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Abstract The planar polynomial vector fields with a center at the origin can be written as

an scalar differential equation, for example Abel equation. If the coefficients of

an Abel equation satisfy the composition condition, then the Abel equation has
a center at the origin. Also the composition condition is sufficient for vanishing

the first order moments of the coefficients. The composition conjecture and the

moment vanishing problem ask for that the composition condition is a necessary
condition to have the center or vanishing the moments. It is not known that if

there exist examples of polynomials that satisfy the double moment conditions but

don’t satisfy the composition condition. In this paper we consider some composition
conjectures and give some families of definite polynomials for which vanishing of

the moments and the composition condition are equivalent. Our methods are based

on a decomposition method for continuous functions. We give an orthogonal basis
for the family of continuous functions and study the conjecture in terms of this

decomposition.
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1. Introduction

Consider the planar system of differential equations{
ẋ = P (x, y),
ẏ = Q(x, y),

(1.1)

where P and Q are analytic functions in some planar region Ω. A point (x0, y0) is
called a singular point of (1.1), if P (x0, y0) = Q(x0, y0) = 0. The solution γ(t) of (1.1)
is called periodic, if there exists T > 0 such that γ(0) = γ(T ). An isolated periodic
solution is called limit cycle. A singular point is called center, if in a neighborhood of
it, all solutions are periodic, and is called focus if in a neighborhood of it all solution
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spirals the singular point. If the origin is a center of the associated linearized system,
then it would be a center or a focus of the system (1.1). Distinguishing between the
centers and the foci of the nonlinear system (1.1) is an old open problem, known as
Poincaré-center-focus problem, and has been remained unsolved, even for P and Q
homogeneous polynomials of degree three.

Using appropriate change of variables, the system (1.1) converts to a scalar non-
autonomous differential equation as

ż =

m∑
k=0

Ak(t)zk, (1.2)

such that there exists a one to one correspondence between the limit cycles surround-
ing the origin of (1.1) and the positive periodic solutions of (1.2), [6, 7, 10, 16]. Recall
that a solution u(t) of (1.2), is called periodic if for some ω ∈ R we have u(0) = u(ω).
If m = 3, the Eq. (1.2) is called an Abel equation.

The system{
ẋ = −y + Pd(x, y),
ẏ = x+Qd(x, y),

(1.3)

where Pd, Qd are homogeneous polynomials of degree d can be reduced to the Abel
differential equation

ẋ = A(t)x3 +B(t)x2, (1.4)

where A(t), B(t) are polynomials in sin(t), cos(t) of degree 2(d+ 1), d+ 1 respectively
[7]. It is said that A(t) and B(t) satisfy the composition condition, if there exists a

periodic function w(t) such that
∫
A(t)dt = Ã(w(t)),

∫
B(t)dt = B̃(w(t)), for some

continuous functions Ã and B̃. If A(t) and B(t) satisfy the composition condition,
then the origin is a center of (1.4) and is said the equation has a CC-center [4]. So
the composition conjecture is that the composition condition for A(t) and B(t) is
necessary to have a center. This conjecture was appeared at first for trigonometric
polynomials A(t) and B(t) in [4] and in this case it was answered negatively in [2].
The composition conjecture was considered later for polynomials A(t) and B(t), and
it remains unsolved. One interesting problem is to construct classes of polynomials
for which the conjecture is true, see for example [3].

Furthermore it is interesting to characterize the so called persistent centers and
determine the relation between them and CC-centers, [3]. The Abel differential equa-
tion

ẋ = εA(t)x3 +B(t)x2, (1.5)

is said to have a persistent center at the origin, if it has a center for all ε small enough.
z = 0 is a persistent center for (1.5), if and only if A(t) and B(t) satisfy the following
moment conditions

mk =

∫ b

a

B
k
(t)A(t)dt = 0, k = 0, 1, . . . , (1.6)

where B(t) =
∫ t
a
B(s)ds and a, b ∈ R, [5].
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In [9] it was shown that if the system (1.5) has a persistent center at z = 0, then
A,B satisfy the moment conditions (1.6) and the following moment conditions

µk =

∫ b

a

A
k
(t)B(t)dt = 0, k = 0, 1, . . . , (1.7)

where A(t) =
∫ t
a
A(s)ds and a, b ∈ R.

The composition conjecture for the moments or the moment vanishing problem is
that A(t) and B(t) satisfy the composition condition if and only if all moments of them
equal zero. For polynomials this conjecture was solved in [12] and for trigonometric
polynomials it is only partially solved in some special cases see for example [15, 1, 13].
The composition condition implies both CC-center and the moments vanishing. There
are examples of trigonometric polynomials that satisfy all the moments conditions
(1.6) and (1.7) but don’t satisfy the composition condition [9], and there are examples
of polynomials which satisfy conditions (1.6) or (1.7) but don’t satisfy the composition
condition [11]. Furthermore, there is no example of polynomials that satisfies all
conditions (1.6) and (1.7) but does not satisfy the composition condition.

A polynomial A(t) is called definite, if for all polynomials B(t) the moments con-
ditions (1.6) are equivalent to the composition condition, [14, 18].

In this paper we study these conjectures for polynomials. The organization of the
paper is as follows. In Section 2, we introduce an orthogonal basis for the family of
continuous functions. We give an iterative relation between the integrals of this basis.
Then we introduce a special matrix and study the properties of it. In Section 3, the
main results are given. Using the properties of the orthogonal basis we give some
families of definite polynomials. The conclusions are made in Section 4.

2. A special matrix and its properties

Every polynomial in t can be written as a linear combination of 1−periodic terms
of the form uk(t) = (t2 − t)k and vk(t) = (2t − 1)(t2 − t)k. The function uk(t) is
symmetric about t = 1

2 and it’s behavior is similar to even functions, and vk(t) is

symmetric about the point ( 1
2 , 0) and is similar to odd functions. The effectiveness of

such decomposition is the following iterative relation.

Lemma 2.1. [3]

(1) For any positive integer k

Ik =

∫ 1

0

(t2 − t)kdt = (−1)k
(k!)2

(2k + 1)!
.

(2) The expression Ik satisfy the relation

Ik+1 = − k + 1

2(2k + 3)
Ik.

Note that the families uk(t) and vk(t) defined as the above are orthogonal.
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Definition 2.2. [17] Let {φn} (n = 1, 2, . . .) be a sequence of complex functions on
[a, b], such that∫ b

a

φn(x)φm(x)dx = 0, (n 6= m). (2.1)

Then {φn} is said to be an orthogonal system of functions on [a, b]. If, in addition,∫ b

a

|φn(x)|2dx = 1, (2.2)

for all n, {φn} is said to be orthonormal.

One can see easily that { (2n+1)(4n+3)!(2t−1)(t2−t)n
2((2n+1)!)2 , (2n+1)!(t2−t)n

(2n!)2 }∞n=1 is an orthonor-

mal system of functions. More precisely for an arbitrary continuous function f(t)
define the Fourier coefficients as follows:

a0 =
∫ 1

0
f(t)dt,

an = (2n+1)!
(2n!)2

∫ 1

0
f(t)(t2 − t)ndt,

bn = (2n+1)(4n+3)!
2((2n+1)!)2

∫ 1

0
f(t)(2t− 1)(t2 − t)ndt,

(2.3)

and let the Fouriere transform of f(x) be as follows:

f(x) = a0 +

∞∑
1

an(t2 − t)n +

∞∑
0

bn(2t− 1)(t2 − t)n. (2.4)

Definition 2.3. Let f(x) be a continuous function and a0, an, bn, n = 1, 2, . . . be the
Fourier coefficients defined by (2.3), we say that f is UV − even, when bn = 0 for
n = 1, 2, . . ., and f is called UV − odd, when a0 = 0 and an = 0 for n = 1, 2, · · · .

Let C = [cij ] where

cij =

{
1, i = 1,∏i−1
r=1

kj+r
2(kj+r)+1 , i 6= 1,

(2.5)

i = 1, . . . , n, j = 1, . . . , n, k1, . . . , kn ∈ N and k1 < . . . < kn. Non-singularity of the
matrix C has been shown in [3]. In the next theorem we give some other useful
properties of the matrix C to improve the result. In the following, when we consider
two submatrices [aij ], [b

i
j ] of a matrix, we mean two submatrices are from the same

rows of the matrix with the same size. Our proofs are based on a special method of
calculating the determinant as Chio pivotal condensation method, see Appendix A
and [8].

Theorem 2.4. The matrix C has the following properties

(1) Every 2× 2 submatrix of C is non-singular.
(2) Every arbitrary submatrix of C is non-singular, in particular C is non-singular.
(3) Sum of two arbitrary submatrices of C is non-singular.
(4) Every linear combination of submatrices of C with positive coefficients is non-

singular.
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Proof. To prove (1) note that an arbitrary submatrix B2×2 of C is either

B1 =


∏l1
r=1

ki+r
2ki+2r+1

∏l1
r=1

kj+r
2kj+2r+1∏l2

r=1
ki+r

2ki+2r+1

∏l2
r=1

kj+r
2kj+2r+1

 , (2.6)

(l1 < l2) or

B2 =

 1 1∏l
r=1

ki+r
2ki+2r+1

∏l
r=1

kj+r
2kj+2r+1

 , (2.7)

where ki < kj . We have

det(B1) = µ

∣∣∣∣∣∣
1 1∏l2

r=l1+1
ki+r

2ki+2r+1

∏l2
r=l1+1

kj+r
2kj+2r+1

∣∣∣∣∣∣ , (2.8)

where µ =
∏l1
r=1

ki+r
2ki+2r+1

∏l1
r=1

kj+r
2kj+2r+1 .

Thus it is enough to show that

∆ =

 1 1∏l2
r=l1+1

ki+r
2ki+2r+1

∏l2
r=l1+1

kj+r
2kj+2r+1

 , (2.9)

is non-singular for every l1, l2 ∈ {0, 1, 2, . . .}, l1 < l2.

Let Fs(x) =
∏ls
r=l1+1

x+r
2x+2r+1 , l1, ls ∈ {0, 1, 2, . . .}, l1 < ls. For every s ∈ {1, 2, . . .},

Fs is strictly ascending, and if x > y there exists αs such that

Fs(x)− Fs(y) = (2.10)

exp(αs(x− y)), (2.11)

and αs < αs+1,. Since ki < kj and Fs is strictly ascending, thus det(∆) = F2(kj) −
F2(ki) > 0.

To prove (2) let

∆ =


1 1 1

F2(ki1) F2(ki2) F2(ki3)

F3(ki1) F3(ki2) F3(ki3)

 , (2.12)

be an arbitrary 3 × 3 submatrix of C, where ki1 < ki2 < ki3 . Using Chio pivotal
condensation method we have

det(∆) =

∣∣∣∣∣∣
F2(ki2)− F2(ki1) F2(ki3)− F2(ki1)

F3(ki2)− F3(ki1) F3(ki3)− F3(ki1)

∣∣∣∣∣∣ . (2.13)
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Let Φ(s, n) = Fs(kin)− Fs(ki1), thus (2.13) can be written as

det(∆) =

∣∣∣∣ Φ(2, 2) Φ(2, 3)
Φ(3, 2) Φ(3, 3)

∣∣∣∣ . (2.14)

By (2.10) we have

Φ(2, 2)

Φ(3, 2)
=

exp(α2(ki2 − ki1))

exp(α3(ki2 − ki1))
, (2.15)

and

Φ(2,3)
Φ(3,3) =

exp(α2(ki3−ki1 ))

exp(α3(ki3−ki1 )) =
exp(α2(ki2−ki1 ))

exp(α3(ki2−ki1 )) ×
exp(α2(ki3−ki2 ))

exp(α3(ki3−ki2 )) .

(2.16)

Since
exp(α2(ki3−ki2 ))

exp(α3(ki3−ki2 )) < 1, thus det(∆) > 0.

For an 4× 4 submatrix let

∆ =



1 1 1 1

F2(ki1) F2(ki2) F2(ki3) F2(ki4)

F3(ki1) F3(ki2) F3(ki3) F3(ki4)

F4(ki1) F4(ki2) F4(ki3) F4(ki4)


. (2.17)

where ki1 < ki2 < ki3 < ki4 . Using Chio method twice we have

det(∆) = µ

∣∣∣∣ Ψ(3, 3) Ψ(3, 4)
Ψ(4, 3) Ψ(4, 4)

∣∣∣∣ , (2.18)

where Ψ(s, n) = (F2(ki2)−F2(ki1))(Fs(kin)−Fs(ki1))− (F2(kin)−F2(ki1))(Fs(ki2)−
Fs(ki1)) and µ = 1/(F2(ki2)− F2(ki1)2.

By (2.10) we have

Ψ(3,3)
Ψ(4,3) =

exp((α2+α3)(ki2−ki1 ))[exp(α3(ki3−ki2 ))−exp(α2(ki3−ki2 ))]
exp((α2+α4)(ki2−ki1 ))[exp(α4(ki3−ki2 ))−exp(α2(ki3−ki2 ))]

,

(2.19)

and

Ψ(3,4)
Ψ(4,4) =

exp((α2+α3)(ki2−ki1 ))[exp(α3(ki4−ki1 ))−exp(α2(ki4−ki2 ))]
exp((α2+α4)(ki2−ki1 ))[exp(α4(ki4−ki1 ))−exp(α2(ki4−ki2 ))]

.

(2.20)

Since α3 < α4 thus
exp(α3(ki4−ki2 ))

exp(α4(ki4−ki2 )) < 1 and hence det(∆) > 0.
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Similarly let

∆ =



1 1 . . . 1

F2(ki1) F2(ki2) . . . F2(kim)

...
...

. . .
...

Fm(ki1) Fm(ki2) . . . Fm(kim)


, (2.21)

be an arbitrary m×m submatrix of C, where ki1 < ki2 < . . . < kim . Using iterative
Chio condensation method one have

det(∆) = µ

∣∣∣∣ χ(m− 1,m− 1) χ(m− 1,m)
χ(m,m− 1) χ(m,m)

∣∣∣∣ , (2.22)

where µ is a multiplier and χ is a polynomial. By similar argument we have

χ(m− 1,m)

χ(m,m)
= η

χ(m− 1,m− 1)

χ(m,m− 1)
, (2.23)

where η =
exp(αm−1(kim−kim−1

))

exp(αm(kim−kim−1
)) < 1, therefore ∆ > 0.

To prove (3) let

∆ =



2 . . . 2

F2(ki1) + F2(kj1) . . . F2(kim) + F2(kjm)

...
. . .

...

Fm(ki1) + Fm(kj1) . . . Fm(kim) + Fm(kjm)


, (2.24)

be an arbitrary sum of two submatrices of C.
We have

det(∆) = µ∣∣∣∣ χi(m− 1,m− 1) + χj(m− 1,m− 1) χi(m− 1,m) + χj(m− 1,m)
χi(m,m− 1) + χj(m,m− 1) χi(m,m) + χj(m,m)

∣∣∣∣ ,
(2.25)

where µ is a multiplier and χi, χj are the same polynomials as the proof of (2) in the
variables (kj1 , . . . , kjm), (kj1 , . . . , kjm) respectively. Similar argument as in the proof
of (2) shows that det(∆) 6= 0.

(4) follows from (3) by induction. �

3. Main results

Using the results of previous section we find some families of definite polynomials
and solve the vanishing moment problem in special cases.
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Lemma 3.1. Every polynomial in the form B(t) = (2t− 1)(t2 − t)m is definite.

Proof. Without loose of generality we denote B(t) by (t2 − t)m, hence B
k
(t) = (t2 −

t)mk. Let A(t) be an arbitrary polynomial, it can be written as A(t) = a1(t2 − t) +
. . .+ an(t2 − t)n + (2t− 1)P (t2 − t), where P is a polynomial. Consider the moment
conditions (1.6), we have∫ 1

0

B
k
(t)A(t)dt = a1Imk+1 + . . .+ anImk+n = 0, k = 0, 1, · · · . (3.1)

Consider n equation of the system (3.1). By lemma (2.1) and part (2) of theorem
(2.4) we have

a1 = . . . = an = 0,

hence A(t) = (2t− 1)P (t2 − t) and A(t), B(t) satisfy the composition condition with
w(t) = t2 − t. �

Lemma 3.2. Every polynomial in the form B(t) = (2t−1)(t2− t)m+(2t−1)(t2− t)l
is definite.

Proof. Without loose of generality, suppose m < l, B(t) = (t2−t)m+1

m+1 + (t2−t)l+1

l+1 , that

for simplicity we show it by (t2− t)m + (t2− t)l. Let A(t) = a1(t2− t) + . . .+ an(t2−
t)n + (2t− 1)P (t2 − t). Consider the moment conditions (1.6), we have

B
k
(t) =

k∑
i=0

(
k

i

)
(t2 − t)mk−mi+li,

∫ 1

0
B
k
(t)A(t)dt =

a1

∑k
i=0

(
k
i

)
Imk−mi+li+1 + . . .+ an

∑k
i=0

(
k
i

)
Imk−mi+li+n = 0,

k = 0, 1, . . . ,

(3.2)

and by part (4) of theorem (2.4), we have

a1 = . . . = an = 0,

and the proof is complete. �

Theorem 3.3. Let f(x) be a continuous function that is UV − odd and its Fourier
coefficients defined by (2.3) are non-negative, then f is definite.

Proof. By an induction on lemma 3.2 the proof is complete. �

Example 3.4. Let f(t) =
∑∞
n=0 an(2t−1)(t2−t)n, where an > 0 for all n ≥ 0. Then

f(t) is definite on its convergence area. For example the function
∑∞
n=0 ( 1

nt )(2t −
1)(t2 − t)n is definite.
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4. Conclusions

In this paper we decompose the polynomials as a linear combination of the functions
(t2−t)k and (2t−1)(t2−t)k. These functions are periodic and construct an orthogonal
basis for the family of continuous functions. Using Fourier series in terms of these
orthogonal basis, one obtain that for the expanding of continuous functions, in special
for polynomials, the number of terms in the form (2t − 1)(t2 − t)k determines the
vanishing moment conditions and the degree of polynomial is not important.
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Appendix A

Chio pivotal condensation method. Chio pivotal condensation method is a method
of calculating the determinant [8](pp. 129-134). In this method an n×n matrix reduce
to an (n− 1)× (n− 1) matrix.∣∣∣∣∣∣∣∣∣

a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

. . .
...

an1 an2 . . . ann

∣∣∣∣∣∣∣∣∣ =

1
an−1
11

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣ a11 a12

a21 a22

∣∣∣∣ ∣∣∣∣ a11 a13

a21 a23

∣∣∣∣ . . .

∣∣∣∣ a11 a1n

a21 a2n

∣∣∣∣∣∣∣∣ a11 a12

a31 a32

∣∣∣∣ ∣∣∣∣ a11 a13

a31 a33

∣∣∣∣ . . .

∣∣∣∣ a11 a1n

a31 a3n

∣∣∣∣
...

...
. . .

...∣∣∣∣ a11 a12

an1 an2

∣∣∣∣ ∣∣∣∣ a11 a13

an1 an3

∣∣∣∣ . . .

∣∣∣∣ a11 a1n

an1 ann

∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.
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