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Abstract This article is devoted to the study of existence and multiplicity of positive solutions
to a class of nonlinear fractional order multi-point boundary value problems of the
type

−Dq
0+u(t) = f(t, u(t)), 1 < q ≤ 2, 0 < t < 1,

u(0) = 0, u(1) =

m−2∑
i=1

δiu(ηi),

where Dq
0+ represents standard Riemann-Liouville fractional derivative, δi, ηi ∈

(0, 1) with
m−2∑
i=1

δiη
q−1
i < 1, and f : [0, 1]× [0,∞) → [0,∞) is a continuous function.

We use some classical results of fixed point theory to obtain sufficient conditions

for the existence and multiplicity results of positive solutions to the problem under
consideration. In order to show the applicability of our results, we provide some
examples.

Keywords. Fractional differential equations; Boundary value problems; Positive solutions; Green’s func-

tion; Fixed point theorem.
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1. Introduction

This article is concerned with the existence triple positive solutions to multi-point
boundary value problems with nonlinear fractional order differential equations of the
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form

−Dq
0+u(t) = f(t, u(t)), 1 < q ≤ 2, 0 < t < 1

u(0) = 0, u(1) =

m−2∑
i=1

δiu(ηi),
(1.1)

where Dq
0+ is the standard Riemann-Liouville fractional derivative of order q and

δi, ηi ∈ (0, 1) with
m−2∑
i=1

δiη
q−1
i < 1, and f : [0, 1]× [0,∞) → [0,∞) is continuous. Dif-

ferential equations of fractional order is one of the fast growing area of research in the
field of mathematics and have recently been proved to be valuable tools in the model-
ing of many phenomena in various fields of science and engineering. Indeed, one can
find numerous applications of fractional order differential equations in viscoelasticity,
electro-chemistry, control theory, movement through porous media, electromagnetics,
etc (see [2, 6, 10, 11, 18, 19, 21, 22]).

The theory of existence of solutions to boundary value problems associated with
fractional differential equations have recently been attracted the attention of many
researchers, see for example [1, 3, 4, 5, 8, 12, 13, 16, 23] and the references therein.
In these cited references, existence of at least one solution is studied with the tools of
classical fixed point theory.

In [23], Rehman and Khan investigated multi-point boundary value problem for
fractional order differential equation

Dα
t y(t) = f(t, y(t), Dβ

t y(t)); t ∈ (0, 1),

y(0) = 0, Dβ
t y(1)−

m−2∑
i=1

ζiD
β
t y(ξi) = y0,

where 1 < α ≤ 2, 0 < β < 1, 0 < ξi < 1, ζi ∈ [0,+∞) with
m−2∑
i=1

ζiξ
α−β−1 < 1 and

obtained sufficient conditions for existence and uniqueness of nontrivial solutions via
Schauder fixed point theorem, and contraction mapping principle.

As for the existence of multiple positive solutions are concerned, few papers can be
found in the literature dealing with the existence and multiplicity of positive solutions
to multi-point boundary value problems for fractional differential equations [7, 24, 29].
Zhang et. al [29] studied existence of positive solutions for the eigenvalue problem
corresponding to a class of fractional differential equation

−Dα
t x(t) = λf(t, x(t), Dβ

t x(t)); t ∈ (0, 1),

Dβ
t x(0) = 0, Dγ

t x(1) =

p−2∑
j=1

ajD
γ
t x(ξj),

where λ is a parameter, 1 < α ≤ 2, α − β > 1, 0 < β ≤ γ < 1, 0 < ξ1 < ξ2 <

... < ξp−2 < 1, aj ∈ [0,+∞) with c =
p−2∑
j=1

ajξ
α−γ−1
j < 1, and Dt is the standard

Riemann-Liouville derivative.
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Recently existence of positive solutions for single and system of boundary value prob-
lems of nonlinear fractional order differential equations corresponding to different
boundary conditions are also studied by many authors for which we refer some recent
works in [9, 17, 20, 26, 27, 28].

Inspired from the above works, in this paper, we study a different problem and
obtain sufficient conditions for existence, uniqueness as well as conditions for existence
of triple positive solutions to the BVP (1.1). For the applicability of our results, we
include some examples.

2. Preliminaries

This section contains some necessary definitions and lemmas taken from fractional
calculus [18, 21] and functional analysis books . These definitions and lemmas will be
used frequently in the forthcoming section.

Definition 2.1. The fractional integral of order q > 0 of a function y : (0,∞) → R
is given by

Iq0+y(t) =
1

Γ(q)

∫ t

0

(t− s)q−1y(s) ds,

provided that the integral converges.

Definition 2.2. The fractional derivative of order q > 0 of a continuous function
y : (0,∞) → R is given by

Dq
0+y(t) =

1

Γ(n− q)

(
d

dt

)n ∫ t

0

(t− s)n−q−1y(s) ds,

where n = [q] + 1, provided that the right side is pointwise defined on (0,∞).

Definition 2.3. A map θ is said to be a nonnegative continuous concave functional
on a cone P of a real Banach space E provided that θ : P → [0,∞) is continuous and

θ(tx+ (1− t)y) ≥ tθ(x) + (1− t)θ(y),

for all x, y ∈ P and 0 ≤ t ≤ 1.

The next two lemmas provide an important rule for obtaining the equivalent inte-
gral equation of BVP (1.1).

Lemma 2.4. [25] If we assume u ∈ C(0, 1) ∩ L(0, 1), then the fractional differential
equation of order q > 0

Dq
0+u(t) = 0,

has a unique solution of the form

u(t) = C1t
q−1 + C2t

q−2 + ...+ CN tq−N , Ci ∈ R, i = 1, 2, ..., N.

The following law of composition can be easily deduced from Lemma 2.4.

Lemma 2.5. Assume that u ∈ C(0, 1)∩L(0, 1), with a fractional derivative of order
q that belongs to C(0, 1) ∩ L(0, 1), then

Iq0+D
q
0+u(t) = u(t) + C1t

q−1 + C2t
q−2 + ...+ CN tq−N , Ci ∈ R, i = 1, 2, ..., N.
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Lemma 2.6. [14] Let E be a Banach space, P ⊆ E a cone, and Ω1, Ω2 be the
two bounded open balls of E centered at the origin with Ω1 ⊂ Ω2. Suppose that
T : P ∩ (Ω2 \ Ω1) → P is a completely continuous operator such that either

(i) ∥Tu∥ ≤ ∥u∥, u ∈ P ∩ ∂Ω1 and ∥Tu∥ ≥ ∥u∥, u ∈ P ∩ ∂Ω2, or
(ii) ∥Tu∥ ≥ ∥u∥, u ∈ P ∩ ∂Ω1 and ∥Tu∥ ≤ ∥u∥, u ∈ P ∩ ∂Ω2

holds. Then T has a fixed point in P ∩ (Ω2 \ Ω1).

Lemma 2.7. [15] Let P be a cone in a real Banach space E, Pc = {u ∈ P : ∥u∥ ≤ c},
θ a nonnegative continuous concave function on P such that θ(u) ≤ ∥u∥ for all u ∈
Pc, and P (θ, b, d) = {u ∈ P : b ≤ θ(u), ∥u∥ ≤ d}. Suppose T : Pc → Pc is completely
continuous and there exist constants 0 < a < b < d ≤ c such that

(i) {u ∈ P (θ, b, d) | θ(u) > b} ̸= ∅, and θ(Tu) > b for u ∈ P (θ, b, d)
(ii) ∥Tu∥< a for u ≤ a
(iii) θ(Tu) > b for u ∈ P (θ, b, c) with ∥Tu∥ > d.

Then T has at least three fixed points u1, u2, u3 with ∥u1∥ < a, b < θ(u2), a < ∥u3∥
with θ(u3) < b.

3. Main Results

In this section we develop sufficient conditions on the nonlinear function f , under
which the BVP (1.1) has at least one solution and also we study sufficient conditions
leading to multiplicity of positive solutions. Denote by E = C[0, 1] the Banach space
of all continuous real-valued functions on [0,1] with norm ∥u∥ = sup

0≤t≤1
|u(t)| and a

cone by P such that

P = {u ∈ E : u(t) ≥ 0, t ∈ [0, 1]}.
Define nonnegative continuous concave functional θ on the cone P as follow

θ(u) = min
ηi−2≤t≤ηi

|u(t)|. (3.1)

Lemma 3.1. For y(t) ∈ C[0, 1], the linear BVP

Dq
0+u(t) + y(t) = 0; 0 < t < 1, 1 < q ≤ 2,

u(0) = 0, u(1) =

m−2∑
i=1

δiu(ηi),
(3.2)

has a unique solution of the form u(t) =
∫ 1

0
G(t, s)y(s) ds, where the Green function

G(t, s) is given by

G(t, s) =
1

Γ(q)



tq−1

1−λ

[
(1− s)q−1 −

m−2∑
j=i

δj(ηj − s)q−1

]
− (t− s)q−1; s ≤ t, ηi−1 < s ≤ ηi,

i = 1, 2, ...,m− 1,

tq−1

1−λ

[
(1− s)q−1 −

m−2∑
j=i

δj(ηj − s)q−1

]
; t ≤ s, ηi−1 < s ≤ ηi,

i = 1, 2, ...,m− 1.

(3.3)
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Proof. In view of Lemma (2.5), we obtain

u(t) = −Iq0+y(t) + C1t
q−1 + C2t

q−2, (3.4)

for some C1, C2 ∈ R. The boundary condition u(0) = 0 implies C2 = 0 and the

condition u(1) =
m−2∑
i=1

δiu(ηi), yields C1 = 1
1−λ

[
Iq0+y(1)−

m−2∑
i=1

δiI
q
0+y(ηi)

]
, where

λ =
m−2∑
i=1

δiη
q−1
i < 1. Hence, (3.4) takes the form

u(t) = −Iq0+y(t) +
tq−1

1− λ

[
Iq0+y(1)−

m−2∑
i=1

δiI
q
0+y(ηi)

]
. (3.5)

We discuss several cases: for 0 ≤ t ≤ η1, we write (3.5) as

u(t) =

∫ t

0

[
− (t− s)q−1

Γ(q)
+

tq−1

Γ(q)(1− λ)

(
(1− s)q−1 −

m−2∑
j=1

δj(ηj − s)q−1)]y(s) ds
+

tq−1

Γ(q)(1− λ)

∫ η1

t

(
(1− s)q−1 −

m−2∑
j=1

δj(ηj − s)q−1)y(s) ds
+

m−2∑
i=2

∫ ηi

ηi−1

(
(1− s)q−1 −

m−2∑
j=1

δj(ηj − s)q−1)y(s) ds+ ∫ 1

ηm−2

(1− s)q−1y(s) ds.

For ηl−1 ≤ t ≤ ηl, 2 ≤ l ≤ m− 2 , we write (3.5) as

u(t) =
∫ η1

0

[
− (t−s)q−1

Γ(q) + tq−1

Γ(q)(1−λ)

(
(1− s)q−1 −

m−2∑
j=1

δj(ηj − s)q−1
)]
y(s) ds

+
m−2∑
i=2

∫ ηi

ηi−1

[
− (t−s)q−1

Γ(q) + tq−1

Γ(q)(1−λ)

(
(1− s)q−1 −

m−2∑
j=i

δj(ηj − s)q−1
)
+ (1− s)q−1

]
y(s) ds

+
∫ t

ηl−1

[
− (t−s)q−1

Γ(q) + tq−1

Γ(q)(1−λ)

(
(1− s)q−1 −

m−2∑
j=l

δj(ηj − s)q−1
)]
y(s) ds

+ tq−1

Γ(q)(1−λ)

[ ∫ ηl

t

(
(1− s)q−1 −

m−2∑
j=l

δj(ηj − s)q−1
)]
y(s) ds

+
m−2∑
i=l+1

∫ ηi

ηi−1

(
(1− s)q−1 −

m−2∑
j=i

δj(ηj − s)q−1
)
y(s) ds

+
∫ 1

ηm−2
(1− s)q−1y(s) ds.

For ηm−2 ≤ t ≤ 1, we write (3.5) as

u(t) =

∫ η1

0

[
− (t− s)q−1

Γ(q)
+

tq−1

Γ(q)(1− λ)

(
(1− s)q−1 −

m−2∑
j=1

δj(ηj − s)q−1)]y(s) ds
+

m−2∑
i=2

∫ ηi

ηi−1

[
− (t− s)q−1

Γ(q)
+

tq−1

Γ(q)(1− λ)

(
(1− s)q−1 −

m−2∑
j=i

δj(ηj − s)q−1)]y(s) ds
+

tq−1

Γ(q)(1− λ)

[ ∫ t

ηm−2

(1− λ)(t− s)q−1 + (1− s)q−1y(s) ds+

∫ 1

t

(1− s)q−1y(s) ds
]
.
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Therefore, the unique solution of the BVP (1.1) is given by u(t) =
∫ 1

0
G(t, s)y(s) ds,

where

G(t, s) =
1

Γ(q)



tq−1

1−λ

[
(1− s)q−1 −

m−2∑
j=i

δj(ηj − s)q−1

]
− (t− s)q−1; s ≤ t, ηi−1 < s ≤ ηi,

i = 1, 2, ...,m− 1,

tq−1

1−λ

[
(1− s)q−1 −

m−2∑
j=i

δj(ηj − s)q−1

]
; t ≤ s, ηi−1 < s ≤ ηi,

i = 1, 2, ...,m− 1.

�

Lemma 3.2. The Green’s function defined by (3.3) satisfies the following conditions:
(i) G(t, s) > 0, for t, s ∈ (0, 1);
(ii) There exists a positive function γ ∈ C(0, 1) such that

min
ηi−1≤t≤ηi

G(t, s) ≥ γ(s) max
0≤t≤1

G(t, s) = γ(s)G(s, s), for 0 < s < 1. (3.6)

Proof. (i): If ηj−1 < s ≤ ηj ,

G(t, s) =
tq−1[(1− s)q−1 −

∑m−2
j=i δj(ηj − s)q−1]− (1− λ)(t− s)q−1

Γ(q)(1− λ)
.

For t < ηj

G(t, s) >
tq−1[(1− s)q−1 −

∑m−2
j=i δj(ηj − s)q−1]

Γ(q)(1− λ)
> 0,

and for t ≥ ηj

G(t, s) ≥ tq−1(1− s)q−1 − (t− s)q−1

Γ(q)(1− λ)
> 0.

For ηj ≤ s ≤ t ≤ 1,

G(t, s) =
tq−1(1− s)q−1 − (1− λ)(t− s)q−1

Γ(q)(1− λ)
≥ tq−1(1− s)q−1 − (t− s)q−1

Γ(q)(1− λ)
> 0.

Therefore for each ηj ≤ s ≤ t ≤ 1 and 0 ≤ t ≤ s, s ≥ ηj . Hence the expression for
G(t, s) in (3.3) shows that G(t, s) > 0, for s, t ∈ (0, 1).
(ii) Let us denote

g1(t, s) =
tq−1

Γ(q)(1− λ)

(
(1− s)q−1 −

m−2∑
j=i

δj(ηj − s)q−1
)
− (t− s)q−1

Γ(q)
,

g2(t, s) =
tq−1

Γ(q)(1− λ)

(
(1− s)q−1 −

m−2∑
j=i

δj(ηj − s)q−1
)
,

then, ∂g1(t,s)
∂t < 0 and ∂g2(t,s)

∂t > 0 for s ≤ t, which implies that g1(t, s) is decreasing
and g2(t, s) is an increasing function for s ≤ t. It follows that G(t, s) is decreasing
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with respect to t for s ≤ t and increasing with respect to t for t ≤ s. Consequently,

min
ηi−1≤t≤ηi

G(t, s) =

 g1(ηi, s), s ∈ (0, ηi−1],
min{g1(ηi, s), g2(ηi−1, s)}, s ∈ [ηi−1, ηi],
g2(ηi−1, s), s ∈ [ηi, 1),

which implies that

min
ηi−1≤t≤ηi

G(t, s) =

{
g1(ηi, s), s ∈ (0, r],
g2(ηi−1, s), s ∈ [r, 1),

where ηi−1 < r < ηi. Further, we note that

max
0≤t≤1

G(t, s) = G(s, s) =
sq−1

Γ(q)(1− λ)

[
(1− s)q−1 −

m−2∑
j=i

δi(ηi − s)q−1
]
,

for s ∈ (0, 1). As a result

γ(s) =


(
ηi

s

)q−1 − (ηi−s)q−1

sq−1

(1−λ)

[
(1−s)q−1−

m−2∑
j=i

δj(ηj−s)q−1

] , s ∈ (0, r],

(ηi−1

s

)q−1
, s ∈ [r, 1).

�
In view of Lemma (3.1), the BVP (1.1) is equivalent to the integral equation

u(t) =

∫ 1

0

G(t, s)f(s, u(s))ds, (3.7)

and by a solution of the BVP (1.1), we mean a solution of the integral equation (3.7),
that is a fixed point of the operator T : P → P defined by

Tu(t) =

∫ 1

0

G(t, s)f(s, u(s))ds. (3.8)

Lemma 3.3. For nonnegative real-valued functions m, n ∈ L[0, 1] such that

f(t, u) ≤ m(t) + n(t)u, for almost every t ∈ [0, 1], and all u ∈ [0,∞), (3.9)

the operator T defined by (3.8) is completely continuous.

Proof. Due to nonnegativity and continuity of G(t, s) and f(t, s), the operator T is
continuous. For each u ∈ Ω = {u ∈ P : ∥u∥ ≤ M, M > 0}, we have

|Tu(t)| =
∣∣∣∣ ∫ 1

0

G(t, s)f(s, u(s))ds

∣∣∣∣ ≤ ∫ 1

0

G(t, s)(m(s) + n(s)u(s))ds

≤
∫ 1

0

G(s, s)m(s)ds+M

∫ 1

0

G(s, s)n(s)ds = l,

which implies that T (Ω) is bounded.

For equicontinuity of T : P → P , take t1, t2 ∈ [0, 1] such that t1 < t2 with t2− t1 < δ.
Then for u ∈ Ω, we have

|Tu(t2)− Tu(t1)| =

∣∣∣∣ ∫ 1

0

[G(t2, s)f(s, u(s))−G(t1, s)f(s, u(s))] ds

∣∣∣∣
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≤
∫ 1

0

|G(t2, s)−G(t1, s)|(m(s) + n(s)M)ds,

which in view of the continuity of G(t, s) and K = max{m(s) + n(s)M : s ∈ [0, 1]}
implies that

|Tu(t2)− Tu(t1)| ≤ 1

Γ(q)

∣∣∣∣tq−1
2 − tq−1

1

∣∣∣∣
1∫

0

1

1− λ

[
(1− s)q−1 −

m−2∑
j=1

δi(ηi − s)q−1

]
Kds

≤ 1

Γ(q)

∣∣∣∣tq−1
2 − tq−1

1

∣∣∣∣ K

q(1− λ)
.

Using mean value theorem on |tq−1
2 − tq−1

1 | and the choice |t2 − t1| < δ , we have

|Tu(t2)− Tu(t1)| ≤
K

Γ(q)q(1− λ)
(q − 1)Cq−2|t2 − t1| ≤

K(q − 1)

Γ(q)q(1− λ)
δq−1 ≤ ϵ

where Cq−2 ≤ δq−2, δ =
(

ϵ
Aq

) 1
q−1

and A = K
Γ(q)q(1−λ) . Hence T : P → P is

equicontinuous. By Arzela-Ascoli theorem, we conclude that the operator T : P → P
is completely continuous. �

Now, we show existence of at least one solution of the BVP (1.1). Fix M =(∫ 1

0
G(s, s)ds

)−1

and N =
(∫ ηi

ηi−1
γ(s)G(s, s)ds

)−1

.

Theorem 3.4. Assume that the condition (3.9) of Lemma (3.3) holds and there exist
two positive constants r2 > r1 > 0 such that

f(t, u) ≤ Mr2, for (t, u) ∈ [0, 1]×[0, r2] and f(t, u) ≥ Nr1, for (t, u) ∈ [0, 1]×[0, r1].

(3.10)

Then BVP (1.1) has at least one positive solution u such that r1 ≤ ∥u∥ ≤ r2.

Proof. In view of (3.8) and Lemma (3.9), T is completely continuous. By Schauder
fixed point theorem, T has a fixed point, Tu = u.

Define Ω2 = {u ∈ P : ∥u∥ < r2}. For u ∈ ∂Ω2, we have 0 ≤ u(t) ≤ r2 for all
t ∈ [0, 1] and using (3.10) and Lemma (3.2), it follows that

∥Tu∥ = max
0≤t≤1

∫ 1

0

G(t, s)f(s, u(s))ds ≤ Mr2

∫ 1

0

G(s, s)ds = r2 = ∥u∥.

Similarly, define Ω1 = {u ∈ P : ∥u∥ < r1}. For u ∈ ∂Ω1, we have 0 ≤ u(t) ≤ r1 for
all t ∈ [0, 1] and for t ∈ [ηi−i, ηi], we have

∥Tu∥ =

∫ 1

0

G(t, s)f(s, u(s))ds ≥
∫ 1

0

γ(s)G(s, s)f(s, u(s))ds

≥ Nr1

∫ ηi

ηi−1

γ(s)G(s, s)ds = r1 = ∥u∥.

�
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Example 1. For the BVP

D
3
2
0+u(t) + u2 +

cos t

4
+

1

5
= 0, 0 < t < 1,

u(0) = 0, u(1) =

m−2∑
i=1

δiu(ηi) =
1

5
,

(3.11)

M =
(∫ 1

0
G(s, s)ds

)−1

≈ 1.088 and N =
(∫ 3

4
1
4

γ(s)G(s, s) ds
)−1

= 4.914. Choosing

r1 = 1
25 , r2 = 3

4 , we have

f(t, u) = u2 +
cos t

4
+

1

5
≤ 1.151 ≤ Mr2, for (t, u) ∈ [0, 1]×

[
0,

3

4

]
,

f(t, u) = u2 +
cos t

4
+

1

5
≥ 1

5
≥ Nr1, for (t, u) ∈ [0, 1]×

[
0,

1

25

]
.

By Theorem 3.2, the BVP (3.11) has at least one solution u such that 1
25 ≤ ∥u∥ ≤ 3

4 .

Theorem 3.5. Let there exists h(t) ∈ L[0, 1] such that
1∫
0

G(s, s)h(s)ds < 1 and

|f(t, u)− f(t, v)| ≤ h(t)|u− v|,

for almost t ∈ L[0, 1], and u, v ∈ [0,∞), then the BVP (1.1) has a unique positive
solution.

Proof. For u, v ∈ P , we have

|Tu(t)− Tv(t)| =

∣∣∣∣
1∫

0

G(t, s)(f(s, u(s)− f(s, v(s))ds

∣∣∣∣
≤

1∫
0

G(t, s)|(f(s, u(s))− f(s, v(s))|ds,

≤
1∫

0

G(s, s)h(s)|u(s)− v(s)|ds ≤
1∫

0

G(s, s)h(s)ds∥u− v∥

= α∥u− v∥,

where α =
1∫
0

G(s, s)h(s)ds < 1. Therefore, by Banach contraction principle, The

BVP has a unique solution. �

Example 2. Consider the BVP

D
3
2
0+u(t) +

e2tu

4(1 + e2t)(1 + u)
+ cos2 t+ 1 = 0, 0 < t < 1,

u(0) = 0, u(1) =
m−2∑
i=1

δiu(ηi) =
1

5
.

(3.12)
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Here, f(t, u) = e2tu
4(1+e2t)(1+u) + cos2 t+ 1 and taking h(t) = e2t

4(1+e2t) , then∫ 1

0
G(s, s)h(s)ds ≤

∫ 1

0

√
s
5 +

2
√

s(1−s)√
π

e2s

4(1+e2s)ds

≤
∫ 1

0

√
s
5 +

2
√

s(1−s)√
π

ds = 0.576446

and

|f(t, u)− f(t, v)| ≤ h(t)|u− v|, for (t, u), (t, v) ∈ [0, 1]× [0,∞).

By Theorem (3.5), the BVP has a unique positive solution.

Theorem 3.6. Assume that the condition (3.9) of Lemma (3.3) holds and there exist
positive constants 0 < a < b < c such that

(i) f(t, u) < Ma, for (t, u) ∈ [0, 1]× [0, a]
(ii) f(t, u) ≥ Nb, for (t, u) ∈ [ηi−1, ηi]× [b, c]
(iii) f(t, u) ≤ Mc, for (t, u) ∈ [0, 1]× [0, c],

then the BVP (1.1) has at least three positive solutions u1, u2, and u3 such that

max
0≤t≤1

|u1(t)| < a, b < min
ηi−1≤t≤ηi

|u2(t)| ≤ c, a < max
0≤t≤1

|u3(t)| < c, min
ηi−1≤t≤ηi

|u3(t)| < b.

(3.13)

Proof. For u ∈ Pc, the relation

∥Tu∥ = max
0≤t≤1

∣∣∣∣ ∫ 1

0

G(t, s)f(s, u(s))ds

∣∣∣∣ ≤ ∫ 1

0

G(s, s)f(s, u)s))ds ≤
∫ 1

0

G(s, s)Mcds ≤ c

follows from item (iii) and the completely continuity of T : P c → Pc follows from
Lemma (3.3). Choose u(t) = b+c

2 , 0 ≤ t ≤ 1. Then using (3.1), we have u(t) = b+c
2 ∈

P (θ, b, c), θ(u) = θ( (b+c)
2 ) > b implies that {u ∈ P (θ, b, c) |θ(u) > b} ̸= ∅. Hence, if

u ∈ P (θ, b, c), then b ≤ u(t) ≤ c for ηi−1 ≤ t ≤ ηi. Also, from assumption (ii), we
have f(t, u(t)) ≥ Nb, for ηi−1 ≤ t ≤ ηi and

θ(Tu) = min
ηi−1≤t≤ηi

|(T (u))| ≥
∫ 1

0

γ(s)G(s, s)f(s, u(s))ds >

∫ ηi

ηi−1

γ(s)G(s, s)Nbds = b,

which implies that

θ(Tu) > b, for all u ∈ P (θ, b, c).

Hence by Lemma (2.7), the BVP (1.1) has at least three positive solutions u1, u2,and
u3 satisfying (3.13). �
Example 3. For the problem

D
3
2
0+u(t) + f(t, u) = 0, 0 < t < 1, u(0) = 0, u(1) =

m−2∑
i=1

δiu(ηi) =
1

5
, (3.14)

where

f(t, u) =

{
cos t
100 + u2; u ≤ 1 ,
3 + cos t

100 + u; u > 1 ,
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we find that M ≈ 1.088 and N = 4.914. Choosing a = 1
10 , b = 3

4 and c = 44, we
have

f(t, u) =
cos t

100
+ u2 ≤ 0.02 < Ma ≈ 0.1088, for (t, u) ∈ [0, 1]×

[
0,

1

10

]
,

f(t, u) = 3 +
cos t

100
+ u ≤ 47.01 ≥ Nb ≈ 3.6855, for (t, u) ∈

[1
4
,
3

4

]
×
[3
4
, 44

]
,

f(t, u) = 3 +
cos t

100
+ u ≤ 47.01 ≤ Mc ≈ 47.872, for (t, u) ∈ [0, 1]× [0, 44].

Hence, by Theorem (3.6), the BVP (3.14) has at least three positive solutions u1, u2,
and u3 with

0 < max0≤t≤1|u1(t)| < 1
10 , 1 < min 1

4≤t≤ 3
4
|u2(t)| ≤ 44,

1
10 < max0≤t≤1|u3(t)| < 44,min 1

4≤t≤ 3
4
|u3(t)| < 3

4 .
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