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Abstract The optimal control of problem is about finding a control law for a given system
such that a certain optimality criterion is achieved. Methods of solving the optimal

control problems are divided into direct methods and mediated methods (through

other equations). In this paper, the PSO- SVM indirect method is used to solve a
class of optimal control problems. In this paper, we try to determine the appropriate

algorithm to improve our answers to problems.
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1. Introduction

Theory of particle swarm optimization (PSO) has been growing rapidly. PSO
has been used by many applications of several problems. The algorithm of PSO
emulates from behavior of animals societies that don’t have any leader in their group
or swarm, such as bird flocking and fish schooling. Typically, a flock of animals that
has no leader finds food randomly by following one of the members of the group that
has the closest position with a food source (potential solution). The flocks achieve
their best condition simultaneously through communication among members who
already have a better situation. Animal which has a better condition will inform
it to its flock and the others will move simultaneously to that place. This would
happen repeatedly until the best conditions or a food source discovered. The process
of PSO algorithm in finding optimal values follows the work of this animal society.
Particle swarm optimization consists of a swarm of particles, where particle represent a
potential solution. Recently, there have been several modifications from original PSO.
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It was modified to accelerate the achieving of the best conditions. The development
will provide new advantages and also the diversity of problems to be resolved. It
is necessary to conduct studies on the development of PSO in order to recognize
its development, advantages and disadvantages and the usefulness of this method to
settle a problem. The theoretical tutorial of PSO is described in [1, 2, 3, 4] testing the
data is simpler, and has a simpler structure in comparison with other evolutionary
computations.

Recently, Support Vector Machines (SVMs) were introduced by [14, 19] for solving
classification and nonlinear function estimation problems [6, 8, 9, 13]. Within this
new approach the training problem is reformulated and represented in a way to obtain
a (convex) quadratic programming (QP) problem. The solution to this QP problem is
global and unique. In SVMs, it is possible to choose several types of kernel functions
including linear, polynomial, RBFs, MLPs with one hidden layer and splines, as long
as the Mercer condition is satisfied. Furthermore, bounds on the generalization error
are available from statistical learning theory [7, 17, 18] which is expressed in terms of
the VC (Vapnik- Chervonenkis) dimension. An upper bound on this VC dimension
can be computed by solving another QP problem.

In this article, we mix SVM and PSO and with a new algorithm we study the
problem of Narendra and Mukhopadhyay in 1997 which was solved by Suykens and
his colleagues by LS-SVM [16]. Consider the following nonlinear system where x1,k
and x2,k are the state variables and uk is the control variable: x1,k+1 = 0.1x1,k + 2

(
uk+x2,k

1+(uk+x2,k)2

)
x2,k+1 = 0.1x2,k + uk

(
2 +

u2
k

1+x2
1,k+x

2
2,k

) (1.1)

We are considering a new method in this paper to give a better answer.
This paper is organized as follows:
In section 2, the N-stage optimal control problem is presented.
In section 3, some works on support vector machines are reviewed.
In section 4, PSO algorithm is studied.
In section 5, optimal control by support vector machines is studied.
In section 6, combining particle swarm algorithm with support vector machine is
discussed.
In section 7, an example is presented.

2. The N-stage optimal control problem

In the N-stage optimal control problem is given one aims at solving the following
problem is given [10]

min : ΨM (xi, ui) = τ(xM+1) +

M∑
i=1

f(xi, ui) (2.1)

s.t xi+1 = ϕ(xi, ui), i = 1, . . . ,M.

where τ and f are positive definite functions. We will consider the quadratic cost

f(xi, ui) = xTi Pxi + uTi Y ui, τ(xM+1) = xTM+1PxM+1 (2.2)
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with P = PT > 0, Y = Y T > 0.
The functions τ , f and ϕ are twice continuously differentiable. xi ∈ Rn denotes

the state vector, ui ∈ R is the input of the system. This article is not limited to
single-input systems.

In order to find the optimal control law, one constructs the Lagrangian

H(xi, ui, λi) = ΨM (xi, ui) +

M∑
i=1

λTi [xi+1 − ϕ(xi + ui)] (2.3)

where Lagrange multipliers λi ∈ Rn. The conditions for optimality are given [13]
∂HM

∂xM+1
= ∂f

∂xi
+ λi−1 −

(
∂ϕ
∂xi

)T
λi = 0, i = 2, . . .M

∂HM

∂xM+1
= ∂r

∂xM+1
+ λM = 0,

∂HM

∂ui
= ∂f

∂ui
− λTi

∂ϕ
∂ui

= 0, i = 1, . . .M
∂HM

∂λi
= xi+1 − ϕ(xi, ui), i = 1, . . .M

(2.4)

For the case of a quadratic cost function subject to linear system dynamics with
infinite time horizon, the optimal control law can be represented by full static state
feedback control. However, in general, the optimal control law cannot be represented
by state feedback as the optimal control law may also depend on the co-state. Never-
theless, one is often interested in finding a suboptimal control strategy of this form.
In the context of neural control [11, 12, 15].

ui = k(xi), (2.5)

where k is a parametrized neural network architecture. In this paper, we will also
consider a control law given in Eq.(2.5), to support vector machines. Because SVM
methodology is not a parametric modeling approach, this is less straightforward in
comparison with standard neural networks such as MLP’s and RBF’s.

3. The support vector machine

SVM algorithm was presented early in 1963 by Vladimir Vapnik. In 1995, he and
his colleague extended the non-linear mode. SVM has very valuable properties which
makes it suitable for pattern recognition.

SVM does not have local optimization problem in training. The category is built
with maximum extension. The structure and topology are defined to optimize and the
form of differential non-linear functions are calculated easily by using the concept of
Hilbert spaces’ domestic multiplication. This is a supervised learning method used for
classification and regression. This is a relatively new method. Compared to the older
methods, the new method has been shown to have a good performance in recent years.

3.1. Reasons to use SVM. With a little precision in training algorithm, it seems
that one of the problems of such systems is on the one hand the large number of
samples for training and on the other hand the increased number of features to express
the sample or in other words the increased dimension. So for having the desired
output, we need a classifier which can support a large set of training data with a lot
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of dimensions. Large dimensions in a classification create a lot of parameters (when
dimensions are increased, the covariance matrix becomes larger and more parameters
must be calculated) that is difficult to estimate.

3.2. The users of SVM. The SVM algorithm is classified as the pattern recognition
algorithm. SVM algorithm can be used wherever detecting patterns or categories of
objects in specific classes is needed including risk analysis system, control plane with-
out a pilot, track deviation plane, route simulation, automatic guidance system for
cars, quality in section systems, analysis of welding quality, quality forecast, quality
analyzes computer, analysis of mill operations, chemical analysis of product design,
analysis of maintenance, proposal, management and planning, chemical process, dy-
namic control system, the design of artificial limbs, optimizing the time of organ
transplantation, reducing hospital costs, improving the quality of hospitals, testing
the emergency room, oil and gas exploration, automatic route control devices, robots,
cranes, visual systems, voice recognition, concisely speech, classifieds sound, market
analysis, consulting systems, calculating the cost of inventory, concise information
and images, automatic information services, customer payment processing systems,
truck brake detection systems, vehicle scheduling, routing systems, classifieds charts
customer/market, drug recognition, signature verification, the loan risk estimation,
spectral identification, investment appraise land so on [14, 15, 16].

3.3. Advantages and disadvantages.

1: Designing categories with maximum extension
2: Reaching the global optimal of cost function
3: Automatic determination structure and optimal topology of classifier
4: Modeling the non-linear differentiation function by using non-linear kernel

and concept of domestic multiplication in Hilbert spaces
5: Training is relatively simple
6: Unlike neural networks, it does not exist in local maximum
7: For high-dimensional data almost works good
8: Reconciliation between the complexity of product categories and the error is

clearly controlled
9: Needs a good kernel function and select parameter C.

3.4. Support vector machine by linear classifier with linearly separable
data:[14]. Suppose that we have the number of feature vectors or training patterns
{x1, . . . , xM} and each of them is the m-dimensional feature vector and had labeled
yi, yi ∈ {−1,+1} . The purpose of solving optimization problem is in two classes.
Suppose that we separate two classes with the differentiate function f(X) and space
H with the following equation.

H : wx+ b = 0

f(x) = wTx+ b (3.1)

If two examples of two classes with the names of (+1) and (−1) are expressed,
these spaces can be considered as separate positive samples from negative samples.

So the problem becomes minimized for 1
2w

Tw = 1
2‖w‖

2.
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So actually design is a hyper plane classification with border optimal which will be
as follows:

min
1

2
‖w‖2

s.t yi(WXi + b) ≥ 1, i = 1, 2, . . .M. (3.2)

Clearly, we have:w = [w1, w2, . . . , wm]T and ‖w‖2 = wTw The above problem can
be solved by quadratic programming (QP) optimization techniques. To solve it, this
problem is written in the form of the following Lagrangian function and the Lagrange
multipliers are obtained.

L(w, b, α) =
1

2
wTw −

M∑
i=1

αi{yi(wTxi + b)− 1}. (3.3)

The problem should be minimized in relation to b, w and αi variables should be
maximized. We should solve this problem by eliminating w, b variables.

So the problem is a maximization problem. It will be based on αi. we solve this
problem. To be L(w, b, α) the answer of the question, this answer must be true in
KKT conditions and in the parts of the answer, L derive in relation to (α, b, w) is
equal to. By equating the derivative to zero, we get the following equation:

L(w,b,α)
∂w = 0→ w =

∑M
i=1 αiyixi,

L(w,b,α)
∂b = 0→ w =

∑M
i=1 αiyi = 0.

(3.4)

By replacing w in the eq.(3.3), dual optimization issue will occur.
This formula of SVM is called difficult margin SVM. Because conducts classification

completely and without any breach.
After solving the dual optimization issue, we reach to the Lagrangian coefficients.

In fact, each of the coefficients αi is corresponding to one of the patterns xi that
corresponds to αi > 0 coefficients (positive) and are called support vectors sνi. [19]

The weight vector and b are obtained from the following relationship:

w =
∑Msv

i=1 αiyisvi,

bj = yj −
∑Msv

i=1 αiyisvisvj ,

b = 1
Msv

∑Msv

j=1 bj .

Distinction function will be classified by an input x pattern which is as follows:

f(X) = sign

(
Msv∑
i=1

αiyiXsvi + b

)
. (3.5)

The linear classifier support vector machine with linearly in separable data (integral
mode):

In the previous section, we assumed a linear separation training data. When data
training does not mean linear separation, it enters into a different class. In fact, there
was an error, there is no feasible solution. Here we apply the extension of support
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vector machine for the inseparable state. Now, we consider the case that we are still
looking for a linear separating hyper plane with the difference that the separating
hyper plane does not fully apply in inequality. To check this state, we define a new
variable called Deficiency variable εi (slack variable) which represented the deviation
from inequality (3.2). So the purpose of the algorithm is the maximum margin to
define the payment of the cost appropriate to the deviation of inequality (3.2). It
is clear that as long as the total amount of variables increases, the more error will
occur which is far from optimal. The mathematical expression is in the form of the
following:

min : Q(w, b, ε) =
1

2
‖w‖2 + C

M∑
i=1

εpi ,

s.t yi(w
Txi + b) ≥ 1− εi, εi ≥ 0, i = 1, . . . ,M, (3.6)

where ε = (ε1, . . . , εM )T and c are margin parameters that determine the difference
between the maximum margin and minimum error the classification.

To solve the equation, Lagrange multipliers are used

Q(w, b, ε, α, β) = ‖w‖2
2 + C

∑M
i=1 εi − αi

(
yi(w

Txi + b)− 1 + εi
)
− βiεi,

∂Q(w,b,ε,α,β)
∂w = 0,

∂Q(w,b,ε,α,β)
∂b = 0,

∂Q(w,b,ε,α,β)
∂ε = 0,

αi
(
yi(w

Txi + b)− 1 + εi
)
, i = 1, . . .M,

βiεi = 0, i = 1, . . .M,

αi ≥ 0, βi ≥ 0, εi ≥ 0, i = 1, . . .M.

Respectively, we take partial derivatives in relation to w, b, ε.
w =

∑M
i=1 αiyixi,∑M

i=1 αiyi = 0,

αi + βi = C, i = 1, . . . ,M.

Replace and dual is written as follows:

max Q(α) =

M∑
i=1

αi −
1

2

M∑
i=1

M∑
j=1

αiαjyiyjx
T
i xj

s.t

M∑
i=1

αiyi = 0; 0 ≤ αi ≤ C, i = 1, . . . ,M. (3.7)
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This is the results that we mentioned below [20]

1: If αi = 0 then εi = 0 in this case xi categorized.
2: If 0 < αi < C then yi(w

Txi + b) − 1 + εi = 0 and εi = 0 in this case
yi(w

Txi + b) = 1 and xi supportive vector. The support vectors with 0 <
αi < C is called a support vector boundless.

3: If αi = C then yi(w
Txi + b) − 1 + εi = 0 and εi = 0. So xi is a support

vector. The support vectors with αi = C εi ≥ 0, xi is classified and if εi ≥ 0,
is a typed text or a website address or a translated document. It will not be
classified.

4. Particle swarm optimization algorithm

Particle swarm optimization algorithm or PSO, also known as the swarm, is one of
the most powerful and popular algorithms for optimization. This is mostly because the
relatively high rate of convergence is used. These algorithms are a little old, but were
successful in many application areas, older algorithms, such as genetic algorithms,
surpass and were considered as the first choice.

PSO is one of the optimization methods inspired by nature which has been devel-
oped for solving numerical optimization with very large search space without having
to inform the gradient of the objective function. This was invented the first time in
1995 by two people named Kennedy and Eberhart. At the beginning, it was used to
simulate the mass flight of birds. However, after the initial simple algorithm it was
observed it was actually a type of optimization algorithm and for this reasons, it can
also be used to solve other optimization problems.

The algorithm is inspired by the lives of a group of animals, including insects (such
as ants, bees, etc.), birds and fish. To solve an optimization problem, a population
of candidate solutions moves accidentally in the domain of problem using a simple
formula, and explores it with aim of finding the global optimal answers. In PSO
algorithm, each of these candidate answers is called a particle, and each particle flies
with one of the birds in a flock as a corresponding answer. PSO algorithm is similar
to genetic algorithms [1, 3].

PSO algorithm is similar to genetic algorithm in the sense that a population of
solutions is randomly generated by the algorithm and is looking for the answer by
moving through the problem domain. However, unlike genetic algorithm, in the PSO
algorithm a random velocity is assigned to each potential answer of optimization
problem (in fact to each particle) in a way that in each repetition, each particle
moves (or idiomatically flies) based on its velocity in the problem domain. Also,
unlike genetic algorithm, in PSO algorithm, the best obtained answer for optimization
problem must be stored by each of the particles (from the beginning of the program
until the last repetition). Like genetic algorithm, PSO algorithm is also inherently
suitable for solving the unconstrained maximization in continuous mode.

However, by making changes in the definition method of the objective function, it
can be used for solving the optimization problems (including minimization or max-
imization) in constrained (continuous) mode. PSO algorithm does not need any
combination of practical information from optimized function and only uses basic
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mathematical operators in order to adjust it to the minimum parameters required.
In this method, minimum parameters are needed for adjustment. Furthermore, the
executive function of algorithm will not be lost when the dimensions of research space
are developed. PSO method is one of the new species of evolutionary methods whose
application potential in optimization problems with continuous functions has been
proved. In this way, move toward the optimal point, based on two data sets is done.
One of the best-point of information obtained from each of the initial population
[2, 3].
An explanation on the PSO algorithm:

First, in the search space, a number of points are selected as the initial population.
Points in different categories are based on Euclidean distance. For example i category
includes three searching factors. The function value of each available factor in the
search space is calculated and in each category, depending on the intended purpose,
it is determined in which spot the value is minimized or maximized. Therefore, the
best spot is identified for each category.

On the other hand, by accessing the previous information, each factor is able
to locate the best spot that has been discovered so far. Thus, the optimal point
information of each category and agent is specified. The first knowledge concerns
the global optimal point in each group and the second knowledge concerns the local
optimal point.

With this information, the motion vector is given to each factor. This method is
not affected much by the size and nonlinear problem and has good results in static
environments, noise and environments which are continuously changing. Simplicity
of implementation, lack of commitment to the continuity of the objective function
and the ability to adapt to a dynamic environment makes the algorithm useful in
many different areas. Accordingly, it can be concluded that the targeted nature of
the behavior of particles in PSO method is based on two principles [4].

These two principles are:

i . Individual knowledge: Each individual moves to the best of his knowledge
to gain new knowledge.

ii . Social science: The person in terms of his relationship with the community
uses the best information for continuing the movement.

In Article ii, Individual relationship with the community is important to the topology
structure of the community, based on this, different topologies are defined for the
society. This algorithm has advantages and disadvantages which are mentioned below
[3, 4].

Advantages algorithm include the following:

1: This algorithm is compared to other less regulated parameters optimized al-
gorithms.

2: Implementation is easy and it has simple concepts.
3: It can be used effectively for various issues.
4: It is also used for discrete states and the continuum concepts.
5: The algorithm’s performance will not disappear with the growth of research

space.
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6: The above algorithm optimization function application does not require any
combination of information and only uses basic math operators.

7: It does not require heavy mathematical operations such as gradients.
8: It is a population-based approach.
9: The partnership uses particles.

According to mathematic law, in order to search for new solutions, the particle swarm
optimization is valued randomly in search and movement space through D space.
Assume that xik and νik are respectively situation and particle speed of i in search
space in k repetition then speed and situation of these particles will be updated in
repetition (k + 1) therefore, we will have following equations:{

vTi+1 = w.vTk + c1.r1(pik − xik) + c2.r2.(p
g
k − xik),

xik+1 = xik + vik+1.

where r1 and r2 are the random number between 0 and 1 and c1 and c2 are fixed,
pik shows the best situation of i particle and pgk relates to the best situation in the
swap to k repetition.

One of the principle steps of particle swap optimization can be summarized as a
pseudo code in algorithm 1.

Algorithm 1: Pseudo code of particle swarm optimization (PSO).

1: Objective function: f(x), x = (x1, x2, , xD);
2: Initialize particle position and velocity for each particle and set k = 1;
3: Initialize the particle’s best known position

to its initial position i.e. P ik = Xi
k; 4: do;

5: Update the best known position (P ik) of each particle
and swarm’s best known position (P gk );

6: Calculate particle velocity according to the velocity equation;
7: Update particle position according to the position equation;
8: While maximum iterations or minimum error criteria is not attained.

5. Optimal control by support vector machines

Now, we are concerned with putting the training data {xi, yi}pi=1 in equation to
the state space and action space in Eq. (2.1), {xi, ui}Mi=1 . We state the following
N-stage optimal control problem:

min Ψ(xi, ui, w, ei) = ΨN (xi, ui) +
1

2
wTw +

1

2

M∑
i=1

e2i ,

s.t xi+1 = ϕ(xi, ui), i = 1, . . . ,M, (5.1)

and the control law

ui = wT g(xi) + ei, i = 1, . . . ,M, (5.2)
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where ΨM is defined in Eq. (2.1), w ∈ Rnf , f, g : R→ Rnf and nf is the number
of hidden units of g. The actual control signal applied to be wT g(xi). In the linear
control case has g(xi) = xi with nf = n.

In the following, we will use RBF kernels. In the support vector method, applying
the original Mercer’s condition is essential such that one does not have to construct
g. Although the use of this kernel function will be proposed, it can assess g explicitly,
similar to the multilayer perceptron classifiers which is shown [9]. For the RBF case,
Eq. (5.2) converts then

ui =

nf∑
r=1

wr exp

(
− 1

β2
‖xi − ar‖22

)
+ ei, (5.3)

where ar ∈ Rn selection centers and β selection is constant. For example the set
{ar}

nf

r=1 equal to {xi}Mi=1. In standard SVM theory for static function estimation
problems β can be selected so as to minimize an upper bound on the generalization
error. These bounds are not applicable in the context of SVM control due to the
fact that the input patterns to the activation function are not independent from each
other. Hence β should be chosen as hoc or could be taken as an additional unknown
within the cost function.

In order to find the optimal control law we construct the Lagrangian

Ψ(xi, ui, w, ei, λi, γi) = ΨM (xi, ui) +
1

2
wTw +

1

2

M∑
i=1

e2i +

M∑
i=1

λTi [ui − wT g(xi)− ei].

The conditions for optimality are

∂H
∂xi

= ∂f
∂xi

+ λi−1 −
(
∂ϕ
∂xi

)T
λi − γi ∂

∂xi
[wT g(xi)] = 0, i = 2, . . . ,M,

∂H
∂xM+1

= ∂r
∂xM+1

+ λM = 0,

∂H
∂ui

= ∂f
∂ui
− λTi

∂ϕ
∂ui

+ γi = 0, i = 1, . . . ,M,

∂H
∂w = w −

∑M
i=1 γig(xi) = 0,

∂H
∂ei

= αei − γi = 0, i = 1, . . . ,M,

∂H
∂λi

= xi+1 − ϕ(xi, ui), i = 1, . . . ,M,

∂H
∂γi

= ui − wT g(xi)− ei = 0, i = 1, . . . ,M.

For RBF kernels

∂

∂xi
[wT g(xi)] = −2

∑
r

wr exp(− 1

β2
‖xi − ar‖22)

xi − ar
β2

. (5.4)
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The set of nonlinear

G1 = (xi, xM+1, ui, w, ei, λi, γi) = 0, i = 1, , . . . ,M. (5.5)

With given x1 and can numerically solve the unknown variables. In Appendix A a
formulation without ei variables is given. In comparison with function estimation or
classification problems, one looses the advantage of solving a quadratic program or
a linear least squares problem. Nevertheless, one is still able to exploit some of the
interesting SVM features.

As in SVM theory, Mercer’s condition can be replaced w =
∑
i γig(xi). in the

equations.
For kernels satisfying Mercer’s condition

K(xi, xj) = g(xi)
T g(xj). (5.6)

For RBF kernels [5, 7, 17]

K(xi, xt) exp(−ϑ‖xi − xt‖22), (5.7)

ν is a positive real constant

G2 = (xi, xM+1, ui, λi, γi) = 0, i = 1, , . . . ,M. (5.8)

By Mercer’s condition have [6]

∂f
∂xi

+ λi−1 − ( ∂ϕ∂xi
)Tλi − γi

∑M
t=1 γt

∂K(xi,xt

∂xi
= 0, i = 2, . . . ,M,

∂r
∂xM+1

+ λM = 0,

∂f
∂ui
− λTi

∂ϕ
∂ui

+ γi = 0, i = 1, . . . ,M,

xi+1 − ϕ(xi, ui) = 0, i = 1, . . . ,M,

ui −
∑M
t=1 αtK(xt, xi)− γi

α = 0, i = 1, . . . ,M.

(5.9)

For RBF kernels

∂K(xi, xt)

∂xi
= −2ϑ(xi − xt) exp(−ϑ‖xi − xt|22). (5.10)

The actual control signal applied to the plant becomes

ui =

M∑
t=1

γtK(xt, xi), (5.11)

where {xt}Mt=1 and {γt}Mt=1 are obtained from solving the set of nonlinear Eq. (5.9)
and xi is the actual state vector at time i. The data {xt}Mt=1 are used as support
vector data for the control signal. Furthermore, note that ei was considered equal to
zero in Eq. (5.9).
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6. Combine PSO with SVM

According to the algorithm PSO, each particle has two elements: factors position
and the objective function. In the proposed algorithm, the position of each particle is
the starting point. We’re looking for an optimal position on the issue. To obtain value
of objective function using the combination method of optimal control and support
vector machine, the unknown factors and coefficients are calculated. Then by replac-
ing it in the objective function, the costs are calculated. With the help of algorithm
PSO, these steps are calculated for each particle, and finally the optimum starting
point is achieved. As a result, the optimal starting point is placed in combination of
SVM and optimal control, Finally, we obtain the optimal starting point. To solve the
problem of optimal control using SVM, numerical methods using FMINCON function
are used in MATLAB software.

Algorithm 2: Combine PSO with SVM.

1: Objective function: Optimal Control By LSSVM, x = x1, x2, . . . , xD;
2: Initialize particle position and velocity for each particle and set k = 1.
3: Initialize the particle’s best known position

to its initial position i.e. P ik = Xi
k.

4: Do
5: Update the best known position P ik of each particle and

swarm’s best known position P gk .
6: Calculate particle velocity according to the velocity equation.
7: Update particle position according to the position equation.
8: While maximum iterations or minimum error criteria is not attained.

7. Simulation example

Consider the following nonlinear system: [16] x1,i+1 = 0.1x1,i + 2
(

ui+x2,i

1+(ui+x2,i)2

)
,

x2,i+1 = 0.1x2,i + ui

(
2 +

u2
i

1+x2
1,i+x

2
2,i

)
.

(7.1)

We consider a state vector tracking problem with{
f(xi, ui) = (xi − xri )TP (xi − xri ) + uTi Y ui,
γ(xN+1) = (xN+1 − xrN+1)TP (xN+1 − xrN+1),

(7.2)

where xri is the reference trajectory. We aim at following these steps the first
state variable and choose P = diag{1, 0.001}, R = 1 for xri =

[
sin( 2πk

20 ); cos( 2πk
20 )
]

with i = 1, . . . , N and N = 20. The given initial state is x1 = [0; 0]. As control
law is taken wT g([xi;x

r
i ]). In Figure 1, simulation results for method (5.9) show

that Mercer’s conditions are useful. The set of nonlinear equations was solved using
Matlab’s optimization toolbox (function leastsq) with unknowns xi, ui, λi, γ, β with
α = 100.
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The unknowns were randomly initialized with zero mean and standard devia-
tion 0.3. The plots show the simulation results for the closed-loop system x̂i+1 =

ϕ
(
x̂i,
∑N
t=1 αtK(xt, x̂i)

)
with RBF kernel. The controller is generalizing well with

respect to other initial conditions where the origin (for which it has been trained) and
time horizon for N = 20. The method (5.10) without the use of Mercer’s condition
gave similar results by taking the centers {cr} equal to {xi}.

Figure 1. optimal control by SVM-PSO for Eq (7.1)

8. Conclusion

In this paper we introduced the use of combine support vector machines with
particle swarm algorithm for solving optimal control problems. It is shown that this
method is valuable in order to solve up timing problems of engineering design.
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