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Abstract In this paper, Lagrange interpolation in Chebyshev-Gauss-Lobatto nodes is used to

develop a procedure for finding discrete and continuous approximate solutions of a
singular boundary value problem. At first, a continuous time optimization problem
related to the original singular boundary value problem is proposed. Then, using
the Chebyshev-Gauss-Lobatto nodes, we convert the continuous time optimization

problem to a discrete time optimization problem. By solving the discrete time op-
timization problem, we find discrete approximations for the solutions of the main
singular boundary value problem. Also, by Lagrange interpolation we obtain a con-
tinuous approximation for the solution. The efficiency and reliability of the proposed

approach are tested by solving three practical singular boundary value problems.

Keywords. Singular boundary value problem, Chebyshev polynomial, Continuous time optimization prob-
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1. Introduction

Consider the following singular boundary value problems (SBVPs)

y′′(t) +
P (t)

R(t)
y′(t) = f(t, y(t)), 0 ≤ t ≤ 1, (1.1)

subject to the boundary conditions

y′(0) = 0, αy′(1) + βy(1) = γ, (1.2)

where α, β and γ are nonnegative constants. We assume that R(0) = 0, R(t) ̸= 0 for

t ̸= 0 and P (0) ̸= 0. Moreover, we suppose that f(·, ·) is continuous and ∂f
∂t (·, ·) exists

and it is continuous on the domain [0, 1].
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The singular boundary value problem (1.1)-(1.2) arises in a number of applications
such as gas dynamics, nuclear physics, chemical reactions, atomic calculations, tumor
growth and physiology. For example, SBVP (1.1)-(1.2) with P (t) = 2, R(t) = t and

f(t, y(t)) =
ny(t)

y(t) + k
, n, k > 0,

occurs in the modeling of steady state oxygen in a spherical cell with Michaelis-Menten
uptake kinetics [25, 26]. In the study of various tumor growth problems [1–4, 6], we
deal with the SBVP (1.1)-(1.2) with P (t) = 0, 1, 2, R(t) = t and

f(t, y(t)) = h(y(t)) +
ny(t)

y(t) + k
, n, k > 0.

Another case of physical significance is when P (t) = 2, R(t) = t and

f(t, y(t)) = −le−lky(t), l, k > 0,

which arises in the study of the distribution of heat sources in human head [12,15].
The singular boundary value problems have been the central attention to many

research works either numerical or analytical [7–9,15–18,21–25,31–33]. The main dif-
ficulty of the SBVP (1.1)-(1.2) is that the singularity behavior occurs at t = 0. Various
efficient numerical techniques have been used to deal with such SBVPs. For instance,
Kumar [22] proposed a three-point finite difference method based on uniform mesh
for a class of SBVPs. Benko et al. [5] utilized a backward Euler method for the nu-
merical approximation of the solutions of singular second-order differential equations.
Kanth and Reddy [19] studied fourth-order finite difference method to solve singular
boundary value problems. Moreover, Kanth and Reddy [20] applied cubic spline in-
terpolation method to solve these problems. Caglar and Caglar [7] utilized a method
based on cubic B-spline method. Goh et al. [14] treated SBVPs by using quartic
B-spline approximation where the values of coefficients are chosen via optimization.
Zhang [34] proposed a modified cubic B-spline solution for two point boundary value
problems. Moreover, variational iteration method [32, 33], Adomian decomposition
method [21], and modified Adomian decomposition method [24] are newly developed
approximation methods that are applied to deal with such problems. In some of the
mentioned methods the accuracy of the obtained solutions is poor while in the rest,
implementation of the proposed approach is hard and time-consuming.

Now, in this paper, a method based on the Lagrange interpolation is proposed to
solve the SBVP (1.1)-(1.2). Firstly, a continuous time optimization (CTO) problem
related to the main SBVP is proposed. Then, applying the Chebyshev-Gauss-Lobatto
(CGL) nodes, we convert the CTO problem to a discrete time optimization problem.
The proposed approach is implemented on some numerical examples and the accuracy
of the method is compared with some other well-known approaches. Obtained results,
show the high accuracy of the method in comparison with the other methods.

The remainder of this paper is organized as follows: in Section 2, the proposed idea
is introduced. The accuracy and efficiency of the proposed method are demonstrated
by numerical results in Section 3. Finally, Section 4 is devoted to conclusions.
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2. The proposed approach

Lagrange interpolation in CGL nodes is important in approximation theory, since
the roots of the Chebyshev polynomials of the first kind, also called CGL nodes, are
used as nodes in polynomial interpolation and the resulting interpolation polynomial
provides an approximation that is close to the polynomial of the best approximation
of a continuous function under the maximum norm.

Here, we interpolate the solution in the roots of the Chebyshev polynomials to give
the best accuracy in the interpolation of solution. The derivatives of these interpo-
lating polynomials at these points are given exactly by a differentiation matrix. The
similar approach was utilized in works [10,11,13,28–30].

In this section, at first, we apply a continuous time optimization (CTO) problem
the optimal solution of which is a solution of SBVP (1.1)-(1.2). Thereafter, using
the roots of the Chebyshev polynomials, we discretize the state variable of the CTO
problem in CGL nodes and obtain a discrete-time optimization (DTO) problem. By
solving the DTO problem, we obtain pointwise approximations for the solutions of
SBVP (1.1)-(1.2). Moreover, by interpolating, we get continuous approximations for
the solutions of the main problem.

According to the assumptions, we can convert the SBVP (1.1)-(1.2) to the following
equivalent singular boundary problem

R(t)y′′(t) + P (t)y′(t) = R(t)f(t, y(t)), 0 ≤ t ≤ 1, (2.1)

subject to the boundary conditions

y′(0) = 0, αy′(1) + βy(1) = γ. (2.2)

In order to solve the SBVP (2.1)-(2.2), we propose the following continuous time
optimization (CTO) problem

Minimize J = y′(0)2 + (αy′(1) + βy(1)− γ)2

subject to
{
R(t)y′′(t) + P (t)y′(t) = R(t)f(t, y), 0 ≤ t ≤ 1.

(2.3)

It is trivial that if SBVP (2.1)-(2.2) has a solution y(.), then y(.) is an optimal solution
for (2.3), and vice versa. Therefore, by solving the CTO problem (2.3), we can find
the solution of SBVP (2.1)-(2.2).

Assume that y1(t) = y(t) and y2(t) = y′(t). So, the CTO problem (2.3) can be
written as follows

Minimize J = y2(0)
2 + (αy2(1) + βy1(1)− γ)2

subject to

{
y′1(t) = y2(t),

R(t)y′2(t) + P (t)y2(t) = R(t)f(t, y1(t)), t ∈ [0, 1].

(2.4)
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To utilize the roots of Chebyshev polynomials (or CGL nodes), defined on the interval
[−1, 1], the transformation t = 1

2 (τ + 1) must be used. Moreover, we define

Y1(τ) = y1(
τ+1
2 ) = y1(t),

Y2(τ) = y2(
τ+1
2 ) = y2(t),

Y ′
1(τ) =

1
2y

′
1(t),

Y ′
2(τ) =

1
2y

′
2(t),

0 ≤ t ≤ 1,−1 ≤ τ ≤ 1.

(2.5)

By this transformation, system (2.4) can be converted to the following equivalent
problem

Minimize Y2(−1)2 + (αY2(1) + βY1(1)− γ)2

subject to


2Y ′

1(τ) = Y2(τ),

2R( τ+1
2 )Y ′

2(τ) + P ( τ+1
2 )Y2(τ) = R( τ+1

2 )f( τ+1
2 , Y1(τ))

−1 ≤ τ ≤ 1.

(2.6)

To convert the CTO problem (2.6) into a discrete form, the CGL nodes on [−1, 1] are
selected as follows

τk = cos(
N − k

N
π), k = 0, 1, . . . , N, (2.7)

where they are the roots of (1− τ2)dTN

dτ and Tj(τ) = cos(jcos−1(τ)), τ ∈ [−1, 1], j =
0, 1, . . . , N, are the Chebyshev polynomials. For interpolating, the following Lagrange
polynomials are utilized

Lk(τ) =
2

Nµk

N∑
j=0

1

µj
Tj(τk)Tj(τ), k = 0, 1, . . . , N, τ ∈ [−1, 1], (2.8)

where µ0 = µN = 2 and µk = 1, for k = 1, 2, . . . , N − 1. Note that Lk(τk) = 1, k =
0, 1, . . . , N and Lk(τj) = 0, for all k ̸= j. Now, the Lagrange interpolation for the
optimal solution of the CTO problem (2.6) can be defined as follows

Y1(τ) ≃ Y N
1 (τ) =

N∑
l=0

alLl(τ), (2.9)

and

Y2(τ) ≃ Y N
2 (τ) =

N∑
l=0

blLl(τ), (2.10)

where N is a sufficiently big number.
Note that{

Y1(τk) ≃ Y N
1 (τk) = ak,

Y2(τk) ≃ Y N
2 (τk) = bk.

(2.11)
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Also,

Y ′
1(τk) ≃

N∑
l=0

alDlk, Y ′
2(τk) ≃

N∑
l=0

blDlk, k = 0, 1, . . . , N, (2.12)

where

Dlk = L′
l(τk) =


µk

µl
(−1)k+1 1

τk−τl
, if k ̸= l,

− τk
2−2τ2

k
, if 1 ≤ k = l ≤ N − 1,

− (2N2+1)
6 , if k = l = 0,

2N2+1
6 , if k = l = N.

(2.13)

For details of the above relations, we refer to [10, 11]. Now, using relations (2.11)
and (2.12), we approximate the CTO problem (2.6) by the following discrete-time
optimization (DTO) problem

Minimize JN = (b0)
2 + (αbN + βaN − γ)2

subject to


2
∑N

l=0 alDlk = bk,

2R( τk+1
2 )

∑N
l=0 blDlk + P ( τk+1

2 )bk = R( τk+1
2 )f( τk+1

2 , ak),

k = 0, 1, . . . , N,

(2.14)

where N is a sufficiently big number. We solve the DTO problem (2.14) by using
nonlinear programming techniques and obtain discrete approximations for the solu-
tion of the SBVP (2.1)-(2.2) as y(tk) ≃ a∗k, and y′(tk) ≃ b∗k, k = 0, 1, . . . , N where
tk = 1

2 (τk + 1) and τk, k = 0, 1, . . . , N are the CGL nodes. Moreover, by Lagrange
interpolation, we get continuous approximations as{

y∗(t) ≃
∑N

l=0 a
∗
l Ll(2t− 1), 0 ≤ t ≤ 1,

y∗′(t) ≃
∑N

l=0 b
∗
l Ll(2t− 1), 0 ≤ t ≤ 1.

(2.15)

3. Numerical results

To show the efficiency of our proposed method, we implement it on three different
singular boundary value problems arising in real applications.
Example 3.1. Consider the following singular boundary value problem

y′′(t) +
2

t
y′(t)− 4y(t) = −2,

y′(0) = 0, y(1) = 5.5.

This problem has an analytical solution as follows

y(t) = 0.5 + 5
sinh 2t

t sinh 2
.

We solve the corresponding discrete time optimization problem (2.14) for this problem,
by assumption N = 10 and by using FMINCON function in Matlab software. The
approximate solutions a∗k and b∗k for k = 0, 1, 2, . . . , N are given in Table 1. In Table
2, the approximate and exact values of y(t), for t = 0, 0.1, 0.2, . . . , 1 are given. As
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Table 1. The coefficients a∗k and b∗k, for k = 0, 1, . . . , 10 in Example 3.1.

k a∗k b∗k
k = 0 3.257205647713493 −0.000000000005190
k = 1 3.258306577657286 0.089986385716817

k = 2 3.273997529038257 0.352335065355567
k = 3 3.335956270708754 0.770660636841323
k = 4 3.481911583461575 1.331807681443218
k = 5 3.740271368317843 2.028638545710036

k = 6 4.114911798188221 2.844501234351804
k = 7 4.570834213294062 3.723787979506456
k = 8 5.027192123499485 4.548599892238480

k = 9 5.371247426061933 5.150743926293068
k = 10 5.499999999999999 5.373147207272525

Table 2. The values of y(t) for t = 0, 0.1, . . . , 1 in Example 3.1.

t Approximate solution Exact solution

0.0 3.257205647713493 3.257205647717832
0.1 3.275623816473727 3.275623816476181
0.2 3.331321581289175 3.331321581291895
0.3 3.425641420573009 3.425641420564865

0.4 3.560863537311638 3.560863537324633
0.5 3.740271368317845 3.740271368319426
0.6 3.968246145139263 3.968246145128546
0.7 4.250393467673129 4.250393467685512

0.8 4.593705860687058 4.593705860688228
0.9 5.006766424282846 5.006766424282001
1.0 5.499999999999999 5.500000000000000

it can be seen in this table, the obtained values are very near to the exact values.
Also, the graphs of discrete and continuous approximate solutions for y(·) and y′(·)
are presented in Figure 1. The absolute error of the presented method, i.e. the
absolute difference between the approximate solution and the analytical solution, is
compared with other numerical methods in Table 3. The numerical methods selected
for comparison are the higher order finite difference method (HFDM) [19], the cubic
B-spline method (CBSM) [7], the quartic B-spline method (QBSM) [14] and the
modified cubic B-spline method (MCBSM) [34]. As one clearly observes, the absolute
error of our method is less than those of the other ones and therefore by the proposed
method we can obtain a better approximate solution for this SBVP. The absolute
error of our proposed method for different values of N, is given in Figure 2 which
shows that when we increase the number of nodes, i.e. N , the absolute error tends to
zero.
Example 3.2. Consider the following singular second-order boundary value problem

y′′(t) +
1

t
y′(t) = (

8

8− t2
)2,

y′(0) = 0, y(1) = 0.
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Figure 1. Discrete and continuous approximate solutions y(.) and
y′(.) in Example 3.1.
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Figure 2. Absolute error of our method for Example 3.1.

0 0.2 0.4 0.6 0.8 1

0

1

2

3

4

x 10
−13

t

A
bs

ol
ut

e 
er

ro
r

 

 

N=12
N=14
N=16

The exact solution of this problem is y(t) = 2 ln( 7
8−t2 ). We solve the corresponding

discrete time optimization problem (2.14), by assumption N = 10. The approximate
solutions a∗k and b∗k for k = 0, 1, 2, . . . , N are given in Table 4. In Table 5, the values
of y(t), t = 0, 0.1, 0.2, . . . , 1 obtained by the proposed method and the exact values
of y(t) for t = 0, 0.1, . . . , 1 are displayed. Also, graphs of discrete and continuous
approximate solutions for y(·) and y′(·) are shown in Figure 3. The absolute error
of the proposed method is compared with those of four other numerical methods
[8, 14, 19, 34] in Table 6. As one clearly observes, the absolute error of the proposed
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Table 3. Comparison of absolute error for Example 3.1.

t Our method for
N = 10

HFDM [19] for
N = 20

CBSM [7] for
N = 20

QBSM [14] for
N = 20

MCBSM [34]
for N = 20

0.0 4.3× 10−12 6.16× 10−7 2.97× 10−4 5.26× 10−8 9.23× 10−6

0.1 2.4× 10−12 6.13× 10−7 2.95× 10−4 5.26× 10−8 3.84× 10−7

0.2 2.7× 10−12 6.03× 10−7 2.92× 10−4 5.25× 10−8 1.73× 10−7

0.3 8.1× 10−12 5.58× 10−7 2.85× 10−4 5.21× 10−8 1.05× 10−7

0.4 1.3× 10−11 5.54× 10−7 2.75× 10−4 5.12× 10−8 7.19× 10−8

0.5 1.5× 10−12 5.14× 10−7 2.58× 10−4 4.94× 10−8 5.24× 10−8

0.6 1.1× 10−11 4.59× 10−7 2.36× 10−4 4.62× 10−8 3.89× 10−8

0.7 1.3× 10−11 3.85× 10−7 2.02× 10−4 4.08× 10−8 2.83× 10−8

0.8 1.1× 10−12 2.89× 10−7 1.54× 10−4 3.22× 10−8 1.88× 10−8

0.9 0.8× 10−12 1.63× 10−7 8.96× 10−4 1.92× 10−8 9.62× 10−9

Table 4. The coefficients a∗k and b∗k, for k = 0, 1, . . . , 10 in Example 3.2.

k a∗k b∗k
k = 0 −0.267062785263904 −0.000000000011761

k = 1 −0.264561221454872 0.050062578414913
k = 2 −0.257037701610039 0.100502512383910
k = 3 −0.244435265441268 0.151706700500273
k = 4 −0.226657370635746 0.204081632707703

k = 5 −0.203565388624767 0.258064515999351
k = 6 −0.174974908232746 0.314136125706599
k = 7 −0.140650633462087 0.372836218429264

k = 8 −0.100299567373873 0.434782608635710
k = 9 −0.053562045354685 0.500695410324417
k = 10 −0.000000000000000 0.571428571428639

Table 5. The values of y(t) for t = 0, 0.1, . . . , 1 in Example 3.2.

t Approximate solution Exact solution

0.0 −0.267062785263904 −0.267062785249045
0.1 −0.266913063117316 −0.264561221445740
0.2 −0.264781828282564 −0.257037701601957
0.3 −0.256414426219371 −0.244435265448499

0.4 −0.236996828378616 −0.226657370614006
0.5 −0.203565388624767 −0.203565388619885
0.6 −0.156993433644465 −0.174974908246232

0.7 −0.102943063651232 −0.140650633441460
0.8 −0.051297726089961 −0.100299567370943
0.9 −0.013765268361832 −0.053562045355284
1.0 −0.000000000000000 0.000000000000000

method is less than those of the other ones. In Figure 4, the absolute error of our
method for different values of N is given.
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Figure 3. Discrete and continuous approximate solutions y(.) and
y′(.) in Example 3.2.
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Figure 4. Absolute error of our method for Example 3.2.
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Example 3.3. Consider the following singular boundary value problem

y′′(t) +
1

t
y′(t) = −ey(t),

y′(0) = 0, y(1) = 0.

The exact solution of this problem is y(t) = 2 ln( 4−2
√
2

(3−2
√
2)x2+1

). The discrete approx-

imate solutions ak∗ and b∗k for N = 10 and k = 0, 1, 2, . . . , N are given in Table 7.
Moreover, the obtained values of y(t), for t = 0, 0.1, . . . , 10 in comparison with the
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Table 6. Comparison of absolute error for Example 3.2.

t Our method
for N = 10

HFDM [19]
for N = 20

CBSM [8] for
N = 20

QBSM [14]
for N = 20

MCBSM [34]
for N = 20

0.0 1.5× 10−11 9.22× 10−5 2.72× 10−5 9.40× 10−9 2.57× 10−8

0.1 9.1× 10−12 9.04× 10−5 2.69× 10−5 9.29× 10−9 1.52× 10−8

0.2 8.1× 10−12 8.61× 10−5 2.63× 10−5 9.15× 10−9 1.08× 10−8

0.3 7.2× 10−12 8.15× 10−5 2.53× 10−5 8.92× 10−9 8.13× 10−9

0.4 2.7× 10−11 7.68× 10−5 2.38× 10−5 8.56× 10−9 6.23× 10−9

0.5 4.9× 10−12 7.17× 10−5 2.18× 10−5 8.05× 10−9 4.74× 10−9

0.6 1.3× 10−11 6.61× 10−5 1.92× 10−5 7.31× 10−9 3.49× 10−9

0.7 2.1× 10−11 5.92× 10−5 1.59× 10−5 6.28× 10−9 2.43× 10−9

0.8 1.1× 10−12 4.97× 10−5 1.17× 10−5 4.85× 10−9 1.50× 10−9

0.9 6.0× 10−13 3.43× 10−5 6.51× 10−6 2.83× 10−9 6.92× 10−10

Table 7. The coefficients a∗k and b∗k, for k = 0, 1, . . . , 10 in Example 3.3.

k a∗k b∗k
k = 0 0.316694367638146 −0.000000000005154
k = 1 0.316488879825641 −0.016793022896101

k = 2 0.313567794632539 −0.065432636956595
k = 3 0.302170315439319 −0.140426247984659
k = 4 0.276148766251959 −0.232349437772314
k = 5 0.232696783871571 −0.329032487934742

k = 6 0.174848254821172 −0.418429617917738
k = 7 0.111334880657558 −0.491673886340597
k = 8 0.053989034172848 −0.544346623506062
k = 9 0.014210173554678 −0.575525891968148

k = 10 −0.000000000000000 −0.585786437625405

exact values are presented in Table 8. In Figure 5, the discrete and continuous ap-
proximate solutions for y(·) and y′(·) are shown. The absolute error of the proposed
method is compared with those of two other numerical methods [21, 27] in Table 9.
We can see that, the absolute error of the proposed method is less than those of the
other ones and therefore by our method we can obtain a better approximate solution
for this SBVP. The absolute error of our proposed method for different values of N
is given in Figure 6.

4. Conclusions

We presented a new approach for solving nonlinear singular boundary value prob-
lems. In the proposed approach, we utilized the roots of Chebyshev to convert the
given SBVP to a discrete time optimization problem. By solving the obtained discrete
programming problem, we found approximate solutions for the original SBVP. The
numerical results showed that the presented approach is an applicable technique and
yields numerical solutions in very good agreement with the existing exact solutions.
Moreover, our approach has much better results than those of the other methods for
solving SBVPs.
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Table 8. The values of y(t) for t = 0, 0.1, . . . , 1 in Example 3.3.

t Approximate solution Exact solution

0.0 0.316694367638146 0.316694367640750
0.1 0.313265850492726 0.313265850498063

0.2 0.303015422830425 0.303015422832300
0.3 0.286047265315019 0.286047265304854
0.4 0.262531127440249 0.262531127456033
0.5 0.232696783871571 0.232696783873834

0.6 0.196826805704263 0.196826805692954
0.7 0.155248106671408 0.155248106682756
0.8 0.108322763442638 0.108322763444465

0.9 0.056438602470276 0.056438602469236
1.0 0.000000000000000 0.000000000000000

Figure 5. Discrete and continuous approximate solutions y(.) and
y′(.) in Example 3.3.
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Table 9. Comparison of absolute error of Example 3.3.

t Our method for
N = 10

Approach in [21]
for N = 20

Approach in [27]
for N = 10

Approach in [27]
for N = 14

0.0 2.6× 10−12 2.00× 10−6 3.77× 10−8 6.72× 10−8

0.1 5.3× 10−12 1.99× 10−6 1.05× 10−7 6.69× 10−8

0.2 1.8× 10−12 1.97× 10−6 6.33× 10−9 7.87× 10−9

0.3 1.0× 10−12 1.94× 10−6 5.91× 10−8 6.92× 10−9

0.4 1.5× 10−11 1.83× 10−6 2.12× 10−7 2.87× 10−8

0.5 2.2× 10−12 1.78× 10−6 1.00× 10−8 7.40× 10−10

0.6 1.1× 10−11 1.67× 10−6 5.36× 10−7 6.32× 10−8

0.7 1.1× 10−11 1.34× 10−6 4.25× 10−8 6.95× 10−8

0.8 1.8× 10−12 9.20× 10−7 8.32× 10−7 3.38× 10−9

0.9 1.04× 10−12 4.57× 10−7 4.67× 10−8 7.85× 10−8
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Figure 6. Absolute error of our method for Example 3.3.
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