y + Z,

(II) Y = X + (−1)Z.
(3.1)

Theorem 3.1. Let X 	F Y be the forward representation of the gH-difference. Then
the forward representation of the gH-difference can be achieved by:

X 	g Y = X 	F Y =

(
x− − y−

)
+ |xw − yw| IF , (3.2)

Proof. By replacing x−, y−, x̄, ȳ with xw, yw, xr, yr based on equations, the presented

representations can be proved. �

Theorem 3.2. [15] The gH-difference for two interval integers X = [x−, x̄] and Y =

[y
−
, ȳ] always exists, if:

[x−, x̄]	g[y−, ȳ] = [z−, z̄], (3.3)

where, z− = min

{
x− − y−, x̄− ȳ

}
, z̄ = max

{
x− − y−, x̄− ȳ

}
.

Proof. Refer to the reference [15] �

More detailed on the gH-difference can be found in [2, 18, 31, 32].

4. Generalized Interval Runge-Kutta Method for the Interval
Differential Equations

Consider an interval valued differential equation as follows:
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{
Ẋ = F (t, X,∆) , a � t � b,
X (t0) = X0.

(4.1)

where, Ẋ is the Hukuhara difference of the interval integer X.
By F : [a, b]× I (Rm)× I

(
Rk
)
→ I (Rm) and:

F (t, X,∆) =
[
F− (t,X,∆) , F̄ (t,X,∆)

]
, for X ∈ I (Rm) ,

X = [x, x], X0 = [x0, x0],
(4.2)

where, X,F and ∆ are interval vectors.
The main idea behind using the Runge-Kutta methods (RKMs) is to turn a system
with initial conditions and the coefficients with real values into a differential equation.
RKMs are reasonably simple and robust and can be considered as a good candidate
for the numerical solution of differential equations. The main purpose of this study is
to improve this method to employ it for solving equations with interval uncertainties
[5].

Theorem 4.1. Consider Eq. (4.1). Let x and x be real-valued functions such that
xi � x̄i, i = 1, 2, ...,m, and for all t ∈ [a, b] and F : [a, b]×I (Rm)×I

(
Rk
)
→ I (Rm)

is continuous. Let X be the interval-valued function defined by X = [x, x]. If F
satisfies the Lipschitz condition,

D (F (t, X) ,F (t, Z)) � LD (X, Z) ,

∀ (t, X) ∈ [a, b]× IRm.
(4.3)

where 	g can be 	F and z = min{x − y, x − y}, z = max{x − y, x − y}. Consider

x−
n

i
(t) = x−

i
(tn−1 + h) and x−

n+1

i
(t) = x−

i
(tn + h).

where, x−
n

i
(t) is the nth step (iteration) of the solution and h is the horizon. The

unique solution of the inclusion problem can be achieved by a generalized extension of
the RKMs plus Hukuhara approach (IRKM) as follows:

(I) x−
n

i
(t) � x̄ni (t) :

{
x−
n+1

i
(t) = x−

n

i
(t) + hΦ−

i
,

x̄n+1
i (t) = x̄ni (t) + h Φ̄i.

(4.4)

(II) x−
n

i
(t) � x̄ni (t) :

x−
n+1

i
(t) = x−

n

i
(t) + h Φ̄i,

x̄n+1
i (t) = x̄ni (t) + hΦ−

i
.

(4.5)

where for different degrees of IRKM,

GIRKM1st :

{
Φ− = f− (t, X (t) ,∆) ,

Φ̄ = f̄ (t, X (t) ,∆) .
(4.6)
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GIRKM2nd :


Φ− = f−

(
t+

h

2
, X

(
t+

h

2
f (t, X (t))

)
,∆

)
,

Φ̄ = f̄

(
t+

h

2
, X

(
t+

h

2
f (t, X (t))

)
,∆

)
.

(4.7)

GIRKM4th :


Φ− =

1

6

(
K−

1
+ 2K−

2
+ 2K−

3
+K−

4

)
,

Φ̄ =
1

6

(
K̄1 + 2K̄2 + 2K̄3 + K̄4

)
,

(4.8)

where,



K−
1

= f−
(
tn, X

n
(t) ,∆

)
,

K−
2

= f−

tn +
h

2
, X

n
(t) +

K−
1

2
,∆

 ,
K−

3
= f−

tn +
h

2
, X

n
(t) +

K−
2

2
,∆

 ,
K−

4
= f−

(
tn + h, X

n
(t) +K−

3
,∆

)
,



K̄1 = f̄
(
tn, X

n
(t) ,∆

)
,

K̄2 = f̄

(
tn +

h

2
, X

n
(t) +

K̄1

2
,∆

)
,

K̄3 = f̄

(
tn +

h

2
, X

n
(t) +

K̄2

2
,∆

)
,

K̄4 = f̄
(
tn + h, X

n
(t) + K̄3,∆

)
.

Note that this procedure can be applied to different degrees of RKMs.

Proof. For more understanding, we prove the first order interval Runge-Kutta method
(IRKM1st).
Consider F (t,X,∆) is a monotonic function and X ∈ IRm. Let Xn+1 (t) be a single-
ton answer of the equation with the interval real positive integer N with the points
{t0, t1, · · · , tN} where tn+1 = tn + h and h = b−a

N is the horizon or the same step

size. By expanding the equation in [28], IRKM1st can be described by the following
equation:

Xn+1
i (t) = Xn

i (t) + hF (t, Xn
i (t) ,∆) . (4.9)

To get better results, we utilized H-difference for extending the formula. Here, the
forward representation for H-difference is utilized (see Eq. (4.1)).
Two solutions have been achieved for Eq. (4.4). For the first term (I) x−

n+1
(t) �

x̄n+1 (t):

Xn+1
i (t)	FXn

i (t) = hF (t, Xn
i (t) ,∆) . (4.10)

Since for the left-hand side, we have:

Xn+1 (t)	FXn (t) =
[
x−
n+1 (t)− x−

n (t) , x̄n+1 (t)− x̄n (t)
]
. (4.11)

where, 	F illustrates the forward representation of the gH-difference. Equating
Eq. (4.11) with the right-hand side of equality in Eq. (4.4) gives:
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(I)

{
x−
n+1 (t) = x−

n (t) + h f− (t, Xn (t) , ∆) ,

x̄n+1 (t) = x̄n (t) + h f̄ (t, Xn (t) , ∆) .
(4.12)

Repeating this method on the Eq. (4.5), on the inequality gives:

(II)

{
x−
n+1 (t) = x−

n (t) + h f̄ (t, Xn (t) , ∆) ,

x̄n+1 (t) = x̄n (t) + h f− (t, Xn (t) , ∆) .
(4.13)

This proof can be applied to the parts (b), (c) and IRKMnth with any order of
n. �

By considering as a monotonic function, two cases arise [7]:
Case 1) If the components of F are increasing,

x−
n

i
(t) � x̄ni (t) , x−

n

i
(t) � x̄ni (t) ,

(I)

 x−
n+1

i
(t) = x−

n

i
(t) + hΦ−

i
,

x̄n+1
i (t) = x̄ni (t) + h Φ̄i.

(II)


x−
n+1

i
(t) = x−

n

i
(t) + h Φ̄i,

x̄n+1
i (t) = x̄ni (t) + hΦ−

i
.

(4.14)

Case 2) If the components of F are decreasing,

x−
n

i
(t) � x̄ni (t) , x−

n

i
(t) � x̄ni (t) ,

(I)


x−
n+1

i
(t) = x−

n

i
(t) + h Φ̄i,

x̄n+1
i (t) = x̄ni (t) + hΦ−

i
.

(II)

 x−
n+1

i
(t) = x−

n

i
(t) + hΦ−

i
,

x̄n+1
i (t) = x̄ni (t) + h Φ̄i.

(4.15)

The above formulations are correct if the system is monotonic. The system is
monotonic if, ∀x � y, one has f(x) � f(y) where f preserve the order. If the system
is not monotonic (in the critical points), the upper and the lower boundaries will be
changed together; i.e. the sign of the boundaries will be changed.

5. Interval-valued optimal control problem definition

For more understanding, consider the following linear optimal control [6]:

min
u(t)∈Ω=δ1×δ2

J(x(t), u(t),∆) =

1∫
0

δ1x
2 (t) + u2 (t) dt , (5.1)

subject to:

ẋ (t) = δ2u (t) , (5.2)

where, δ1, δ2 ∈ [ 1
2
, 3

2
], x(0) = {1}.

Step 1. Compute the Lagrangian function:
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L (x, ẋ, u, λ, t) = g (x, u, t) + λ (t)(ẋ(t)− f)

= δ1x
2(t) + u2(t) + λ(t)(ẋ(t)− δ2u(t)).

(5.3)

Step 2. Apply Euler Lagrange equations to the problem and solving the equation
over x(t), the following differential equation results:{

ẍ(t)− γx(t) = 0,

γ = δ1δ
2
2 .

(5.4)

Step 3. Apply Modal Interval Arithmetic to solve the problem:
a) Compute the interval values in the problem, i.e. δ1δ

2
2 =

[
1
2
, 3

2

]3
=
[

1
8
, 27

8

]
,

b) Form the interval ODE systems:

x− (t) :

 ẍ(t)− 27

8
x(t) = 0,

x(0) = 1,
x̄ (t) :

 ẍ(t)− 1

8
x(t) = 0,

x(0) = 1.

It is important to note that for simplifying the IRKMs for differential equations with
order greater than 1, they first transformed into a first-order dynamic system:

x−(t) :


ẋ1(t) = x2(t),

ẋ2(t) =
27

8
x1(t),

x(0) = 1,

x̄(t) :


ẋ1(t) = x2(t),

ẋ2(t) =
1

8
x1(t),

x(0) = 1.

(5.5)

Figure 1 shows the solution of the IRKM for this example:

Figure 1. The solution of the optimal state for the proposed IRKMs
on the example: (Red) IRKM1st, (Blue) IRKM2nd and (Black)
IRKM4th.
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Sometimes in optimal control, we are faced with problems with the fixed final
state. Unfortunately, RKMs are designed for solving the initial value problems (IVPs).
Therefore, we need an improvement to solve BVP based OCPs.
Shooting method is one of the popular methods to overcome this limitation [4, 13].
Indeed, it reduces the boundary valued problems (BVPs) to the solution of IVPs. A
simple pseudo-code of single shooting method is given as follows:
1. Choose t(0)

2. Choose the step size (h) as b− a = h×N , where N is the number of steps
3. For k = 1, 2, until convergence, do
4. i = 0, y1

0 = α, y2
0 = t(k), z1

0 = 0, z2
0 = 1,

5. For i = 0, 1, , N − 1,
6. Do while ε < |t(k+1) − t(k)|,
7. Call IRKM
8. End do
The pseudo-code of the proposed method is summarized as follows:
Inputs: h, T = [a, b],
∆K = [∆,∆], (K: number of uncertainties)
Xj = [x−

j
, x̄j ], j = 1, 2, ...,m, (m: number of states)

F(t,X(t))
Φ = f(t, Xn

i (t),∆),
Outputs: X, U
Start: Apply the following operations to the interval OCP:
if OCP system is IVP:
Form Lagrangian function
Apply Euler Lagrange equations
Apply Interval arithmetic and generate ODE from OCP
if X is monotonic:
a) if X is increasing
Apply Eq. (4.14),
b) else-if X is decreasing
Apply Eq. (4.15), end-if
end-if
else-if OCP system is BVP:
Apply shooting method
Return to Start
end-if
end

In [34], Wu et al. introduced a simple interval Euler method to solve the ordinary
differential equations which can be utilized in the OCPs. But this method has one
significant restriction: the proposed method fails in solving problems governed by
nonlinear differential equations.
In this paper, a new solution is proposed for solving the problems with interval un-
certainties. The proposed method employs the combination between Runge-Kutta
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method and interval arithmetic for improving the solution. H-difference method is
also employed for covering some shortcomings of the interval arithmetic. Since the
method in [34] is designed for IV P systems, another improvement based on shooting
method is applied on the method for solving the BV Ps.

6. Numerical Examples

In this section, the proposed method is analyzed by applying it on some case
studies. The introduced case studies are taken from different sources, but we add
interval uncertainties to them for analyzing the proposed IRKM.
Case study 1. Consider the following linear optimal control [1],

min
u(t)∈Ω=δ1×δ2×δ3

J(x(t), u(t),∆) =

1∫
0

δ1x
2 (t) + δ2u

2 (t) dt , (6.1)

subject to:

ẋ(t) = δ3x(t) + u(t), (6.2)

where, δ1 ∈ [1, 3], δ2 ∈
[

1
8
, 3

8

]
, δ3 ∈

[
1
2
, 3

2

]
, x(0) = {1}, x(1) = [1, 1.2].

The system has interval uncertainties in both boundary condition and the index
performance.

Step 1. Compute the Lagrangian function:
L(x, ẋ, u, λ, t) = δ1x

2(t) + δ1u
2(t) + λ(t) (ẋ(t)− δ3x(t)− u(t)) .

Step 2. Apply Euler Lagrange equations to the problem:
ẋ(t)− δ3x(t)− u(t) = 0,

2δ2u(t)− λ = 0,

2δ1x(t)− δ3λ− λ̇ = 0.

Step 3. By solving the equation above over , the following differential equation
results:
ẍ (t)− γx(t) = 0,

γ =
δ1
δ2

+ δ2
3 ,

Step 4. Apply Modal Interval Arithmetic to solve the problem:
a) Compute the interval values in the problem,
δ1
δ2

= δ1 ×
1

Dual (δ2)
=

{
3

8

}
,

δ2
3 =

[
1

4
,

9

4

]
,

 → γ = δ1
δ2

+ δ2
3 =

[
5
8
, 21

8

]
.

b) Form the interval ODE systems:

x−(t) :

 ẍ(t)− 21

8
x(t) = 0,

x(0) = 1, x(1) = 1.2.
, x̄(t) :

 ẍ(t)− 5

8
x(t) = 0,

x(0) = 1, x(1) = 1.

It should be note that for simplifying the IRKMs for differential equations with
order greater than 1, they should first transformed into a first-order dynamic system
as follows,
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x− (t) :



ẋ1(t) = x2(t),

ẋ2(t) =
21

8
x1(t),

x(0) = 1,

x(1) = 1.2,

x̄(t) :



ẋ1(t) = x2(t),

ẋ2(t) =
5

8
x1(t),

x(0) = 1,

x(1) = 1.

Solving the interval ordinary differential equation by the proposed IRKM results:

Figure 2. The solution of the optimal state for the proposed IRKMs
on the case study 1 : (Red-circle) Exact, (Blue) IRKM1st, (Green)
IRKM2nd and (Red) IRKM4th.

From the Figure 2, it is clear that by increasing the order of IRKM, the results
get closer to the answer. For more analyzing and comparing the IRKMs, we put the
results in Table 1 and finally with an interval L− 2 norm, the results are compared.
The interval L-2 norm for two interval integers X and Y are formulated as follows:

‖X − Y ‖2 =
√

(x− y)2 + (x− y)2, (6.3)

where, x, y, x, y are vectors.
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From the Table 1, it is clear that as the order of the IRKM increases, the error
reduces. Here, the exact method is simulated by the hybrid IRKM4th and IRKM5th.
Case study 2. Consider the following tracking optimal control problem where the
dynamical system is nonlinear and the performance index is quadric [3].

min
u(t)∈Ω=δ1×δ2

J(x(t), u(t),∆) =

1∫
0

(δ1 − x(t))
2

+ u2(t) dt, (6.4)

subject to:

ẋ (t) = −δ2
√
x (t) + u (t), (6.5)

where, δ1 ∈ [1, 3], δ2 ∈ [−1, −0.25], x (0) = {0}, x (1) =
[

1
2
, 3

2

]
.

After performing the initial operations, the interval ODE systems is obtained as
follows:

x−(t) :


ẋ1(t) = x2(t),

ẋ2(t) = x(t)− 3

4
x1(t),

x(0) = 0,

x(1) = 1,

x̄ (t) :


ẋ1(t) = x2(t),

ẋ2(t) = x(t)− 191

64
x1(t),

x (0) = 0,

x (1) = 3.

(6.6)

Solving the interval ordinary differential equation by the proposed IRKM results
the following solution:

Figure 3. The solution of the optimal state for the proposed IRKMs
on the case study 2 : (Red-circle) Exact, (Blue) IRKM1st, (Green)
IRKM2nd and (Red) IRKM4th.
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Figure 4. The solution of the optimal control for the proposed
IRKMs on the case study 1 : (Red-circle) Exact, (Blue) IRKM1st,
(Green) IRKM2nd and (Red) IRKM4th.

Different orders of IRKMs are applied on the system and are compared with the
exact value. As it can be seen from the Figure 3 and Figure 4, the interval bound is
improved by increasing the order of IRKM.

7. Conclusions

This paper has proposed a new robust topology for the optimal control problems
with uncertain-but-bounded parameters (i.e. parameters which are described by an
interval with lower and upper bound). The proposed method is an extension of
Runge-Kutta method based on interval arithmetic. Interval analysis theory and its
extension approaches including generalized Hukuhara method are employed to im-
prove the proposed method. The proposed method is described by a new description
which is called forward representation. The main purpose of the proposed method is
to determine interval optimal control and state vector of the optimal control problems
with interval uncertainties by a direct method of solution based upon an improved
version of Runge-Kutta method. The numerical examples show that one of the su-
periorities of the proposed interval method over the Euler method is its efficiency,
especially when the range and number of uncertain variables are large.
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