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Abstract In this paper, steady flow of a third-grade fluid in a porous half space has been

considered. This problem is a nonlinear two-point boundary value problem (BVP)
on semi-infinite interval. The solution for this problem is given by a numerical
method based on the feed-forward artificial neural network model using radial basis

activation functions trained with an interior point method. Moreover, to confirm
the performance of the proposed technique, our results are compared with other
available results. Numerical results demonstrate the validity and applicability of the
technique.
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1. Introduction

Recently, the non-Newtonian fluids have been studied in industrial and natural
problems. The governing equations of non- Newtonian fluids are of higher order
than the Navier-Stokes equations. The fluids of the differential type have received
special attention among the many models which have been used to describe the
non-Newtonian behaviour demonstrated by certain fluids. Among the several non-
Newtonian fluid models, much attention has been paid to the simplest subclass of
viscoelastic fluids known as the second grade. The modelling of polymeric flow in
porous space has essential focus on the numerical simulation of viscoelastic flows in a
specific pore geometry model, for example, capillary tubes, undulating tubes, packs
of spheres or cylinders [12, 13, 20]. The third-grade fluid model represents a further,
although inconclusive, attempt towards a more comprehensive description of the be-
haviour of viscoelastic fluids. Also, the flows of such fluids in porous medium are
quite prevalent in many engineering fields such as enhanced oil recovery, paper and
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textile coating, and composite manufacturing processes. Recently, many interesting
problems dealing with the flows of non-Newtonian fluids are made by Rajagopal and
Na [17, 16] and abbasbandy et al.[1, 4, 3, 5, 2, 18].

2. Problem Statement

In [1], Hayat et al, have discussed the flow of a third-grade fluid in a porous half
space. For unidirectional flow, the authors in [20] have generalized the relation

(▽p)x = −µφ

k
(1 +

α

µ

∂

∂t
)u, (2.1)

for a second grade fluid to the following modified Darcy’s Law for a third grade fluid,

(▽p)x = −[µ+ α
∂

∂t
+ 2β(

∂

∂y
)2]

φu

k
. (2.2)

In the above equations u, µ and p, respectively, denote the fluid velocity, dynamic
viscosity and the pressure. α, β are material constants and k and φ, respectively
represent the permeability and porosity of the porous half space which occupies the
region y > 0. In [12], Hayat et al. have defined a non dimensional fluid velocity f
and the coordinate z

z =
V0

ν
y, f(z) =

u

V0
, (2.3)

where V0 = u(0, t) and ν = µ
ρ (ρisthefluiddensity) represents the kinematic viscosity.

The boundary value problem modelling the steady state flow of a third grade fluid in
a porous half space becomes (see for more details [12, 6])

d2f

dz2
+ b1(

df

dz
)2
d2f

dz2
− b2f(

df

dz
)2 − b3f = 0, (2.4)

f(0) = 1, f(z) → 0 as z → ∞. (2.5)

Above parameters are as follows:

b1 =
6βV 4

0

µν2
, (2.6)

b2 =
2βφV 2

0

kµ
, (2.7)

b3 =
φν2

kV 2
0

. (2.8)

It is clear the parameters are not independent, since

b2 =
b1b3
3

. (2.9)
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Table 1. Some well-known functions that generate globally sup-
ported RBFs.

Name of functions Definition

Thin plate (polyharmonic) splines (TPS) (−1)k+1r2k log(r)

Gaussian (GA) exp(−cr2)

Inverse multiquadrics (IMQ) 1/
√

r2 + c2

Multiquadrics (MQ)
√

1 + (cr)2

Conical splines r2k+1

Exponential spline exp(−cr)

3. Radial Basis Functions

Let R+ = {x ∈ R, x ≥ 0} be the non-negative half-line and let ϕ : R+ → R be
a continuous function with ϕ(0) ≥ 0. A radial basis functions (RBFs) on Rd is a
function as follows

ϕ(∥X −Xi∥), (3.1)

where X,Xi ∈ Rd, and ∥ . ∥ denotes the Euclidean distance between X and Xi. If
one chooses N points {Xi}Ni=1 in Rd then

s(X) =

N∑
i=1

λiϕ(∥ X −Xi ∥), λi ∈ R, (3.2)

is called a radial basis function as well [9]. In Table 1 some commonly used glob-
ally supported RBFs are listed. In the radial basis functions r = ∥.∥2 denotes the
Euclidean distance and c is a positive constant which is called a shape parameter.
This constant prescribes the flatness of the radial basis function and specially has an
important role to improve the stability and accuracy of the computational techniques
based on the radial basis functions.

s(X) =

N∑
i=1

λiϕ(∥ X −Xi ∥), λi ∈ R, (3.3)

The radial basis functions are very efficient tools for interpolating scattered data
in multidimensional complex domain ([15, 11, 21, 19]). For a given set of scattered
nodes {xi}Ni=1 ∈ Rd and a real valued setf(xi), i = 1, . . . , N , a radial basis function

interpolant, f̃ , is a linear combination of radial basis functions centered at the discrete
nodes xj as follow:

f̃(x) =
N∑
j=1

αjϕ(rj) +
m∑

k=1

λkpk(x), (3.4)

where rj = ∥x−xj∥2 is the Euclidean distance and {p1(x), p2(x), . . . , pm(x)} is a set
of monomial functions which is a basis for the space of polynomials up to degree s in

Rd, πd
s , moreover, m and s are related as m =

(
s+ d
d

)
. Also {αj}Nj=1 ∪ {λk}mk=1
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are unknown coefficients which can be estimated for any sets of interpolation points
{ξi}Ni=1 by satisfying the interpolation equations

f(ξi) = f̃(ξi) =
N∑
j=1

αjϕ(∥ξi − xj∥2) +
m∑

k=1

λkpk(ξi), i = 1, . . . , N, (3.5)

and also the following additional orthogonality conditions:

N∑
j=1

αjpk(ξi) = 0, k = 1, . . . ,m. (3.6)

For simplicity the above equations can be presented in the following matrix form,(
Φ P

PT 0

)(
α

λ

)
=

(
F

0

)
,

where Φ is a N × N matrix with Φi,j = ϕ(∥ξi − xj∥2), i, j = 1, . . . , N , which is
clearly a symmetric and dense matrix for globally supported RBFs, P is a N × m
matrix, with Pi,j = pj(ξi), and Fi = f(ξi). In this article, the Gaussian basis is
applied.

4. Neural network modeling

Neural networks have been successfully applied to a variety of real world classifi-
cation tasks in industry, business, and sciences [8], and also artificial neural networks
are used extensively as universal function approximators. The solution f(x) of the
differential equation along with its nth order derivative f (n) can be approximated by
the following continuous mapping in neural network [14].

f̂(η) =

m∑
i=1

δig(wiη + βi), (4.1)

f̂ (n)(η) =

m∑
i=1

δi
dn

dηn
g(wiη + βi), (4.2)

where m is the number of neurons, g is called the activation function, δ, w, and β are
real-valued bounded adaptive parameters or weights, written as:

W = (δ1, δ2, ..., δm, w1, w2, ..., wm, β1, β2, ..., βm). (4.3)

In this paper we consider radial basis gRB as an activation function.

gRB = e−t2 , (4.4)

Differential equation neural networks using radial basis have been developed to ap-
proximate solutions of the Eq. (4), by following mapping we approximate f(η), f

′
(η)

and f
′′
(η) as:

f̂(η) =
m∑
i=1

δie
−(wiη+βi)

2

, (4.5)
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f̂ ′(η) =
m∑
i=1

−2δiwi(wiη + βi)e
−(wiη+βi)

2

, (4.6)

f̂ ′′(η) =
m∑
i=1

−2(δi(w
2
i e

−(wiη+βi)
2

− 2(wiη + βi)
2w2

i e
−(wiη+βi)

2

)). (4.7)

In our implementation, the following shifted Chebyshev-Gauss-Lobato points, {ςr}Kr=0

are used as the collocation nodes:

ςr =
Lxr + L

2(1− xr)
, r = 0, . . . ,K, (4.8)

where {xr}Kr=0 are standard Chebyshev-Gauss-Lobato points,

xr = − cos(
2rπ

2K + 1
), r = 0, . . . ,K.

The fitness function ε has been developed for the transformed equation (4) using
neural network models by defining the unspecified error as the sum of mean squared
errors:

ε = ε1 + ε2. (4.9)

The error term ε1 is associated with the differential equation and given as

ε1 =
1

K − 1

K−1∑
k=1

(f̂ ′′
k + b1(f̂

′)2f̂ ′′
k − b2f̂(f̂

′)2 − b3f̂). (4.10)

Similarly, the error term ε2 is for initial and boundary conditions, and is given as

ε2 =
1

2
((f̂ ς0 − 1)2 + (f̂ ςK )2). (4.11)

It is clear that for weights δ, w, and β for which the error functions ε1 and ε2 approach

zero, the value of fitness ε also approaches zero, thus the proposed solution f̂ given
in Eq. (15), approaches the exact solution f . The neural network diagram for model
2.4 is shown in Figure 1. Learning methodology based on the interior point method
(IPM) is used for training weights of the three neural networks for the nonlinear
steady flow of a third grade fluid in a porous half space [23, 10, 22].

5. Numerical Results and discussion

In this section, the proposed numerical technique is used to investigate the be-
haviour of a third grade steady fluid flow in a porous half space. In Table 2, the
computed results for non-dimensional parameter f

′
(0) are reported. Moreover, to

confirm the performance of the proposed technique, our results are compared with
other available results. The results are obtained by setting n = 10 and L = 5. The
presented results in Table 2 show a good agreement between our approximate solu-
tions and other numerical results. In Figure 2, the effect of the model parameter b1
on the profile of f(x), for the fixed value b3 = 1.5 is illustrated. The results show
that increasing or decreasing the value of b2 has no sensible effects on profiles of f(x).
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Figure 1. Neural network diagram for model 2.4.

Table 2. Approximate results for f
′
(0) for various values of b1 and

b3, (b2 = b1b3
3 ).

b1 b3 present method Shooting method ([7]) Rational Legendre
Tau method ([7])

0.3 0.5 −.691280234 −0.691280 −0.691493
0.6 −.678305971 −0.678301 −0.678511
0.9 −.667395223 −0.667327 −0.667528
0.6 0.3 −.533309395 −0.533303 −0.533545

0.6 −.738005808 −0.738008 −0.738116
0.9 −.887468383 −0.887467 −0.887350
1.2 −1.00865312 −1.008653 −1.008516

Moreover, the effect of b3 on the profile of f(x), for the fixed value b1 = 0.5 is demon-
strated in Figure 3. Regarding Figure 3, it is evident that for the fixed value of b1,
the profiles of f(x) decrease by increasing the values of b3. In addition, to illustrate
the accuracy and performance of the method in Figure 4, absolute values of the resid-
ual functions for some cases of the model parameters have been plotted. The results
confirm the efficiency and accuracy of the method.
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Figure 2. Profiles of f(x) for various values of b1 and b3 = 1.5.

Figure 3. Profiles of f(x) for various values of b3 and b1 = 0.5.

6. Conclusions

In this paper, we had proposed an approach for numerical solving the nonlinear
steady flow of a third grade fluid in a porous half space based on neural network.
The results achieved, had been compared with other avaliable results. These results
show that the neural network works very well. The parallel processing property of
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Figure 4. Graphs of the |Res(η)| for four cases of the model parameters.

neural network had reduced the computational time which makes this method better
than the conventional methods. The proposed solver have some advantages over other
numerical techniques: solutions are readily available on any continuous input within
the entire trained interval, whereas other numerical solvers give results only on a
predefined grid with discrete inputs. Also analytical solvers like ADM, VIM, HPM
and HAM give accurate results only in a close vicinity of the initial guess; as the
input range expands, they start to accumulate error. The proposed neural network
models on the other hand are less prone to these effects. Simplicity of concept, ease
of implementation, and broader applicability domains are other perks of the proposed
scheme.
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