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Abstract In this work, we present an improvement of the spectral meshless radial point in-

terpolation (SMRPI) method to uncover a simulation behavior of the population
dynamic model which mathematically is a nonlinear partial integro-differential equa-
tion. This PDE is a kind of competition strategy in which equivalent individuals
match for the same supplies. Moreover, this boundary value problem is a particular

type of reaction-diffusion problem augmented to an integral term corresponding to
the nonlocal consumption of resources. As a result of applying meshless method, it
does not matter how the geometry of the domain is complicated because the method
enjoys the element free adoption. Applying the SMRPI on the two-dimensional in-

tegral equation leads to a linear system of algebraic equations which is easy to treat.
Finally, some numerical experiments are presented to show the reliable results.
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integro-differential equation.
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1. Introduction

Consider the following kind of reaction-diffusion equation which is a type of non-
linear integro-differential boundary value problem [31, 33]

∂u

∂t
= ∆u+Ku(x, t)

(
1− au(x, t)− b

∫
Ω

Ψ(x− y)u(y, t)dy

)
+h(x, t), x ∈ Ω, t ∈ [0, T ], (1.1)

where Ω = [−1, 1]2 and the initial and boundary conditions are

u(x, t) = 0, x ∈ ∂Ω, u(x, 0) = g(x) x ∈ Ω. (1.2)
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In Eq. (1.1), K, a and b are non-negative constants. Also, Ψ(x) is the kernel function
which is known and h(x, t) is a known smooth function. The u(x, t) is the mass
of the population in Eq. (1.1). Furthermore, the first and the second terms of the
right-hand side of Eq. (1.1) are diffusion and mortality of individuals in a population,
respectively [30].

Some works have been done on developing numerical methods for solving the
reaction-diffusion and reaction-subdiffusion equations [20]. As a non-complete list,
one can be referred to the resources that will be coming. Henry and Wearne [24] de-
rived a reaction-diffusion equation from a continuous-time random walk model with
temporal memory and sources. Yuste and Acedo [42] combined the forward time
centered space (FTCS) method to obtain an explicit FTCS scheme for solving the
diffusion equation, in which the order of convergence was O(δt + h2). Yuste in [41],
discussed weighted averaged finite difference methods for solving diffusion equations
with different formulae of the discretization to time derivative. In [38], Sokolov et
al. showed that reaction-subdiffusion equations may not resemble the corresponding
reaction-diffusion ones and are not obtained by a trivial change of the diffusion oper-
ator for a subdiffusion one. Chen et al. [14] proposed a Fourier method for analyzing
the stability and convergence of an implicit difference approximation with the global
accuracy, in which the order of convergence was O(δt+ h2). Cui in [15] considered a
compact finite difference scheme for solving one-dimensional diffusion equation, where
the order of convergence was O(δt+ h4). Chen et al. [13] considered an implicit and
an explicit difference method for the reaction-subdiffusion equation with study of sta-
bility and convergence those methods by a Fourier analysis, where the convergence
with the order was O(δt + h2). Baeumer et al. [9] developed a practical method for
numerical solution of reaction-diffusion equations, based on operator splitting.

Meshless methods have attracted much attention in recent years [1, 2, 3, 4, 5, 6, 7,
8, 10, 11, 12, 16, 17, 18, 19, 21, 22, 23, 25, 26, 27, 28, 29, 32, 35, 39, 40, 43]. One of
the very useful and easy ways to apply among meshless methods has been improved
by Shivanian [34, 36] which is a kind of spectral meshless radial point interpolation
(SMRPI) method. As a result of applying this meshless method, it does not matter
how the geometry of the domain is complicated because the method enjoys the element
free adoption. Our aim in this work is the development of this technique to obtain the
solution of the nonlinear integro-differential reaction-diffusion equation (1.1)-(1.2). It
will be seen the method with high performance, while is numerical based, can easily
overcome the nonlinear term and obtain more accurate approximate solutions in a
fast way.

In section 2, we introduce the SMRPI scheme and obtain the corresponding shape
functions. In section 3 and 4, time discretization approximation for implementation
of the SMRPI is given and obtained. In section 5, we present algorithm with detailed
material. We report the numerical experiments of solving problem (1.1)-(1.2) for two
test problems in section 6. Finally a conclusion is given in section 7.

2. The outline of SMRPI

This section has been adapted from reference [37]. Consider a continuous function
u(x) defined in a domain Ω, which is represented by a set of field nodes. The u(x) at
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a point of interest x is approximated in the form

u(x) ≃
n∑

i=1

Ri(x)ai +
m∑
j=1

Pj(x)bj = RT (x)a+PT (x)b, (2.1)

where Ri(x) is a radial basis function (RBF), n is the number of RBFs, Pj(x) is mono-
mial in the space coordinate x, and m is the number of polynomial basis functions.
The coefficients ai and bj are unknown which should be determined. In order to de-
termine ai and bj in Eq. (2.1), a support domain is formed for the point of interest at
x, and n field nodes are included in the support domain (support domain is usually a
disk with radius rs). Coefficients ai and bj can be determined by enforcing Eq. (2.1)
to be satisfied at these n nodes surrounding the point of interest x. Therefore, by the
idea of interpolation, Eq. (2.1) is converted to the following form:

u(x) ≃ ΦT (x)Us =

n∑
i=1

ϕi(x)ui. (2.2)

where ϕi(x)’s are called the RPIM shape functions which have the Kronecker delta
function property, that is

ϕi(xj) =

{
1, for i = j, j = 1, 2, ..., n ,

0, for i ̸= j, i, j = 1, 2, ..., n.
(2.3)

This is because the RPIM shape functions are created to pass thorough nodal values.
Moreover, the shape functions are the partitions of unity, i.e.

n∑
i=1

ϕi(x) = 1, (2.4)

for more details about RPIM shape functions and the way they are constructed, the
readers are referred to see [37]. Now, we construct operational matrices which are
essential tools of present approach. Operational matrices make the technique more
appropriate to handle partial differential equations with high derivatives. Suppose
that the number of total nodes covering the domain of the problem, i.e., Ω̄ = Ω

∪
∂Ω

is N. On the other hand, we know that n depends on point of interest x (so, after that
we call it nx ) in Eq. (2.2) which is the number of nodes included in support domain
Ωx corresponding to the point of interest x (for example Ωx can be a disk centered
at x with radius rs). Therefore, we have nx ≤ N and then Eq. (2.2) can be modified
as

u(x) ≃ ΦT (x)Us =
N∑
j=1

ϕj(x)uj . (2.5)

In fact, corresponding to node xj there is a shape function ϕj(x), j = 1, 2, ..., N , we
define Ωc

x = {xj : xj /∈ Ω} then obviously from Eq. (2.3)

∀xj ∈ Ωc
x : ϕj(x) = 0. (2.6)
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The derivatives of u(x) are easily obtained as

∂u(x)

∂x
≃

N∑
j=1

∂ϕj(x)

∂x
uj ,

∂u(x)

∂y
≃

N∑
j=1

∂ϕj(x)

∂y
uj , (2.7)

and for high derivatives of u(x)

∂su(x)

∂xs
≃

N∑
j=1

∂sϕj(x)

∂xs
uj ,

∂su(x)

∂ys
≃

N∑
j=1

∂sϕj(x)

∂ys
uj , (2.8)

where
∂s(.)

∂xs
and

∂s(.)

∂ys
are s’th derivatives with respect to x and y. Let u

(s)
x (.) :=

∂s(.)

∂xs

, u
(s)
y (.) :=

∂s(.)

∂ys
and set x = xi in Eq. (2.7). Then the following matrix form is given

u′
x1

u′
x2

...

u′
xN


=



∂ϕ1(x1)

∂x

∂ϕ2(x1)

∂x
· · · ∂ϕN (x1)

∂x

∂ϕ1(x2)

∂x

∂ϕ2(x2)

∂x
· · · ∂ϕN (x2)

∂x
...

...
. . .

...
∂ϕ1(xN )

∂x

∂ϕ2(xN )

∂x
· · · ∂ϕN (xN )

∂x





u1

u2

...

uN


, (2.9)



u′
y1

u′
y2

...

u′
yN


=



∂ϕ1(x1)

∂y

∂ϕ2(x1)

∂y
· · · ∂ϕN (x1)

∂y

∂ϕ1(x2)

∂y

∂ϕ2(x2)

∂y
· · · ∂ϕN (x2)

∂y
...

...
. . .

...
∂ϕ1(xN )

∂y

∂ϕ2(xN )

∂y
· · · ∂ϕN (xN )

∂y





u1

u2

...

uN


. (2.10)

We denote the above coefcients matrices as Dx, Dy and also, for high order deriva-
tives, we have the following matrix-vector multiplications:

U (s)
x = D(s)xU, U (s)

y = D(s)yU, (2.11)

where

U (s)
x =

(
u(s)
x1

, u(s)
x2

, ..., u(s)
xN

)tr

, U (s)
y =

(
u(s)
y1

, u(s)
y2

, ..., u(s)
yN

)tr

, (2.12)

D(s)
xij

=
∂sϕj(xi)

∂xs
, (2.13)

D(s)
yij

=
∂sϕj(xi)

∂ys
, (2.14)

U = (u1, u2, ..., uN )tr. (2.15)
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3. The time discretisation approximation

To treat the time derivative of the population model, let us adopt a time-stepping
scheme based on Crank-Nicolson technique as

∂u(x, t)

∂t
∼=

1

△t

(
uk+1(x)− uk(x)

)
,

∆u(x, t) ∼=
1

2

(
∆uk+1(x) + ∆uk(x)

)
, (3.1)

where uk(x) = u(x, k△t). Assuming λ = △t
2 and H(x; k, k + 1) = h(x, (k + 1)△t) +

h(x, k△t), we derive

(1−Kλ)u(k+1) − λ∆u(k+1) = (1 +Kλ)u(k) + λ∆u(k) − 2Kaλũ2

−2Kbλũ

∫
Ω

Ψ(x− y)ũ(y)dy

+λH(x; k, k + 1), (3.2)

where ũ is the latest and best available approximation of u.

4. Discretization of SMRPI formulation

In this part, we manipulate on Eq. (3.2) to derive the system of discrete algebraic
equations. Taking into accountN regularly located nodal points on the both boundary
and domain of the model, we set them so that the distance between two consecutive
nodes in each direction is constant and equal to h. Suppose that we have obtained
u(xi, k△t), i = 1, 2, ..., N already, our purpose, for the next step, is to obtain u(xi, (k+
1)△t), i = 1, 2, ..., N . Therefore, we have N unknowns and to discover them we need
N equations. It will be observed later that there is one equation corresponding to
each node. For those nodes belong to inside of the domain, i.e., for xi ∈ interior Ω, to
obtain the discrete equations from Eq. (3.2), let us substitute approximation formula
(2.8) into Eq. (3.2) to obtain:

(1−Kλ)uk+1(x)− λ

 N∑
j=1

∂2ϕj(x)

∂x2
uk+1
j +

N∑
j=1

∂2ϕj(x)

∂y2
uk+1
j

 =

(1 +Kλ)uk(x) + λ

 N∑
j=1

∂2ϕj(x)

∂x2
uk
j +

N∑
j=1

∂2ϕj(x)

∂y2
uk
j


−2Kaλũ2 − 2Kbλũ

∫
Ω

Ψ(x− y)ũ(y)dy+ λH(x; k, k + 1), (4.1)
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Now, let us set x = xi, i = 1, 2, 3, ..., NΩ (NΩ denotes the number of nodes for inside
of Ω) in the above equation. Then, using notations (2.13)-(2.14), we have[

(1−Kλ)δij − λ
(
D(2)xij +D(2)yij

) ]
u
(k+1)
j =[

(1 +Kλ)δij + λ
(
D(2)xij +D(2)yij

) ]
u
(k)
j

−2Kaλũi
2 − 2Kbλũi

∫
Ω

Ψ(x− y)ũ(y)dy+ λH(xi; k, k + 1), (4.2)

where ũi, i = 1, 2, ..., N is the best available approximation of ûi. We will apply a
simple predictor-corrector (P-C) scheme to treat ũi in next section.

Now, we turn back to Eq. (4.2), suppose that u
(k)
i , i = 1, 2, ..., N are known

already. We have to approximate the integral∫
Ω

Ψ(x− y)ũ(y)dy,

for next iteration. The procedure is to apply two dimensional Gaussian quadrature
rule, but the problem is we do not have any expression for ũ(y). In order to overcome
this problem, we use two dimensional cubic spline interpolation to estimate the values
of ũ(k)(y) at Gaussian points. This is done by the command interp2(· · · , spline) easily
in MATLAB software program. Therefore, we turn into∫

Ω

Ψ(x− y)ũ(y)dy =

nG∑
p=1

ωpΨ(x− yp)ũ
(k)(yp) = Ψ̃(x), (4.3)

and then Eq. (4.2) is changed to the following form[
(1−Kλ)δij − λ

(
D(2)xij +D(2)yij

) ]
u
(k+1)
j =[

(1 +Kλ)δij + λ
(
D(2)xij +D(2)yij

) ]
u
(k)
j

−2Kaλũi
2 − 2KbλũiΨ̃(xi) + λH(xi; k, k + 1). (4.4)

for the all nodes in the interior of the domain Ω.

5. Numerical implementation for SMRPI method

From the problem description, it is straightforward to set

∀k : u(k)(xi) = 0, xi ∈ ∂Ω = {(|x| = 1 or |y| = 1) and − 1 ≤ x, y ≤ 1} ,
(5.1)

for nodes located on the boundary. Therefore, the matrix forms of Eqs. (4.4) and
(5.1) for all N nodal points located in both inside and the boundary of the domain
are defined as [

(1−Kλ)δij − λ
(
D(2)xij +D(2)yij

) ]
u
(k+1)
j =[

(1 +Kλ)δij + λ
(
D(2)xij +D(2)yij

) ]
û
(k)
j

−ciũ
2
i − diũiΨ̃i + ei(k, k + 1), (5.2)
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where

ci = 2Kaλ di = 2Kbλ, Ψ̃i = Ψ̃(xi), ei(k, k + 1) = λH(xi; k, k + 1). (5.3)

Consider the notations

Aij = (1−Kλ)δij − λ
(
D(2)xij +D(2)yij

)
,

Bij = (1 +Kλ)δij + λ
(
D(2)xij +D(2)yij

)
,

C = diagonal(c1, c2, ..., cN ),

D = diagonal(d1, d2, ..., dN ),

Ek = [e1(k, k + 1), e2(k, k + 1), ..., eN (k, k + 1)]
T
,

Û = (ui)N×1, Ũ = (ũi)N×1,

Ψ̃ = (Ψ̃i)N×1,

then, Eq. (5.2) yields

AÛ (k+1) = BÛ (k) −CŨ2 −DŨΨ̃ +Ek. (5.4)

Moreover, to satisfy Eq. (5.1), for all nodes belong to the boundary, i.e. xi ∈ ∂Ω, we
have to set

Cii = Dii = Ek
i = 0, ∀j : Bij = 0, Aij =

{
1, j = i
0, j ̸= i

(5.5)

We pay attention that the product in Eq. (5.4), i.e. Ũ2 and ŨΨ̃ is of Hadamard
product type.

Now, we adopt the following procedure for dealing with the nonlinearity:
At first step, we set Ũ = Û (k)(k = 0); then, Eq. (5.4) can be solved by a system of

linear algebraic equations for the unknown Û (1), after that, we apply the following
Crank-Nicolson scheme:

Ū2 =
1

2

[
(Û (0))2 + (Û (1))2

]
, ŪΨ̄ =

1

2

[
Û (0)Ψ̃(0) + Û (1)Ψ̃(1)

]
. (5.6)

Now, by Eq. (5.6), we set Ũ2 = Ū2 and ŨΨ̃ = ŪΨ̄, then by the help of these updated

Ũ2 and ŨΨ̃, the system of linear algebraic equations (5.4) is resolved again for the
unknown U (1). In general, we have the following iterative process

AÛ
(k)
l+1 = BÛ (k) − 1

2
C
[
(Û (k))2 + (Û

(k)
l )2

]
− 1

2
D

[
Û (k)Ψ̃(k) + Û

(k)
l Ψ̃

(k)
l

]
+Ek, (5.7)

for each time level, in where l denotes the number of iterations in each time level.
This process is iterated until that unknown quantity converges to within a prescribed
number of tolerance. In other words, in each time level, these iterations are continued
until satisfying the following condition:∥∥∥Û (k)

l+1 − Û
(k)
l

∥∥∥
∞

≤ ϵ, (5.8)

where ϵ is a fixed number, in the numerical experiment it is considered to be 10−10

and also ∥ · ∥∞ is infinity norm.
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Figure 1. Relative error of approximate solution at t = 5 for Ex-
ample 1.
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6. Numerical experiment

In this section, we show the results which we obtained for two examples, which
have been taken from the literature [33], using the meshless method described in the
above. The domain integrals are evaluated with 4 points Gaussian quadrature. To
show the behavior of the solution and the efficiency of the proposed method, the
following relative error (RE) is applied

RE =

∣∣∣Uexact(xi)− Uapprox(xi)
∣∣∣

∥ Uexact(x) ∥∞
,

where Uexact(xi) and Uapprox(xi) are achieved by exact and approximate solution on
points xi and N is number of nodal points.

In the current work, we have used the thin plate spline (TPS) as radial basis
functions in Eq. (2.1). This RBF is defined as follows:

R(x) = r2m ln(r), m = 1, 2, 3, .... (6.1)

In both problems, while setting m = 2, the regular node distribution is used. The
radius of support domain to moving least squares approximation is rs = 4.2h, where
h is the distance between the nodes in x or y direction. This size is significant enough
to have sufficient number of nodes (n) and gives an appropriate approximation.

Example 1. We take K = 2, a = 1, and b = 1
2 , in equation (1.1) assume that

u(x, y, t) = x(1− x2)(1− y2) sinh(
1

1 + t2
),
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Figure 2. Relative error of approximate solution at t = 10 for Ex-
ample 1.
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is the exact solution of the problem (1.1)-(1.2) with Ψ(x) = x+ y and

h(x, y, t) =

2x6y4 sinh2
(

1

t2 + 1

)
− 4x6y2 sinh2

(
1

t2 + 1

)
+ 2x6 sinh2

(
1

t2 + 1

)
−

4x4y4 sinh2
(

1

t2 + 1

)
+ 8x4y2 sinh2

(
1

t2 + 1

)
− 4x4 sinh2

(
1

t2 + 1

)
−

16

45
x3y2 sinh2

(
1

t2 + 1

)
− 2x3y2 sinh

(
1

t2 + 1

)
−

2tx3y2 cosh
(

1
t2+1

)
(t2 + 1)

2 +

16

45
x3 sinh2

(
1

t2 + 1

)
+

2tx3 cosh
(

1
t2+1

)
(t2 + 1)

2 + 2x2y4 sinh2
(

1

t2 + 1

)
−

4x2y2 sinh2
(

1

t2 + 1

)
+ 2x2 sinh2

(
1

t2 + 1

)
+

16

45
xy2 sinh2

(
1

t2 + 1

)
−

4xy2 sinh

(
1

t2 + 1

)
+

2txy2 cosh
(

1
t2+1

)
(t2 + 1)

2 − 16

45
x sinh2

(
1

t2 + 1

)
+

6x sinh

(
1

t2 + 1

)
−

2tx cosh
(

1
t2+1

)
(t2 + 1)

2 . (6.2)

Figures 1 and 2 presents the relative error of approximate solution at t = 5, 10 with
N = 441 and △t = 0.001.
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Figure 3. Numerical solutions of Example 2, by SMRPI, at times
t = 0, 0.2, 0.4, 0.6, 0.8 and 1, with △t = 0.001 and h = 0.05.
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Example 2. We set K = a = 1, and b = 0. The exact solution of problem (1.1)-(1.2)
is taken as

u(x, y, t) = sin(2πx) sin(2πy) exp(−x− y − t),

where h(x, y, t) is defined accordingly i.e.

h(x, y, t) = sin2(2πx) sin2(2πy)e−2t−2x−2y − 4 sin(2πx) sin(2πy)e−t−x−y +

8π2 sin(2πx) sin(2πy)e−t−x−y + 4π cos(2πx) sin(2πy)e−t−x−y +

4π sin(2πx) cos(2πy)e−t−x−y. (6.3)

The numerical solutions of this problem, with time step△t = 0.001, at t = 0, 0.2, 0.4, 0.6, 0.8
and 1, and corresponding contours have been shown in Figure 3.

7. Conclusions

In this paper, a new spectral meshless radial point interpolation (SMRPI) method
has been to solve a partial integro-differential equation arising in population dynamics.
The present methods is based on meshless methods and benefits from spectral collo-
cation techniques. The interpolation with the help of conditionally positive definite
radial basis functions has been used to construct shape (basis) functions which have
Kronecker delta function property. The method does not need any domain element
and so it is independent of the geometry of the domain.
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