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Abstract This paper deals with the numerical solution of a class of reaction diffusion equations
arises from ecological phenomena. When two species are introduced into unoccu-

pied habitat, they can spread across the environment as two travelling waves with
the wave of the faster reproducer moving ahead of the slower.The mathematical
modelling of invasions of species in more complex settings that include interactions
between species may restricts to pairwise interactions. Three mathematical models

of invasions of species in more complex settings that include interactions between
species are introduced. For one of these models in general form a computational
approach based on finite difference and RBF collocation method is established. To
numerical solution first we discretize the proposed equations by using the forward

difference rule for time derivatives and the well known Crank-Nicolson scheme for
other terms between successive time levels. To verify the ability and robustness of
the numerical approach, two test problems are investigated.
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1. Introduction

Today the development of mathematical models is of vital importance for under-
standing and management of ecological processes. Identifying the complex relation-
ships between ecological patterns and processes is a crucial task [1, 2, 3, 4, 7, 8, 11,
14, 19]. Qualitatively and quantitatively, mathematical models play a vital role in
analysing ecological systems.

Many ecological phenomena may be modelled using apparently partial differential
equations (PDE’s) involving space and possibly time. Using these models allows
modellers to well understand the complicate phenomena and to incorporate both
temporal and spatial processes simultaneously into equations governing population
dynamics [1, 3, 4, 8]. It is becoming clear that the simplest models cannot capture
the rich variety of dynamics observed in natural systems.

On the other hand the PDEs that are sufficiently realistic to be used in ecological
models are usually very complex and difficult to solve [1, 3, 8].

Reaction-diffusion equations are widely used as models for spatial effects in ecol-
ogy. They support three important types of ecological phenomena: the existence
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of a minimal patch size necessary to sustain a population, the propagation of wave-
fronts corresponding to biological invasions, and the formation of spatial patterns in
the distributions of populations in homogeneous environments [3, 8]. These models
emphasize that simple organism movement can produce striking largescale patterns
in homogeneous environments and that in heterogeneous environments, movement of
multiple species can change the outcome of competition or predation [3, 8].

The first formal mathematical attempts to model ecological invasions via reaction-
diffusion equations were made by Skellam ([19]) who modelled the expansion of
muskrat populations in Europe. His model of invading animals with diffusion move-
ment and malthusian growth predicts that the area occupied by an invader will
increase linearly with time [3, 8]. Reaction-diffusion invasion models exhibit more
striking behavior when population growth is not exponential but instead is regulated
by density-dependent mortality. These models produce travelling waves of invaders
that spread out from their ”beachhead” at a constant velocity and shape. Travelling
waves are a common feature of many reaction-diffusion models [4]. A final refinement
in invasion theory involves the relaxation of restrictions on population growth func-
tions, by the addition of an Allee effect whereby at low densities population growth
is negative [8]. Models involving population growth with an Allee effect plus diffusive
dispersal also produce travelling waves of invaders [1, 3, 8, 19].

Some classes of reaction-diffusion equations may be analyzed by means of methods
from the theory of partial differential equations and dynamical systems. But usually
finding the exact solution of nonlinear PDEs is a complex task and in a lot of nonlinear
PDE problems, one can not solve them analytically. In recent years considerable
studies has been done in the numerical solution of nonlinear PDEs. The investigation
of exact and numerical solutions for nonlinear partial differential equations (NLPDEs)
plays an important role in the study of nonlinear physical phenomena. These solutions
when they exist can help one to well understand the mechanism of the complicated
physical phenomena and dynamical processes modelled by these nonlinear evolution
equations. In this paper an approximate solution for a system of nonlinear reaction-
diffusion models is presented using radial basis functions (RBF) collocation method
of lines. Recently using the RBFs has drawn attention of many researchers in science
and engineering as a truly meshless method for approximating the solutions of linear
and nonlinear functional equations such as PDEs. Several works have been adopted
in this field in the literature [5, 6, 9, 10, 12, 13, 15, 16, 17, 20, 21]. Numerical studies
illustrates the advantages of using this mesh-less methods to solve initial and/or
boundary value problems [13, 16]. In comparison with the classical methods such as
finite difference or finite element methods for solving PDE’s, the RBF methods do not
depend on computational grids or meshes and are very simple to implement [10, 13].
In addition RBF methods usually possess superior rate of convergence [9, 12, 21].
The large number of recent research works on mesh-less methods especially RBF
collocation method for solving nonlinear PDE’s demonstrates the popularity that the
methods have recently enjoyed.

This paper is organized as follows:
In section 2 some mathematical models of our interest phenomena are reviewed.

Section 3 contains a general form of one the models introduced in section 2 and a
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numerical procedure based on finite difference and RBFmethods to solve this problem.
In section 4 some test problems are considered and analyzed. Section 5 contains the
conclusions.

2. Problem formulation

In this section we review three nonlinear reaction-diffusion models proposed in [8].
According to [8], when two species are introduced into unoccupied habitat, they can
spread across the environment as two travelling waves with the wave of the faster
reproducer moving ahead of the slower. The mathematical modelling of invasions
of species in more complex settings that include interactions between species may
restricts to pairwise interactions. A reasonable model for the spread of two competing
species can derived as [8]

∂u
∂t = Du

∂2u
∂x2 + (ru − αuuu− αuvv)u,

∂v
∂t = Dv

∂2v
∂x2 + (rvαvvv − αvuu)v,

(2.1)

where u and v are the densities of the two species, Du and Dv are species-specific
diffusion rates, ru and rv are species-specific intrinsic rates of increase, and the α,s
represent interspecific and intraspecific competition coefficients.

On the other hand the Lotka-Volterra predator-prey models with diffusion are
represent similar mathematical formulation to predator-prey interactions [8, 4]. An
important class of these models may be derived as [8]

∂u
∂t = Du

∂2u
∂x2 + ru(1− u

K )− αuvuv,

∂v
∂t = Dv

∂2v
∂x2 − µv + αvuuv,

(2.2)

where µ the per capita mortality rate of predators in the absence of prey, αuv rep-
resents the rate at which predators consume prey, and αvu represents the rate at
which predators convert prey into new predators. It should be pointed out that if
both predator and prey colonize an environment that is initially empty, their spread
cannot be mathematically represented by a travelling wave and the spread in this case
does form wave-like patterns [3, 4, 8]. But if the prey already exists uniformly across
the environment and a predator is released, the situation is analogous to the spread
of disease through susceptible hosts, and travelling waves of predator and prey will
ensue [4, 8].

For investigating the influence of patch size and geometry on the population dynam-
ics of organisms living within habitat patches, the proposed models may be considered
in a more general form named the cross-diffusion model as follows [8]

∂u
∂t = Du

∂2u
∂x2 + ru(1− u

K ) + ν(u),

∂v
∂t = Dv

∂2v
∂x2 − µv + ω(u),

(2.3)

where ν(u) and ω(u) denote the growth functions and can be positive or negative
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functions. This model describes organisms that avoid each other by increasing their
dispersal rate in response to both conspecifics and nonconspecifics [8].

For more details about the physical interpretation of these models, we refer the
readers to [1, 3, 8] and the references therein. In sequence we focus on finding the
numerical solution for the model (2.1). Similar procedures can be developed for
solving the equations (2.2) and (2.3).

3. Method of solution

3.1. Discretization of the main problem. In this section a numerical procedure is
established for solving the equation (2.1). To this end first we consider this equation
in more general form as an initial-boundary value problem as follows

∂u

∂t
= Du

∂2u

∂x2
+ (ru − αuuu− αuvv)u+ F (x, t), (x, t) ∈ Ω, (3.1)

∂v

∂t
= Dv

∂2v

∂x2
+ (rvαvvv − αvuu)v +G(x, t), (x, t) ∈ Ω, (3.2)

u(x, 0) = f(x), (3.3)

v(x, 0) = g(x), (3.4)

c1(t)u(0, t) + c2(t)ux(0, t) = φ1(t), (3.5)

c3(t)u(1, t) + c4(t)ux(1, t) = ψ1(t), (3.6)

c5(t)v(0, t) + c6(t)vx(0, t) = φ2(t), (3.7)

c7(t)v(1, t) + c8(t)vx(1, t) = ψ2(t), (3.8)

where Ω = (0, 1) × (0, 1). In this problem all functions in the main equations and
conditions are considered as known L2 functions. To numerical solution first we dis-
cretize the equations (3.1) and (3.2) by using the forward difference rule for time
derivatives and the well known Crank-Nicolson scheme for other terms between suc-
cessive time levels n and n+1. Suppose ∆t denotes the time step size, tn = t0+n∆t,
Un = u(x, tn), V

n = V (x, tn), F (x, tn) = Fn and G(x, tn) = Gn. Discretizing these
equations yields

Un+1 − Un

∆t
= Du

Un+1
xx + Un

xx

2
+ ru

Un+1 + Un

2
− αuu

U2n+1
+ U2n

2

−αuv
(UV )n+1 + (UV )n

2
+ Fn, (3.9)

V n+1 − V n

∆t
= Dv

V n+1
xx + V n

xx

2
+ rvαvv

V 2n+1
+ V 2n+1

2

−αvu
(UV )n+1 + (UV )n+1

2
+Gn. (3.10)

In these equations one may linearize the nonlinear terms by using the following formula
which readily obtained by applying the Taylor expansion [18]

(UV )n+1 = Un+1V n + UnV n+1 − UnV n. (3.11)
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Using the formula (3.11), the equations (3.9) and (3.10) can be rewritten as

2Un+1 −Du∆tU
n+1
xx − ru∆tU

n+1 + 2αuuU
nUn+1

+αuv∆t(U
nV n+1 + V nUn+1)

= (2 + ru∆t)U
n +Du∆tU

n
xx + Fn, (3.12)

2V n+1 −Dv∆tV
n+1
xx − 2∆trvαvvV

nV n+1

+αvu∆t(U
nV n+1 + V nUn+1) = 2V n +Dv∆tV

n
xx +Gn. (3.13)

3.2. Meshless numerical approach. In this section we demonstrate the computa-
tional aspects of a meshless method based on collocation with radial basis functions
to solve the problem (3.12)-(3.13) with respect to the initial an boundary conditions
(3.3)-(3.8).

Let us choose the collocation points xi, i = 0, 1, ..., N over [0, 1] such that xi, i =
1, ..., N − 1 are interior points and xi, i = 0, N are boundary points and then apply
the following approximation

u(x, tn) = Un ≃
N∑
j=0

λnj ϕ(rj), v(x, tn) = V n ≃
N∑
j=0

γnj ϕ(rj), (3.14)

where n is the number of time iterations, N is the number of the data points, λnj and
λnj , j = 0, 1, ..., N, are the unknown coefficients to be determined later, rj = |x− xj |
is the Euclidean norm between points x and xj . The function ϕ(r) may considered
as a combination of the RBFs ϕ1(r) (MQ) and ϕ2(r) (IMQ) which defined as

ϕ(r) = θϕ1(r) + (1− θ)ϕ2(r), (3.15)

where ϕ1(r) =
√
r2 + ε2, ϕ2(r) =

1√
r2+ε2

, θ is a control parameter, θ = 0, 1 and ε is

the shape parameter of these RBFs.
The first and second derivatives of the approximate solutions can be found as

ux(x, tn) = Un
x ≃

N∑
j=0

λnj
d

dx
ϕ(rj), uxx(x, tn) = Un

xx ≃
N∑
j=0

λnj
d2

dx2
ϕ(rj),

vx(x, tn) = V n
x ≃

N∑
j=0

γnj
d

dx
ϕ(rj), vxx(x, tn) = V n

xx ≃
N∑
j=0

γnj
d2

dx2
ϕ(rj).

(3.16)

To determine the interpolation coefficients λnj and γnj , j = 0, 1, ..., N the collocation
method is used. For each time iteration n = 1, 2, ..., one needs to determine the
2N + 2 unknown coefficients from the boundary conditions given at x0 and xN and
collocating Un and V n at the remaining N − 1 distinct uniformly distributed interior
points xi in [x1, xN−1] as

u(xi, tn) = Un
i ≃

N∑
j=0

λnj ϕ(rij), v(xi, tn) = V n
i ≃

N∑
j=0

γnj ϕ(rij), (3.17)
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where rij = |xi − xj |. Substituting equations (3.17) into equations (3.12) and (3.13)
at the collocation points xi and using the boundary conditions yields the following
linear equations

(2− ru∆t+ 2∆tαuu

N∑
j=0

λnj ϕ(rij) + ∆tαuv

N∑
j=0

γnj ϕ(rij))
N∑
j=0

λn+1
j ϕ(rij)

−Du∆
N∑
j=0

λn+1
j ϕ′′(rij) + (∆tαuv

N∑
j=0

λnj ϕ(rij))
N∑
j=0

γn+1
j ϕ(rij)

= Fn
i +Du∆

N∑
j=0

λnj ϕ
′′(rij) + ru∆t

N∑
j=0

λnj ϕ(rij), i = 1, ..., N − 1, (3.18)

(2− 2rv∆tαvv

N∑
j=0

γnj ϕ(rij) + ∆tαvu

N∑
j=0

λnj ϕ(rij))
N∑
j=0

γn+1
j ϕ(rij)

−Dv∆t
N∑
j=0

γn+1
j ϕ′′(rij) + (∆tαvu

N∑
j=0

γnj ϕ(rij))
N∑
j=0

λn+1
j ϕ(rij)

= Gn
i +Dv∆t

N∑
j=0

γnj ϕ
′′(rij), i = 1, ..., N − 1, (3.19)

and

c1(tn+1)
N∑
j=0

λn+1
j ϕ(r0j) + c2(tn+1)

N∑
j=0

λn+1
j ϕ′(r0j) = φ1(tn+1), (3.20)

c3(tn+1)
N∑
j=0

λn+1
j ϕ(rNj) + c4(tn+1)

N∑
j=0

λn+1
j ϕ′(rNj) = ψ1(tn+1), (3.21)

c5(tn+1)

N∑
j=0

γn+1
j ϕ(r0j) + c6(tn+1)

N∑
j=0

γn+1
j ϕ′(r0j) = φ1(tn+1), (3.22)

c7(tn+1)
N∑
j=0

γn+1
j ϕ(rNj) + c8(tn+1)

N∑
j=0

γn+1
j ϕ′(rNj) = φ1(tn+1). (3.23)

Equations (3.18) and (3.23) denote a system of (2N + 2)(2N + 2) linear equations
which can be written as

AΛn+1 = b, (3.24)

where

Λn+1 = [λn+1
0 , λn+1

1 , · · · , λn+1
N , γn+1

0 , γn+1
1 , · · · , γn+1

N ], (3.25)

and the elements of the coefficient matrix A and the right hand side vector b can be
easily read from the equations (3.18)-(3.23).
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4. Numerical Experiments

In this section, the approximate results of the model equations presented in Section
2, obtained by using MQ and IMQ RBFs are discussed. To show the ability and
effectiveness of the proposed method, two numerical examples are investigated. In
these numerical examples to verify the accuracy of the numerical results, we use
the discrete L2 and L∞ error norms by using differences between the analytical and
numerical results at the node points. For test problems whose analytical solution
is known, the following error norms will be used to measure the error between the
analytical and numerical solutions

L2 =

√√√√h
N∑
j=0

|U j
exact − U j

appr|2, (4.1)

L∞ = max
j

|U j
exact − U j

appr|, (4.2)

at the data points xj where h = 1
N .

Recent achievements regard to the RBFs show that the accuracy of the RBFs
solution, depends heavily on the choice of the shape parameter ε spatially in the MQ
or inverse IMQ basis functions. The choice of this optimal value is still under intensive
investigation. Recently some authors have focused on determination of optimal values
for the shape parameters in RBFs for some special problems [5, 6]. Determination of
suitable shape parameter is extracted experimentally for the each types of RBFs used
in this study. In our experiments the optimal value of ε is to be found numerically
for each radial basis function and for each problem separately.

In the problem (3.1)-(3.8) let

Du = 4, Dv = 1, ru = rv = 2, αuu = αvv = αuv = αvu = 1,

c1(t) = c2(t) = c3(t) = c4(t) = c5(t) = c6(t) = c7(t) = c8(t) = 1,

u(x, 0) = 1, φ1(t) =
1 + 3t2

(1 + t2)2
, ψ1(t) =

9 + 5t2

(3 + t2)2
,

v(x, 0) = 1, φ2(t) =
1 + 2t2 + t3

(1 + t2)2
, ψ2(t) =

4 + t+ 3t2 + t3

(2 + t2)2
.

With these assumptions the exact solutions are considered as

u(x, t) =
1 + 2x

1 + t2 + 2x
, v(x, t) =

1 + t+ x

1 + t2 + x
.

The functions F (x, t) and G(x, t) are extracted form the exact solutions.
This numerical example is studied by using mesh size h = 0.05 and the time step

∆t = 0.01. The graphs of exact and numerical solutions at times t=0.3, 0.7 are
demonstrated in Figures 1-4 for MQ and IMQ RBFs.

Tables 3 and 4 respectively report the L2 and L∞ error norms between the exact
and approximate u and v at t = 0.3 for some shape parameters.

Throughout the simulation, the L∞ and L2 error norms decrease with the smaller
time step size. Numerical results show that the effectiveness of the radial base func-
tions MQ is better than IMQ for this problem.
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Figure 1. The comparison between the Exact and Approximate
solutions for u(x, t) when ε = 0.7, θ = 1 at two time levels t =
0.3, t = 0.7 for Example 1.
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Figure 2. The comparison between the Exact and Approximate
solutions for u(x, t) when ε = 1.2, θ = 0 at two time levels t =
0.3, t = 0.7 for Example 1.
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Figure 3. The comparison between the Exact and Approximate
solutions for v(x, t) when ε = 0.7, θ = 1 at two time levels t =
0.3, t = 0.7 for Example 1.
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In the problem (3.1)-(3.8) let

Du = 1, Dv = 4, ru = rv = 1, αuu = αvv = αuv = αvu = 1,

c1(t) = t, c2(t) = t2, c3(t) = 1, c4(t) = 1 + t2,

c5(t) = t, c6(t) = 1, c7(t) = 1, c8(t) = t2,

u(x, 0) = sinx, φ1(t) = t2e−2t, ψ1(t) = e−2t(cos 1 + t2 cos 1 + sin 1),

v(x, 0) = cosx, φ2(t) = te−t, ψ2(t) = e−t(cos 1− t2 sin 1),

F (x, t) = e−4t sinx(−2e2t + tt cosx+ sinx),

G(x, t) = e−3t cosx(3e2t + et cosx− sinx).
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Figure 4. The comparison between the Exact and Approximate
solutions for v(x, t) when ε = 1.2, θ = 0 at two time levels t =
0.3, t = 0.7 for Example 1.
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Table 1. The L2 and L∞ error norms verses the shape parameter
in Example 1 at t = 0.3 for u.

RBF shape parameter ε L2 error norm L∞ error norm
MQ(θ = 1) 0.3 7.4976× 10−3 8.3831× 10−3

0.5 3.0754× 10−3 4.9779× 10−3

0.7 3.0841× 10−4 4.8956× 10−4

0.9 7.9641× 10−4 9.4643× 10−4

IMQ(θ = 0) 0.8 1.1081× 10−2 2.5322× 10−2

1 2.8643× 10−3 6.9851× 10−3

1.2 1.8264× 10−3 3.5856× 10−3

1.4 5.6658× 10−3 8.1926× 10−3

Table 2. The L2 and L∞ error norms verses the shape parameter
in Example 1 at t = 0.3 for v.

RBF shape parameter ε L2 error norm L∞ error norm
MQ(θ = 1) 0.3 5.1052× 10−3 8.2055× 10−3

0.5 3.2728× 10−3 4.8362× 10−3

0.7 2.5789× 10−4 3.8771× 10−4

0.9 8.3597× 10−4 9.8853× 10−4

IMQ(θ = 0) 0.8 4.4957× 10−2 8.4498× 10−2

1 5.9174× 10−3 9.9091× 10−3

1.2 2.1228× 10−3 3.6093× 10−3

1.4 3.6001× 10−3 7.1818× 10−3

With these assumptions the exact solutions may be derived as

u(x, t) = e−2t sinx, v(x, t) = e−t cosx.
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In this test problem we adopt our proposed numerical method using mesh size h =
0.05 and the time step ∆t = 0.01. Figures 5-8 show the exact and numerical solutions
at times t = 0.3 and t = 0.7 for MQ and IMQ RBFs.

Figure 5. The comparison between the Exact and Approximate
solutions for u(x, t) when ε = 0.45, θ = 1 at two time levels t =
0.3, t = 0.7 for Example 2.
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Figure 6. The comparison between the Exact and Approximate
solutions for u(x, t) when ε = 0.75, θ = 0 at two time levels t =
0.3, t = 0.7 for Example 2.
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Tables 3 and 4 respectively demonstrate the L2 and L∞ error norms between the
exact and approximate u and v at t = 0.3 for some shape parameters.

For this problem, rather than the previous problem, different shape parameters
are obtained via our computation. Throughout the simulation, the L∞ and L2 error
norms decrease with the smaller time step size. Similar to the test problem 1, the
numerical results show that the effectiveness of the radial base functions MQ is better
than IMQ for this problem.

5. Conclusion

Three mathematical models of ecological phenomena are considered in this study.
The proposed models introduced as systems of nonlinear reaction-diffusion equations.
A RBF collocation method of lines is proposed to solve one of the proposed mod-
els numerically. To this end two important types of RBFs namely MQ, IMQ are
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Figure 7. The comparison between the Exact and Approximate
solutions for v(x, t) when ε = 0.45, θ = 1 at two time levels t =
0.3, t = 0.7 for Example 2.
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Figure 8. The comparison between the Exact and Approximate
solutions for v(x, t) when ε = 0.75, θ = 0 at two time levels t =
0.3, t = 0.7 for Example 2.
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Table 3. The L2 and L∞ error norms verses the shape parameter
in Example 1 at t = 0.3 for u.

RBF shape parameter ε L2 error norm L∞ error norm
MQ(θ = 1) 0.35 6.0196× 10−4 8.4538× 10−4

0.45 3.2592× 10−4 4.9309× 10−4

0.55 2.3935× 10−3 4.4225× 10−3

0.65 4.0121× 10−2 7.9234× 10−2

IMQ(θ = 0) 0.65 7.8131× 10−3 9.067× 10−3

0.75 3.5831× 10−3 4.7054× 10−3

0.85 2.1299× 10−2 4.6571× 10−2

0.95 4.4113× 10−2 7.0605× 10−2

used. The numerical results show a good agreement between the exact and numerical
solutions. The proposed approach can be established for solving two other models
introduced in this study.
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Table 4. The L2 and L∞ error norms verses the shape parameter
in Example 1 at t = 0.3 for v.

RBF shape parameter ε L2 error norm L∞ error norm
MQ(θ = 1) 0.35 8.1516× 10−4 9.9703× 10−4

0.45 4.4408× 10−4 5.1174× 10−4

0.55 3.3968× 10−3 5.7108× 10−3

0.65 5.2979× 10−2 8.0093× 10−2

IMQ(θ = 0) 0.65 4.5425× 10−3 8.4608× 10−3

0.75 1.9729× 10−3 3.6828× 10−3

0.85 3.1964× 10−2 4.7591× 10−2

0.95 3.8838× 10−2 7.9801× 10−2
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