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Abstract In this paper, a spectral collocation approach based on the rational Chebyshev func-

tions for solving the axisymmetric stagnation point flow on an infinite stationary cir-

cular cylinder is suggested. The Navier-Stokes equations which govern the flow, are
changed to a boundary value problem with a semi-infinite domain and a third-order

nonlinear ordinary differential equation by applying proper similarity transforma-

tions. The approach is named the rational Chebyshev collocation (RCC) method.
This method reduces this nonlinear ordinary differential equation to an algebraic

equations system. RCC method is a strong kind of the collocation technique to

solve the problems of boundary value over a semi-infinite interval without truncat-
ing them to a finite domain. We also present the comparison of this work with others

and show that the present method is more effective and precise.
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Boundary value problem.
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1. Introduction

One of the main problems in fluid dynamics is the stagnation point flow. The fluid
flow in the vicinity of a stagnation point is called stagnation point flow or stagnation
flow and the area of stagnation would be where the mass and heat transfer rates and
fluid pressure are highest.

The stagnation flow is studied for several decades due to the technical significance
in a variety of industrial applications, like the cooling of electronic components and
blades of gas turbine, the drying of films and papers, the metal and glass tempering
during processing and painting of surfaces.

The two-dimensional stagnation point flow over a plate was initially introduced by
Hiemenz [18]. He illustrated that the Navier-Stokes equations of this problem can be
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simplified to a third-order ordinary differential equation using similarity transforma-
tion. By Howarth [20], the solution of Hiemenz flow was later improved. Then, by
Homann [19], three-dimensional axisymmetric stagnation point flow on a circular flat
plate was investigated.

Wang [31] was among the first to investigate the axisymmetric stagnation flow
on an infinite stationary circular cylinder. Many other problems in axisymmetric
stagnation flow on cylinder were discussed by Gorla [9, 11, 10, 12, 13], Cunning et al.
[6], Takhar et al. [30], Rahimi [23], Weidman et al. [32] and Saleh et al. [25].

In all of these researches, the Navier-Stokes equations which govern the flow have
been reduced to a third-order ordinary differential equation of a boundary value prob-
lem with a semi-infinite domain by using similarity transformations. Due to the com-
plexity or absence of analytical solutions, the simplified differential equations with two
point boundary conditions, have been solved numerically with a fourth-order Runge-
Kutta method along with a shooting method. Because of the asymptotic boundary
condition, it would be needed some considerations to solve the differential boundary
value problem (BVP) [24]. Lately, spectral methods have been successfully used to
solve the boundary value problems defined on unbounded domains [21].

Spectral techniques are very applicable and effective methods to solve differential
equations and are generally a kind of weighted residual methods. Spectral methods
exhibit a particular group of approximation methods, that in a specific way, the resid-
uals or errors are minimized and consequently generate the particular techniques like
the collocation, Galerkin and Tau formulations [2]. In several studies, different types
of spectral techniques have been considered to solve problems with particular bound-
ary conditions or in bounded domains [3, 5, 8, 28, 29]. But, many problems exist in
engineering and science defined in the unbounded intervals. Various spectral methods
can be applied to solve problems in semi-infinite intervals and infinite domains. When
the computational interval is unbounded, a variety of options are available that are
classified into three main groups:

The first method would be the application of spectral methods based on the or-
thogonal polynomials over unbounded domains regarding a weight function, like the
spectral methods of Hermite (for infinite domain) and Laguerre (for semi-infinite in-
terval) [7, 14, 15, 27].

By choosing L large enough, the second method is truncating semi-infinite domain
[0,∞) and infinite domain (−∞,∞) to [0, L] and [−L,L] intervals respectively and
applying the spectral methods to solve the problem. This strategy is called domain
truncation [3].

The third method is applying the spectral collocation methods based on the ra-
tional orthogonal functions to solve the problems with unbounded intervals. Boyd
[3, 4] defined a system of orthogonal polynomials for an infinite domain, called as the
functions of rational Chebyshev, by mapping the Chebyshev orthogonal polynomials
and used them to solve such problems. Also Guo et al. [16] introduced an orthogonal
system of rational Legendre functions for solving differential equations on the half
line.

Recently, some spectral methods based on the rational Chebyshev functions have
been used to solve some types of boundary value problems in fluid dynamics on



CMDE Vol. 6, No. 4, 2018, pp. 483-500 485

unbounded domains [1, 2, 21]. In all of these studies, the new basis functions have
been generated by using a transformation that maps a semi-infinite interval [0,∞) into
the finite domain [−1, 1]. But the computational interval of the current problem is
semi-infinite interval [1,∞] and this interval transforms into the finite domain [−1, 1]
by use of proper mapping. Then the rational Chebyshev functions are formed by
this mapping and a spectral collocation method based on these new basis functions
is formulated and used for the analysis of the axisymmetric stagnation point flow on
an infinite stationary cylinder and subsequently the nonlinear equation which govern
this flow would be solved and also analyzed.

2. Problem Formulation

Let us consider the laminar, steady, incompressible flow of a viscous fluid in the
neighborhood of an axisymmetric stagnation point flow on an infinite stationary cylin-
der. The flow model in cylindrical coordinates (r, θ, z) can be seen in Figure 1 with
relevant velocity components (u, v, w). An external axisymmetric radial stagnation
flow of strain rate k impinges on the cylinder with radius a and centered on r = 0.
The flow is axisymmetric about the z-axis and also symmetric to the z = 0 plane.
The stagnation line is at z = 0 and r = a. The steady Navier-Stokes equations in
cylindrical polar coordinates governing the axisymmetric flow, neglecting the body
force and also neglecting the variation of viscosity, is given by [26]:
Mass:

∂

∂r
(ru) + r

∂w

∂z
= 0 (2.1)
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where υ, ρ and p are the kinematic viscosity, density and fluid pressure respectively.
The velocity field boundary conditions are:

r = a : u = 0, w = 0, (2.4)

r →∞ : u = −k(r − a2

r
), w = 2kz. (2.5)

Here, relation (2.4) is no-slip condition on the circular cylinder wall and the equa-
tion (2.5) shows that the viscous flow solution approaches the potential flow solution,
as r →∞ [9].

By considering the similarity transformations in the form:

u = −k a
√
η
f(η), w = 2kf

′
(η)z, η = (

r

a
)2. (2.6)
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Figure 1. Schematic diagram of a coordinate system and flow model

It can be verified that transformations in (2.6) satisfy the conservation of mass
equation (2.1) automatically. Insertion of transformations in (2.6) into the governing
equations (2.2) and (2.3) yields an ordinary differential equation in term of f(η) as
following:

ηf
′′′

+ f
′′′

+ Re[1− (f ′)2 + ff
′′
] = 0. (2.7)

In this equation, Re = ka2

2ν is the Reynolds number and primes indicate differenti-
ation with respect to η. The boundary conditions (2.4) and (2.5) become:{

η = 1 : f = 0 , f ′ = 0,

η →∞ : f ′ = 1.
(2.8)

Relation (2.7) is similar to the one introduced by Wang [31] and were solved by
applying the fourth-order Runge-Kutta numerical integration approach. In this study,
the relation (2.7) is solved using the rational Chebyshev collocation approach.

3. Shear Stress

For boundary layer flow, the shear stress at the wall surface or the wall skin friction
τw is calculated as below:

τw = µ
∂w

∂r

∣∣∣∣
r=a

, (3.1)

where µ is the fluid viscosity. Considering the equation (2.6), the surface shear stress
would be as the following:

τw =
4µk

a
zf

′′
(1). (3.2)

Therefore, f ′′(1) is proportional to surface shear stress. Due to their correlation
with physical quantities, the f ′′(1) was obtained in our results.
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4. Rational Chebyshev Polynomials

The aim of this work is to apply an effective type of spectral methods called the ra-
tional Chebyshev collocation method for solving the problem of boundary value (2.7).
The rational Chebyshev polynomials as well as their main properties are presented
here [2].

The common Chebyshev polynomial Tl(ξ) is the l-th normalized eigenfunction of
the problem of singular Sturm-Liouville:√

1− ξ2
[√

1− ξ2 Tl
′(ξ)
]′

+ l2 Tl(ξ) = 0 , ξ ∈ (−1, 1).

The following three-term recurrence relation is also satisfied with the Chebyshev
polynomials:

T0 (ξ) = 1, T1 (ξ) = ξ,

Tn+1 (ξ) = 2ξTn (ξ)− Tn−1 (ξ) , n ≥ 1,

which in the interval [−1, 1] are orthogonal regarding the weight function ω(ξ) =
1√

1−ξ2
i.e.,∫ 1

−1

Ti(ξ)Tj(ξ)ω(ξ) dξ =
ciπ

2
δij ,

where c0 = 2, ci = 1 for i ≥ 1 and δij is the Kronecker function. As previously stated,
it is clear that only for ξ ∈ [−1, 1], the common Chebyshev polynomials would be
valid. With respect to problems with semi-infinite domain, a transformation is used
to map a semi-infinite interval into a finite domain. New basis sets are obtained by
this mapping for the semi-infinite interval [1].

Boyd [3] suggested algebraic mapping as below form:

τ =
L (1 + ξ)

1− ξ
↔ ξ =

τ − L
τ + L

, (4.1)

where L is constant. For every fixed L, the provided algebraic mapping would map
the semi-infinite interval [0,∞) into [−1, 1]. Therefore, new basis sets Rl(τ) would be
produced for the semi-infinite interval as the images under the change-of-coordinate
of Chebyshev polynomials:

Rl (τ) = Tl

(
τ − L
τ + L

)
= cos (lt) , t = 2 cot−1

(√
τ

L

)
, t ∈ [0, π] . (4.2)

Therefore, the rational Chebyshev polynomials Rn(τ) are defined as the below
three-term recurrence equations:

R0 (τ) = 1 , R1 (τ) =
τ − L
τ + L

,

Rn+1 (τ) = 2

(
τ − L
τ + L

)
Rn (τ)−Rn−1 (τ) , n ≥ 1. (4.3)
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It can be seen that Rl(τ) is the l-th eigenfunction of the problem of singular Sturm-
Liouville:

(τ + L)

√
τ

L

[
(τ + L)

√
τR

′

l (τ)
]′

+ l2Rl (τ) = 0 , τ ∈ (0,∞) ,

and rational Chebyshev polynomials would be orthogonal regarding the weight

function ω(τ) =
√
L√

τ(L+τ)
with the orthogonality property, in the interval [0,∞), as

follows: ∫ ∞
0

Ri (τ)Rj (τ)ω (τ) dτ =
ciπ

2
δij , (4.4)

where c0 = 2 and ci = 1 for i ≥ 1.
In this study, basic features of the rational Chebyshev polynomials are introduced

[2].
Let Ω = [0,∞) and ω(τ) be an integrable, non-negative and real valued weight

function on the Ω. A normed space L2
ω(Ω), is defined as below:

L2
ω (Ω) = {υ |υ is measurable on Ω and ||υ||ω ≤ ∞} ,

where

||υ||ω =

(∫ ∞
0

|υ (τ)|2ω (τ) dτ

) 1
2

,

and || . ||ω is the norm induced from the inner product 〈 . , . 〉ω of the space L2
ω(Ω),

i.e.,

〈u, υ〉ω =

∫ ∞
0

υ (τ)u (τ)ω (τ) dτ.

Hence, from the relation of Chebyshev polynomials orthogonality (4.4), it can be
concluded that the rational Chebyshev polynomials Rl(τ) provide for L2

ω(Ω) a set of
complete orthogonal basis [17, 22].

For any function f ∈ L2
ω(Ω), the following expansion can be considered:

f (τ) =

∞∑
i=0

fi Ri (τ) , (4.5)

with

fi =
〈f,Ri〉ω
‖Ri‖2ω

=
2

ciπ

∫ ∞
0

f (τ)Ri (τ)ω (τ) dτ,

where fi’s are considered as the expansion coefficients relevant to the family {Ri}i≥0.

5. Rational Chebyshev Collocation Method

With respect to any positive integer N , <N = span {R0, R1, . . . , RN} is defined
and below spectral approximation is considered:

fN (τ) =

N∑
k=0

fkRk (τ) . (5.1)
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The principle idea regarding the collocation approach is to achieve the coefficients

fk in a way that in the interior collocation points {τj}Nj=0 the residual function van-

ishes. In this approach, to solve the problem (2.7) with boundary conditions (2.8), the
below N+1 rational Chebyshev-Gauss-Radau points were employed as the collocation
points:

τj = L
1 + ξj
1− ξj

, j = 0, 1, . . . , N, (5.2)

where ξj ’s are considered as the N + 1 points of Chebyshev-Gauss-Radau:

ξj = − cos

(
2jπ

2N + 1

)
, j = 0, 1, . . . , N.

Consequently, a system of nonlinear relations with N + 1 unknowns fk (the expan-
sion coefficients of fk(τ)) and N + 1 equations are produced that by the method of
Newton, can be solved numerically.

6. Rcc Method Convergence

To study the rational Chebyshev approach convergence, the orthogonal projection
was introduced [1].

Generally, the L2
ω(Ω)-Orthogonal projection would be defined as below:

PN : L2
ω (Ω)→ <N by: 〈PNf − f, φ〉ω = 0 , ∀φ ∈ <N ,

where PNf(τ) = fN (τ).
The equation (5.1) indicates that fN is the orthogonal projection of f upon <N

regarding the weighted inner product 〈 . , . 〉ω.
Now, in order to calculate ‖PNf − f‖ω, the normed space is defined:

Hr
ω (Ω) =

{
υ |υ is measurable on Ω and ||υ||r,ω <∞

}
,

where the norm, for the non-negative integer r, is induced by:

||υ||r,ω =

(
r∑

k=0

∥∥∥∥(τ + 1)
r
2 +k d

k

dτ
υ

∥∥∥∥2

ω

) 1
2

.

Consequently, the following theorem is presented for the convergence.

Theorem 6.1. For any f ∈ Hr
ω(I) and f ≥ 0,

||PNf − f ||ω ≤ cN−r||f ||r,ω.

Proof. see [17]. �

From this theorem, it is evident that the approximation of rational Chebyshev is
exponentially convergent.
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7. Using the Rcc Method for Solving Present Problem

Currently, the rational Chebyshev collocation approach is employed to solve the
problem (2.7) with the boundary conditions (2.8).

From the boundary conditions (2.8), it can be observed that the computational
domain of the problem (2.7) is semi-infinite interval [1,∞] and this interval transforms
into the [−1, 1] by replacing τ with τ − 1 in mapping equation (4.1) as below form
[3]:

τ = L
1 + ξ

1− ξ
+ 1 ↔ ξ =

τ − 1− L
τ − 1 + L

.

By this new algebraic mapping, the rational Chebyshev polynomials Rn(τ) become
as the below three-term recurrence equations:

R0 (τ) = 1 , R1 (τ) =
τ − 1− L
τ − 1 + L

,

Rn+1 (τ) = 2

(
τ − 1− L
τ − 1 + L

)
Rn (τ)−Rn−1 (τ) , n ≥ 1.

Now, fN (τ) is substituted on the function f in equation (2.7). Considering the

definitions of RN (τ) and fN (τ), we have R
′

i(∞) = 0 for i = 0, 1, ..., N , and conse-

quently f
′

N (∞) = 0. An extra simple term to the equation (5.1) is added to satisfy
the boundary conditions (2.8) and the below approximation would be considered:

f̃N (τ) = τ +

N∑
k=0

fk Rk (τ) , (7.1)

where f̃ ′N (∞) = 1. Therefore, the boundary condition f ′(∞) = 1 would be already

satisfied. Now, if f(τ) is replaced with approximate solution f̃N (τ) into the equation
(2.7), subsequently the residual function is obtained as below form:

Res (τ) = τ f̃ ′′′N (τ) + f̃
′′

N (τ) + Re
[
1− (f̃

′

N (τ))2 + f̃N (τ) f̃
′′

N (τ)
]

= 0. (7.2)

As previously mentioned, to obtain the coefficients fk , the equation (7.2) is equal-
ized to zero at below rational Chebyshev-Gauss-Radau collocation points:

τj = L
1 + ξj
1− ξj

+ 1 , j = 0, 1, . . . , N.

Thus, we have:
ResN (τj) = 0 , j = 1, 2, . . . , N − 1,

f̃N (0) = 0,

f̃ ′N (0) = 0.

(7.3)

System (7.3) includes N + 1 nonlinear relations, which is numerically solved using
the method of Newton.
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8. Orders of Convergence

It is very useful if we have the accurate definitions for classifying the convergence
rate [3]. We consider an expansion series of function u as below:

u(x) =

∞∑
n=0

anϕn(x),

where an and ϕn are the coefficients and expansion functions of the series, respectively.

Definition 8.1. The algebraic index of convergence k defined as the largest number
for which:

lim
n→∞

|an|nk <∞, n� 1.

Alternative Definition: If the coefficients of a series are an and if:

an ∼ O[
1

nk
], n� 1.

then k is the algebraic index of convergence.

Definition 8.2. If the algebraic index of convergence k is unbounded -in other words,
if the coefficients an decrease faster than 1/nk for any finite power of k- then the
series is said to have the property of “infinite order”, “exponential” or “spectral”
convergence.
Alternative Definition: if:

an ∼ O[exp(−qnr)], n� 1,

with q a constant for some r > 0 , then the series has infinite order or exponential
convergence.

The equivalence of the second definition to the first is shown by below expression:

lim
n→∞

nk exp(−qnr) = 0, all k, all r > 0.

Definition 8.3. The exponential index of convergence r is given by:

r = lim
n→∞

log | log(|an|)|
log(n)

. (8.1)

Definition 8.4. (Rates of Exponential Convergence) A series whose coefficients
are an is said to have the property of supergeometric, geometric or subgeometric
convergence depending upon whether:

lim
n→∞

log(|an|)/n =


∞, supergeometric,

constant, geometric,

0, subgeometric.

Alternative Definitions:
1. If an ∼ O([ ] exp{−(n/j) log n}), convergence is supergeometric.
2. If an ∼ O([ ] exp{−qn}), convergence is geometric.
3. If the exponential index of convergence r < 1, then the convergence is subgeomet-
ric. (The empty brackets [ ] denote factors that vary more slowly with n than the
exponentials.)
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For better illustration, presented types of convergence are drawn in Figures 2, 3.
On a log-log graph, all types of exponential convergence (Supergeometric, Geometric
and Subgeometric) bend away with ever-increasing negative slopes as shown in Figure
2. On a log-linear graph, the coefficients of a Geometrically converging series will
asymptote to a straight line as shown in Figure 3. Supergeometric convergence curve
develops a more and more negative slope (rather than a constant slope) on a log-linear
graph. Subgeometric and algebraic convergence curves bend upward away from the
straight line of geometric convergence. Their slopes tend to zero as below.

Figure 2. log |an| versus log n for four rates of convergence.
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9. Results Presentation

In this section, the rational Chebyshev collocation solution of the relation (2.7)
along with the boundary conditions (2.8) for various numbers of the collocation points,
N , and by choosing the arbitrary constant map parameter L equal to 2.5, are pre-
sented. As mentioned earlier, the f

′′
(1) is proportional to surface shear stress and

is a key point of the function. Therefore, it was calculated. Moreover, to check the
accuracy of RCC method results, a fourth-order Runge-Kutta technique along with
a shooting approach was applied to solve the equation (2.7) and the RCC method is
compared by this fourth-order Runge-Kutta technique and available published results
of Wang [31] and Gorla [9].

For several values of N and Reynolds number (Re), the Re−1/2f
′′
(1) approxima-

tions calculated by the RCC approach and their absolute errors are indicated in Table
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Figure 3. log |an| versus n for four rates of convergence.
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1. In this Table, the last row gives obtained values by Wang [31] and the errors of the
RCC method is calculated with respect to these values. From Table 1, it can be ob-
served that by increasing the number of the collocation points, the absolute values of
the errors decrease, showing the rapid convergence and stability of the RCC approach.

It is seen that N ≥ 30 gives good results and the values of the Re−1/2f
′′
(1) don’t

change. But we must note that by increasing N , the time of processing is increased
too. Therefore, we have used N = 30 for next results in this study.

For the verification of accuracy of the RCC approach, a comparison of the presented
results with the available published results of Wang [31] and Gorla [9] and calculated
by the fourth-order Runge-Kutta method is provided and presented in Tables 2-5 and
Figures 4 -6. The results are found in excellent agreement.

In Table 2, the Re−1/2f
′′
(1) approximations calculated by the RCC approach for

N = 30, L = 2.5 and several values of Re, have been compared with the fourth-order
Runge-Kutta method and those obtained by Wang [31] and Gorla [9]. The present
results indicate that the selected value of L is suitable to provide an accurate solution.

Tables 3-5 show the variations of f(η), f
′
(η) and f

′′
(η) approximated by the

method proposed in this study for N = 30, L = 2.5,Re = 1, several values of η and
those of Wang [31] and Gorla [9] and the fourth-order Runge-Kutta method. This
comparison indicates that the RCC method provides us an approximate solution with
a high accuracy level.



494 A. GOLBABAI AND S. SAMADPOUR

Table 1. Numerical results of the Re−1/2f
′′

(1) for L = 2.5 and several values

of N , Re.

N
Re = 0.2 Re = 1 Re = 10

Re−1/2f
′′
(1) Error Re−1/2f

′′
(1) Error Re−1/2f

′′
(1) Error

5 1.7420 1.57E-02 1.481356 2.83E-03 1.40503 8.86E-02
10 1.7569 8.00E-04 1.484124 6.10E-05 1.31598 4.50E-04
15 1.7575 2.00E-04 1.484196 1.10E-05 1.31640 3.00E-05
20 1.7575 2.00E-04 1.484182 3.00E-06 1.31643 0
25 1.7576 1.00E-04 1.484182 3.00E-06 1.31643 0
30 1.7576 1.00E-04 1.484183 2.00E-06 1.31643 0
35 1.7576 1.00E-04 1.484183 2.00E-06 1.31643 0
40 1.7576 1.00E-04 1.484183 2.00E-06 1.31643 0

Wang 1.7577 —– 1.484185 —– 1.31643 —–

Table 2. Comparison of methods in [9], [31], the fourth-order Range-Kutta

and the present method for the values of Re−1/2f
′′

(1).

Re RCC Method Gorla [9] Wang [31] Runge-Kutta
0.1 1.9463279 1.946369 —– 1.946388
0.2 1.7576413 1.7577 1.7577 1.7576
1 1.4841835 1.484185 1.484185 10484184
10 1.3164308 10316427 1.31643 1.31643
100 1.2596526 1.259642 —– 1.259642

The comparison between the RCC method and Wang [31] and Gorla [9] have been
shown in Figures 4-6. Between the results obtained by the RCC method and Wang
[31] and Gorla [9] for all values of η, a very good agreement is seen. It is evident

from Figures 4 and 5, that f(η) and f
′
(η) obtained by the RCC method agree with

the boundary conditions (2.8); so that f(η) and f
′
(η) are equal to zero at η = 1 and

as η increases, the f
′
(η) increases to approach 1 at infinity. We know that where

f
′
(η) = 1, it represents the edge of the boundary layer and it can be seen that in

higher Reynolds number, the f
′
(η) approaches to 1 sooner and the thickness of the

boundary layer decreases.
The logarithmic graphs of the absolute coefficients |fk| of the rational Chebyshev

functions in the approximate solutions versus log k and k for N = 30 and L = 2.5
can be seen in Figures 7 and 8 respectively. The graphs indicate the convergence and
stability of the RCC approach. It can be seen from the comparison of Figures 7 and 2
that the series (5.1) has exponential convergence. Also, comparison of Figures 8 and
3 shows the subgeometric convergence of the series.

The exponential index of convergence, r, has been shown in Figure 9 that r is
calculated by (8.1). It is seen that r < 1 and as previously explained, we conclude
that the spectral approximation (5.1) has subgeometric convergence.
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Table 3. Approximation of the f(η) for present method, [9], [31] and Runge-
Kutta method (Re= 1, L = 2.5).

η Gorla [9] Wang [31] Runge-Kutta RCC (N = 30)
1.0 0 0 0 0
1.2 0.02667 0.02667 0.02667 0.02667
1.4 0.09665 0.09665 0.09665 0.09665
1.6 0.19836 0.19836 0.19836 0.19836
1.8 0.32361 0.32361 0.32361 0.32361
2.0 0.46647 0.46647 0.46647 0.46647
3.0 1.32664 1.3266 1.32664 1.32664
4.0 2.2868 2.2867 2.28680 2.28680
5.0 3.27491 3.2748 3.27490 3.27490
6.0 4.27124 4.2712 4.27123 4.27123
7.0 5.27009 5.27 5.27007 5.27007
8.0 6.26973 6.2697 6.26971 6.26969
9.0 7.26963 7.2695 7.26959 7.26957
10.0 8.2696 8.2695 8.26955 8.26953
11.0 9.26961 9.2695 9.26955 9.26952

Table 4. Approximation of f
′
(η) for present method, [31] and Runge-Kutta

method (Re= 1, L = 2.5).

η Wang [31] Runge-Kutta RCC (N = 30)
1 0 0 0

1.2 0.25302 0.25303 0.25303
1.4 0.43724 0.43724 0.43724
1.6 0.57315 0.57316 0.57315
1.8 0.67444 0.67445 0.67445
2.0 0.75054 0.75055 0.75055
3.0 0.93068 0.93078 0.93068
4.0 0.97961 0.97961 0.97961
5.0 0.99378 0.99378 0.99378
6.0 0.99805 0.99806 0.99805
7.0 0.99938 0.99938 0.99938
8.0 0.9998 0.99980 0.99980
9.0 0.99993 0.99994 0.99993
10.0 0.99998 0.99998 0.99998
11.0 1 1 0.99999

10. Conclusion

In this research, an efficient and precise numerical method known as the rational
Chebyshev collocation (RCC) approach was applied to solve third-order nonlinear
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Table 5. Approximation of f
′′

(η) for present method, [31] and Runge-Kutta

method (Re= 1, L = 2.5).

η Wang [31] Runge-Kutta RCC (N = 30)
1 1.484185 1.484184 1.484183

1.2 1.07223 1.072232 1.072231
1.4 0.78662 0.786618 0.786617
1.6 0.58369 0.583690 0.583690
1.8 0.43697 0.436973 0.436973
2.0 0.32949 0.329489 0.329489
3.0 0.08647 0.086474 0.086474
4.0 0.02453 0.024532 0.024532
5.0 0.00729 0.007296 0.007295
6.0 0.00224 0.002241 0.002240
7.0 0.0007 0.000705 0.000704
8.0 0.00022 0.000226 0.000225
9.0 0.00007 0.000074 0.000073
10.0 0.00002 0.000025 0.000024
11.0 0 0.000009 0.000008

Figure 4. Profiles of the f(η) calculated by the RCC method (N = 30, L =

2.5), Gorla [9] and Wang [31].
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differential equation originated from the similarity solution of an axisymmetric stag-
nation point flow on an infinite stationary cylinder. This method is a strong kind
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Figure 5. Sample profiles of f
′
(η) calculated by the RCC method (N = 30,

L = 2.5) and Wang [31].
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Figure 6. Graphs of f
′′

(η) calculated by the RCC method (N = 30, L = 2.5)

and Wang [31].
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Figure 7. Logarithmic graph of absolute coefficients |fk| of rational Cheby-
shev functions versus log k for N = 30, L = 2.5.
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Figure 8. Logarithmic graph of absolute coefficients |fk| of rational Cheby-

shev functions in the approximate solution for N = 30, L = 2.5.
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Figure 9. The exponential index of convergence rk versus k for N = 30, L = 2.5.
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of the collocation approach to solve the boundary value problems with semi-infinite
domain without truncating them to a finite domain employing, as the basis functions,
the rational Chebyshev polynomials. It can be noted that these basis functions would
have some benefits: simple to compute, quick convergence and completeness. This
approach would decrease the nonlinear ordinary differential equation solution to the
solution of a system of algebraic equations.

The comparison between the numerical solutions provided by Gorla [9], Wang [31],
the solution of fourth-order Runge-Kutta and approximated by this study, indicates
that the RCC approach provides more precise and numerically stable solutions com-
pared to those obtained by other approaches and shows the validity of the current
method for problems of boundary value.
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