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Abstract In this paper, the Lie approximate symmetry analysis is applied to investigate new

exact solutions of the perturbed nonlinear Klein-Gordon equation. The nonlinear
Klein-Gordon equation is used to model many nonlinear phenomena. The tanh-coth
method, is employed to solve some of the obtained reduced ordinary differential

equations. We construct new analytical solutions with small parameter which is
effectively obtained by the proposed method.
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1. Introduction

The classical Lie Symmetry method, originally introduced by Sophus Lie (1895),
was popularized in [13] and presented in a modern form using the jet space theory in
[11]. This method leads us to one-parameter group of transformations called classical
symmetries that leaves the equation unchanged, and hence, they map the set of
all solutions to itself. These symmetries are used to reduce the order of ordinary
differential equations, or to reduce the number of independent variables of PDEs [4].

The fact that symmetry reductions for many PDEs cannot be determined, via the
classical symmetry method, is the source of motivated to create several generalizations
of the classical Lie group approach for symmetry reductions. Consequently, several
alternative reduction methods have been proposed, such as Lie-Bäcklund symmetry,
nonclassical symmetry, potential symmetry, etc. [1, 2]. One of these techniques which
is extremely applied particularly for nonlinear problems is perturbation analysis. It is
worth mentioning that sometimes differential equations which appear in mathematical
modelings are presented with terms involving a parameter called the perturbed term.
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Because of the instability of the Lie point symmetries with respect to perturbation
of coefficients of differential equations, a new class of symmetries has been created
for such equations, which are known as approximate symmetries. In the last century,
in order to have the utmost result from the methods, combination of Lie symmetry
method and perturbations are investigated and two different so-called approximate
symmetry methods have been developed. The first method was presented by Baikov
et al. [3]. The second procedure was proposed by Fushchich and Shtelen [6] and later
was followed by Euler et al. [5]. This method is generally based on the perturbation
of dependent variables. In [10], a comprehensive comparison of these two methods is
presented.

We will investigate the vector fields, approximate symmetry, symmetry reductions
and new exact solutions to the perturbed nonlinear Klein-Gordon equation [12]:

utt − b2uxx + a2u = −ϵqu3 , (1.1)

where 0 < ϵ ≪ 1 is a small parameter and a, b and q are arbitrary constants, with
the method of Baikov et al. [3, 8].

This work is organized as follows. In section 2, we present approximate symmetry
and optimal system of the perturbed nonlinear Klein-Gordon equation. Section 3 is
devoted to symmetry reductions of ordinary differential equations. In section 4, the
exact analytic solutions to the equation are investigated by means of the tanh-coth
method. Finally, the conclusions will be given in section 5.

2. Approximate Symmetry and optimal system

In this paper, the approximate equation f ≈ g means that f(x, ϵ) = g(x, ϵ) + o (ϵ)
and

F (z, ϵ) ≈ F0(z) + ϵF1(z) = utt − b2uxx + a2u+ ϵqu3.

Recall that the generator of an approximate transformation group admitted by Eq.
(1.1) will be written in the form of (see [3, 8]):

X = τ(t, x, u, ϵ)
∂

∂t
+ ξ(t, x, u, ϵ)

∂

∂x
+ η(t, x, u, ϵ)

∂

∂u
, (2.1)

where

τ(t, x, u, ϵ) ≈ τ0(t, x, u) + ϵτ1(t, x, u),

ξ(t, x, u, ϵ) ≈ ξ0(t, x, u) + ϵξ1(t, x, u),

η(t, x, u, ϵ) ≈ η0(t, x, u) + ϵη1(t, x, u).

It is convenient to identify X with its canonical representative: X = X0+ ϵX1. If the
vector field (2.1) generates an approximate symmetry of the Eq. (1.1), then X must
satisfy the Lie approximate symmetry condition:[

X(2)F (z, ϵ)
]
F (z,ϵ)≈0

= o(ϵ), (2.2)
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or [
X

(2)
0 F0(z) + ϵ(X

(2)
1 F0(z) +X

(2)
0 F1(z))

]
F (z,ϵ)≈0

= o(ϵ), (2.3)

where X(2) denotes the 2-th order prolongation of X. Eq. (2.2) is the determining
equation for infinitesimal approximate symmetries.

By solving system (2.3), we obtain{
X0 = (c1x+ c3) ∂t + (c1t+ c2) ∂x,

X1 = (c4x+ c6) ∂t + (c4t+ c5) ∂x + c7u ∂u,
(2.4)

therefore

X = (c1x+ ϵc4x+ ϵc6 + c3) ∂t + (c2 + ϵtc4 + ϵc5 + c1t) ∂x + ϵc7u ∂u , (2.5)

where ci, i = 1, 2, . . . , 7 are arbitrary constants. Hence the infinitesimal approximate
symmetries of Eq. (1.1) form the seven-dimensional approximate Lie algebra (see [7])
spanned by the following independent operators:{

v1 = ∂t, v2 = ∂x, v3 = x ∂t + t ∂x, v4 = ϵ ∂t,

v5 = ϵ ∂x, v6 = ϵx ∂t + ϵt ∂x, v7 = ϵu ∂u,
(2.6)

where their approximate commutator (see [7]), evaluated in the first order of precision,
is given in Table 1.

Table 1. Commutators of approximate symmetry of Eq. (1.1).

[vi, vj ] v1 v2 v3 v4 v5 v6 v7

v1 0 0 v2 0 0 v5 0

v2 0 0 v1 0 0 v4 0

v3 −v2 −v1 0 −v5 −v4 0 0

v4 0 0 v5 0 0 0 0

v5 0 0 v4 0 0 0 0

v6 −v5 −v4 0 0 0 0 0

v7 0 0 0 0 0 0 0

The approximate operatorX = X0+ϵX1 generates the one-parameter approximate
transformation group given by the following approximate exponential map (see [8]):

x̄i = (1 + ϵ ≪ aX0, aX1 ≫) exp (aX0) (x
i), i = 1, 2, 3,

where x1 = t, x2 = x, x3 = u and

exp(aX0) = 1 + aX0 +
a2

2!
X2

0 +
a3

3!
X3

0 + · · · ,

and

≪ aX0, aX1 ≫= aX1 +
a2

2!
[X0, X1] +

a3

3!
[X0, [X0, X1]] + · · · .
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Furthermore, for Eq. (1.1), the one-parameter approximate transformation group gi
generated by the vi for i = 1, 2, . . . , 7 are given in the followings:

g1 : (t, x, u) 7→ (t+ a, x, u),

g2 : (t, x, u) 7→ (t, x+ a, u),

g3 : (t, x, u) 7→ ( t−x
2 e−a + t+x

2 ea,− t−x
2 e−a + t+x

2 ea, u),

g4 : (t, x, u) 7→ (t+ ϵa, x, u),

g5 : (t, x, u) 7→ (t, x+ ϵa, u),

g6 : (t, x, u) 7→ (t+ aϵx, x+ aϵt, u),

g7 : (t, x, u) 7→ (t, x, (1 + ϵa)u).

Consequently, if u = f(t, x) is a solution of the Eq. (1.1), so are the functions

g1(a) · f(t, x) = f(t− a, x),

g2(a) · f(t, x) = f(t, x− a),

g3(a) · f(t, x) = f(t cosh a− x sinh a, x cosh a− t sinh a),

g4(a) · f(t, x) = f(t− ϵa, x),

g5(a) · f(t, x) = f(t, x− ϵa),

g6(a) · f(t, x) = f(t− ϵax, x− aϵt),

g7(a) · f(t, x) = f(t, x)(1 + aϵ).

(2.7)

Since a solution can be used to generate new solutions using different groups, it would
be convenient to identify the minimum collection of subgroups that will generate all
possible group invariant solutions. Such a collection is called an optimal system and
it is constructed by examining the ways in which group invariant solutions transform
among themselves through the adjoint operation [4, 11].

An optimal system of one-dimensional approximate Lie algebras of the perturbed
nonlinear Klein-Gordon equation is provided by:{

v1, αv1 + v2, v3, γv3 + v4, γv3 + v5,
αv1 + βv2 + γv3 + v6, αv1 + βv2 + γv3 + ζv6 + v7,

(2.8)

where α, β, ζ and γ ̸= 0 are arbitrary constants.

3. Symmetry Reductions

In the previous section, we obtained the infinitesimal approximate symmetry, one-
parameter approximate transformation group and the optimal systems of Eq. (1.1).
Now, we deal with the symmetry reductions, exact solutions and approximate so-
lutions of the equation. We will consider the following similarity reductions and
approximate group-invariant solutions based on the optimal system method. From
an optimal system of approximate group-invariant solutions to an equation, every
other such solution to the equation can be derived.
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Reduction 1. Similarity variables related to the generator v1, are u(t, x) = f(x),
Substituting into Eq. (1.1), we reduce it to the following ODE:

b2f ′′ − qϵf3 − a2f = 0, (3.1)

where f ′ = df/dx.

Reduction 2. In general, the traveling wave solutions to a PDE arise as special
group-invariant solutions in which the group under consideration is a translational
group on the space of independent variables. In the present case, we consider the
generator v1 + cv2 (c ̸= 0), in which c is a fixed constant which will determine the
speed of the waves. Global invariants of this group are as follows

η = x− ct, u(t, x) = f(η). (3.2)

In view of (3.2), we have u(t, x) = f(x − ct) = f(η). Substituting it into (1.1), we
find the reduced ordinary differential equation for the traveling wave solutions to be

(c2 − b2)f ′′ + ϵqf3 + a2f = 0, (3.3)

where f ′ = df/dη.

Reduction 3. For the generator v3 the similarity variables and similarity solutions
η = x2 − t2, u(t, x) = f(η), and for b = 1 the reduced Eq. (1.1) is the following ODE:

4ηf ′′ + 4f ′ − a2f = ϵqf3, (3.4)

where f ′ = df/dη.

Reduction 4. For the generator

X = v1 + v5 = ∂t + ϵ ∂x = X0 + ϵX1 ,

the approximate invariants are written in the form of J(t, x, u, ϵ) = J0(t, x, u, ) +
ϵJ1(t, x, u) + o(ϵ) and they are determined by the equation, X(J) = o(ϵ), or{

X0(J
0) = α∂J0

∂t + β ∂J0

∂x = 0 ,

X0(J
1) +X1(J

0) = α∂J1

∂t + β ∂J1

∂x + ϵ∂J
0

∂t = 0 .
(3.5)

By solving Eqs. (3.5), we find two functionally independent approximate invariants:
η = x − ϵt, µ = u. Similarity variables and approximately invariant solutions are
η = x− ϵt and u(t, x) = f(η), so, we have

(ϵ2 − b2)f ′′ + ϵqf3 + a2f = 0, (3.6)

where f ′ = df/dη.

Reduction 5. For the generator v2+v4, we have u(t, x) = f(η), where η = t− ϵx.
Substituting it into Eq. (1.1), we reduce it to the following ODE:

(1− ϵ2b2)f ′′ + ϵqf3 + a2f = 0, (3.7)

where f ′ = df/dη.
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Reduction 6. Using the generator v1 + v7, we obtain the similarity variables
η = x, µ = u − utϵ and approximate invariant solutions u(t, x) = f(x)/(1 − ϵt), and
the reduced Eq. (1.1) is the following ODE:

b2

1− ϵt
f ′′ − ϵqf3 −

(
a2 +

2ϵ2

(1− ϵt)2
)
f = 0, (3.8)

where f ′ = df/dx.

4. Exact solutions and Approximate solutions

Here we consider some reduced equations of previous section.

4.1. Exact analytical solutions of Eq. (3.1). We apply the tanh-coth method
[9, 14], to solve the Eq. (3.1). Then using solutions of the Eq. (3.1), we can obtain
some solutions of Eq. (1.1).

We assume that the solution of Eq. (3.1) can be expressed in the form,

f =

m∑
j=1

bjT
−j +

m∑
i=1

biT
i, (4.1)

where T = tanh(kη), η = x, bi (i = −m, . . . ,m) and k are constants, m is positive
integer to be determined later (if possible), so that{

d
dη = k

(
1− T 2

)
d
dT ,

d2

dη2 = −kT
(
1− T 2

)
d
dT + k2

(
1− T 2

)2 d2

dT 2 .
(4.2)

In order to determine the value of m, we balance the highest order linear term with
the highest order nonlinear term in Eq. (3.1), to obtain m+ 2 = 3m, so that m = 1.
In this case, the trial equation (4.1) reduces to:

f = b−1T
−1 + b0 + b1T. (4.3)

In order to determine the values of b−1, b0, b1, k and c, substituting (4.3), (4.2) into
(3.1) and collecting all the terms of powers of T , and setting each coefficient to zero,
we get the following system of algebraic equations:

T−3 : −ϵqb3−1 + 2k2b−1b
2 = 0,

T−2 : −3ϵqb2−1b0 = 0,

T−1 : −3ϵqb2−1b1 − 3ϵqb−1b
2
0 − 2k2b−1b

2 − b−1a
2 = 0,

T 0 : −6ϵqb−1b0b1 − ϵqb30 − b0a
2 = 0 ,

T 1 : −3ϵqb−1b
2
1 − 3ϵqb20b1 − 2k2b1b

2 − b1a
2 = 0,

T 2 : −3ϵqb0b
2
1 = 0,

T 3 : −ϵqb31 + 2k2b1b
2 = 0.

By solving the above system, we obtain the following different sets of solutions:{
k =

±a

2b
, b−1 = −b1 =

±a
√
2

2
√
ϵq

, b0 = 0

}
, (4.4)
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{
k =

±ıa
√
2

4b
, b−1 =

∓a

2
√
−ϵq

, b0 = 0, b1 =
∓a

√
−ϵq

2ϵq

}
, (4.5)

{
k =

±ıa
√
2

2b
, b−1 =

∓a√
−ϵq

, b0 = b1 = 0

}
, (4.6)

{
k =

±ıa
√
2

2b
, b−1 = b0 = 0, b1 =

∓a√
−ϵq

}
. (4.7)

Now, substituting (4.4), (4.5), (4.6) and (4.7) into (4.3), we obtain the solutions of
Eq. (3.1), and consequently solutions for the Eq. (1.1) as follows:

u(t, x, ϵ) =
ζa

√
2

2
√
ϵq

tanh−1
(ax
2b

)
− ζa

√
2

2
√
ϵq

tanh
(ax
2b

)
, (4.8)

u(t, x, ϵ) =
ζa

2
√
−ϵq

tanh−1
( ıax√2

4b

)
+

ζa
√
−ϵq

2ϵq
tanh

( ıax√2

4b

)
, (4.9)

u(t, x, ϵ) =
ζa√
−ϵq

tanh−1
( ıax√2

2b

)
, (4.10)

u(t, x, ϵ) =
ζa√
−ϵq

tanh
( ıax√2

2b

)
, (4.11)

where ζ ∈ {−1, 1} and ı2 = −1. In Figure 1 we plot the solution (4.9) with ζ = 1,
ϵ = 0.01, q = 2, a = 1 and b = 0.03.

4.2. Exact analytical solutions of Eq. (3.3) and Eq. (3.7). Using the tanh-
coth method, similar to the solving of the equation (3.1), we obtain solution for Eqs.
(3.3) and (3.7), therefore the exact solutions for Eq. (1.1):

u(t, x, ϵ) =
ζa

√
2

2
√
ϵq

[
tanh−1

( ax− act

2
√
b2 − c2

)
− tanh

( ax− act

2
√
b2 − c2

)]
, (4.12)

u(t, x, ϵ) =
ζa

2
√
−ϵq

[
tanh−1

( ax− act

2
√
2c2 − 2b2

)
+ tanh

( ax− act

2
√
2c2 − 2b2

)]
, (4.13)

u(t, x, ϵ) =
ζa√
−ϵq

tanh−1
( ax− act√

2c2 − 2b2

)
, (4.14)

u(t, x, ϵ) =
ζa√
−ϵq

tanh
( ax− act√

2c2 − 2b2

)
, (4.15)

u(t, x, ϵ) =
ζa

√
2

2
√
ϵq

[
tanh−1

( at− aϵx

2
√
b2ϵ2 − 1

)
− tanh

( at− aϵx

2
√
b2ϵ2 − 1

)]
, (4.16)

u(t, x, ϵ) =
ζa

2
√
−ϵq

[
tanh−1

( at− aϵx

2
√
2− 2ϵ2b2

)
− tanh

( at− aϵx

2
√
2− 2ϵ2b2

)]
, (4.17)
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Figure 1. The solution (4.9).

u(t, x, ϵ) =
ζa√
−ϵq

tanh−1
( at− aϵx√

2− 2ϵ2b2

)
, (4.18)

u(t, x, ϵ) =
ζa√
−ϵq

tanh
( at− aϵx√

2− 2ϵ2b2

)
, (4.19)

where ζ ∈ {−1, 1}. In Figure 2 we plot the solution (4.14) with ζ = 1, ϵ = 0.01,
q = −1, a = 4, c = 1 and b = 0.001. In Figure 3 we plot the solution (4.17) with
ζ = 1, ϵ = 0.01, q = −2, a = 1, c = 1 and b = 2.

5. Conclusions

In this paper, Lie approximate symmetry analysis was applied to study the per-
turbed nonlinear Klein-Gordon equation. We obtained Lie approximate algebra, sim-
ilarity reductions of this equation. All the group-invariant solutions to the Eq. (1.1)
are considered based on the optimal system method. Then, we construct new analyt-
ical solutions with a small parameter to the Eq. (1.1) are investigated by means of
the tanh-coth method. The basic idea described in this paper is efficient and powerful
in solving wide classes of nonlinear differential equations.
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Figure 2. The solution (4.14).

Figure 3. Solution (4.17).

Acknowledgments

We would like to express our sincere thanks to the editors and referees of the
journal for their helpful comments and suggestions which helped us to improve the
quality of this paper.



CMDE Vol. 7, No. 2, 2019, pp. 266-275 275

References

[1] G. W. Bluman and S. Kumei, Symmetries and differential equations, Applied mathematical
sciences, Springer, New York, 1989.

[2] G. W. Bluman, A. F. Cheviakov, S. C. Anco, Applications of symmetry methods to partial

differential equations, Applied mathematical sciences, Springer, New York, 2010.
[3] V. A. Baikov, R. K. Gazizov and N. H. Ibragimov, Approximate symmetries of equations with a

small parameter, Mat. Sb. 136 (1988), 435–450. (English Transl. in: Math USSR Sb. 64 (1989),
427–441).

[4] J. C. Camacho, M. S. Bruzon, J. Ramirez and M. l. Gandarias, Exact travelling wave solutions
of a beam equation, J. Nonlinear Math. Phys., 18 (2011), 33–49.

[5] N. Euler, M. W. Shulga and W. H. Steeb, Approximate symmetries and approximate solutions

for amultidimensional Landau-Ginzburg equation, J. Phys. A, 25(18) (1992), 1095–1103.
[6] W. I. Fushchich, W. M. Shtelen, On approximate symmetry and approximate solutions of the

non-linear wave equation with a small parameter, J. Phys. A, 22 (1989), 887–890.
[7] R. K. Gazizov, Lie algebras of approximate symmetries, J. Nonlinear Math. Phys., 3(12) (1996),

96–101.
[8] N. H. Ibragimov and V. F. Kovalev, Approximate and renormgroup symmetries, Nonlinear

Physical Science, Higher Education Press, Beijing, China, 2009.
[9] M. Mirzazadeh, The extended homogeneous balance method and exact 1-soliton solutions, Com-

put. Methods Differ. Equ., 2(2) (2014), 83–90.
[10] M. Pakdemirli, M. Yurusoy, and I. T. Dolapci, Comparison of approximate symmetry methods

for differential equations, Acta. Appl. Math., 80(3) (2004), 243–271.
[11] P. J. Olver, Applications of Lie groups to differential equations, in Graduate Texts in Mathe-

matics, 107, Springer-Verlag, New York, 1993.
[12] L. Ostrovsky, Asymptotic perturbation theory of waves, 277, Imperial Callege Press, London,

2015.
[13] L. V. Ovsiannikov, Group analysis of differential equations, Academic Press, New York, 1982.

[14] A. M. Wazwaz, The tanh-coth method for solitons and kink solutions for nonlinear parabolic
equations, Appl. Math. Comput., 188 (2007), 1467–1475.


