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Abstract The main purpose of this paper is to propose a new numerical method for solving
the optimal control problems based on state parameterization. Here, the boundary

conditions and the performance index are first converted into an algebraic equation
or in other words into an optimization problem. In this case, state variables will

be approximated by a new hybrid technique based on new second kind Chebyshev

wavelet.
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1. Introduction

To achieving an optimal control for the considered problems is not a simple task.
Recently, optimal control is introduced as a mathematically challenging and practi-
cally important discipline [1, 2] . Traditional control techniques are based on model
constructions. However, it may be difficult to construct an accurate enough model or
to employ a lot of assumptions to solve a differential equation. There exist also several
optimal control problems which are subject to constraints in state and/or control vari-
ables. Direct methods can obtain the optimal solution by direct minimization of the
cost function (performance index), subject to constraints. Among these approaches,
Pontryagins maximum principle method and dynamic programming introduced the
best known methods for solving the optimal control problems [3, 4, 5, 6, 7, 8]. Be-
cause analytical solutions for optimal control problems cant always be solved acces-
sible, finding an approximate solution can be a good idea to solve them. Numerical
approaches have provided a personable field for researchers to the appearance of dif-
ferent numerical computational methods and efficient algorithms for solving optimal
control problems (for details see [9, 10]). In this study, the Chebyshev wavelet method
in [11, 12] is modified by the second kind Chebyshev, and an impressive iterative al-
gorithm is proposed. In this method, only one unknown coefficient is achieved for
finding a proper approximation; further iterations result better accuracy.
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2. Second Kind Chebyshev Wavelet

Generally, wavelets functions are generated from translation and dilation of a def-
inite function called mother wavelet [11, 12, 13]. By considering the translation pa-
rameter (b ) and dilation parameter (a) with a normalized time (t), wavelet functions
can be described as below

Ψab(t) = |a|−
1
2 Ψ

(
t− b
a

)
, a, b ∈ R, a 6= 0 , (2.1)

Consider the second kind Chebyshev wavelets as Ψ(t) = Ψ(m,n, t) where n =
1, 2, ..., 2k(k = 0, 1, 2, ...) and m illustrates the order of the second kind Chebyshev
polynomial [12, 14, 15, 16, 17, 18]. By considering the illustrated cases, the hybrid
second kind Chebyshev wavelet can be given as below

Ψnm(t) =

{
αm2

k
2√
π
Tm(2k+1t− 2n+ 1), n−1

2k
≤ t ≤ n

2k
,

0, o.w.
(2.2)

where

αm(t) =

{√
2, m = 0,
2, m = 1, 2, . . . .

(2.3)

In the equation above, Tm(t) describes the second kind orthogonal Chebyshev
polynomial of order m , [14, 19]. the orthogonality can be proved by the weight
function w(t) = 1√

1−t2 . The second kind Chebyshev polynomial can be presented as

a three part recursive formula [12]

T0(t) = 1,

T1(t) = 2t,

... , t ∈ [−1, 1],

Tn(t) = 2tTn−1(t)− Tn−2(t).

(2.4)

Therefore, the total Chebyshev wavelet approximation can be considered as below:

f(t) '
∞∑
n=1

∞∑
m=0

fnmΨnm(t). (2.5)

If the infinite series in Eq. 2.5 are truncated, then Eq. 2.5 can be written as

f(t) '
2k∑
n=1

m−1∑
m=0

fnmΨnm(t). (2.6)

The second kind Chebyshev wavelet functions are defined in the interval and can
be considered as orthogonal functions by the weight function as below
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wn(t) = w(2k+1t− 2n+ 1). (2.7)

3. Solving Optimal Control Problems

Lets consider a nonlinear state equation as below [20],

u(τ) = f(τ, x(τ), ẋ(τ)), (3.1)

where the initial conditions are:

x(t0) = x0, x(t1) = x1, (3.2)

here, u(.) : [t0, t1] → R and x(.) : [t0, t1] → R are the signal control and state
variables respectively and f describes the continuously differentiable function with
real-value. The main purpose of the optimal control problem is to minimize a definite
performance index (PI) by achieving a proper control signal from the initial position
x(t0) = x0 to the final position x(t1) = x1 within the time (t1 − t0) ,

PI =

t1∫
t0

L(τ, x(τ), u(τ))dτ. (3.3)

If t0 6= 0 or t1 6= 1 , then for solving the problem with the second kind Chebyshev
wavelet polynomials, we need the transformation below,

τ = (t1 − t0)t+ t0, (3.4)

after the conversation above, the optimal control variable, the initial conditions of
the trajectory x(t) and the performance index will be changed into:

u(t) = f ((t1 − t0) t+ t0, x(t), ẋ(t)) , (3.5)

x(0) = x0, x(1) = x1, (3.6)

J(x) = (t1 − t0)

1∫
−1

L ((t1 − t0) t+ t0, x(t), u(t)) dt. (3.7)

By considering Eq. (2.2) with k = 0 and the second kind Chebyshev wavelet basis
as Ψm(t) = Ψ1m(t) , the approximation for x(.) can be achieved as below

x1(t) =

2∑
m=0

amΨm(t). (3.8)

By considering the boundary conditions Eq. (3.6) we have



CMDE Vol. 4, No. 2, 2016, pp. 162-169 165

{
x1(0) = 2

π (a0 − a1 + a2),
x1(1) = 2

π (a0 + a1 + a2),
(3.9)

the unknown coefficients a0 and a1, can be evaluated as below

{
a0 =

√
π
4 (x1 + x0)− a2,

a1 =
√

π
4 (x1 − x0),

(3.10)

so from Eq. (3.8) we obtain

x1(t) =

(√
π

4
(x1 + x0)− a2

)
Ψ0(t) +

(√
π

4
(x1 − x0)

)
Ψ1(t) + a2Ψ2(t). (3.11)

The above equations give us a chance to have just one uncertainty (a2). Since, a
robust approach has been performed. In the following, x2(t) can be approximated by

x2(t) = x1(t) +

3∑
m=1

amΨm(t). (3.12)

By substituting the boundary conditions x2(0) = x1(0) = x0 and x2(1) = x1(1) =
x1 , we have

a1Ψ1(0) + a2Ψ2(0) + a3Ψ3(0) = 0,

a1Ψ1(1) + a2Ψ2(1) + a3Ψ3(1) = 0,
(3.13)

then unknown coefficients a1 and a2 are as

a1 =
Ψ2(0)Ψ3(1)−Ψ2(1)Ψ3(0)

Ψ1(0)Ψ2(1)−Ψ1(1)Ψ2(0)
a3,

a2 =
Ψ1(0)Ψ3(1)−Ψ1(1)Ψ3(0)

Ψ1(1)Ψ2(0)−Ψ1(0)Ψ2(1)
a3.

(3.14)

Assuming a∗ as the minimizer of the performance index PI(a3), PI(a∗) includes
the optimal control problem solution. Control and state variables can be also eval-
uated from a∗ approximately. By considering the recurrence characteristics of the
orthogonal functions, the more recurrence results the more precision. Lets assume
the (n+ 1)th step approximation in below

xn+1(t) = xn(t) +

n+2∑
m=n

amΨm(t). (3.15)

By considering the boundary condition xn+1(0) = xn(0) = x0 and xn+1(1) =
xn(1) = x1 , we have
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an+2Ψn+2(0) + an+1Ψn+1(0) + anΨn(0) = 0, (3.16)

an+2Ψn+2(1) + an+1Ψn+1(1) + anΨn(1) = 0. (3.17)

Assuming the Eqs. (3.16) and (3.17), the unknown coefficients an and an + 1 , can
be evaluated as below

an =
Ψn+1(0)Ψn+2(1)−Ψn+1(1)Ψn+2(0)

Ψn(0)Ψn+1(1)−Ψn(1)Ψn+1(0)
an+2, (3.18)

and

an+1 =
Ψn(0)Ψn+2(1)−Ψn(1)Ψn+2(0)

Ψn(1)Ψn+1(0)−Ψn(0)Ψn+1(1)
an+2. (3.19)

By considering the above equations, the final recursive solution for the state vari-
able is

xn+1(t) = xn(t) + an+2Ψn+2(t)

+
Ψn(0)Ψn+2(1)−Ψn(1)Ψn+2(0)

Ψn(1)Ψn+1(0)−Ψn(0)Ψn+1(1)
an+2Ψn+1(t)

+
Ψn+1(0)Ψn+2(1)−Ψn+1(1)Ψn+2(0)

Ψn(0)Ψn+1(1)−Ψn(1)Ψn+1(0)
an+2Ψn(t),

(3.20)

after evaluation the Eq. (3.18), the recursive will be stopped when

|en+1 − en| < ε, (3.21)

as

en+1 = PI(a∗n+1). (3.22)

4. Case Study

Assume the following example to minimize by u(t) using

J =

1∫
0

(
x(τ)− 1

2
u(τ)

2

)
dτ, τ ∈ [0, 1], (4.1)

the state equation is
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u(τ) = ẋ(τ) + x(τ). (4.2)

Also, the boundary conditions are

x(0) = 0, x(1) = 1
2 (1− 1

e )
2
. (4.3)

Here, the analytical solution can be achieved by the Pontryagin’s maximum prin-
ciple as below [6]

x (τ) = 1− 1

2
eτ−1 +

(
1

2e
− 1

)
e−τ , (4.4)

u(τ) = 1− eτ−1, (4.5)

by using Eqs. (3.18) and (3.19) , we have

x1(t) = 9.027033336764101a2t
2 + 9.027033336764101a2t+ 0.199788200446864t,

(4.6)

u1(t) = 0.199788200446864t+ 9.027033336764101(a2t
2 + a2t− a2)

+0.199788200446864.
(4.7)

By substituting Eqs (4.6) and (4.7) into Eq. (4.1) we have

J(a2) = −14.939343991559241a22 - 1.354214327316854a2 + 0.053326221012670.
(4.8)

Table 1. Optimal cost functional J (PI) for different n in case study.

Iteration Method PI Value Error

1 Proposed 0.0840152600 2.7e-5
1 Mehne [9] 0.05332622101 3e-2
1 Kafash [19] 0.0840152601 3e-5
2 Proposed 0.0840423344 3.2e-6
2 Mehne [9] 0.0840152600 3e-5
2 Kafash [19] 0.0840423344 3.2e-6
3 Proposed 0.0840455803 3.7e-8
3 Mehne [9] 0.08402496180 2e-5
3 Kafash [19] 0.0840455804 4e-8

By minimizing the Eq. (4.8), the minimum value is achieved as a∗2 = - 0.045323754780732.
The recurrence Eq. (3.13) can be used for enhancing the main solution performance
in the next equations. The simulation results are shown in Table 1 and Figure 1.
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Figure 1. Control and state variables solution for the case study
which are compared with the exact analytical solution.

5. Conclusion

In this research, a new and robust algorithm is proposed for the optimal control
problems. The proposed method is a hybrid second kind Chebyshev and wavelet
function which has good characteristics of both functions. The basis of the approach
is on state parameterization and because of reducing the uncertainties in the problem,
it gives robust results toward the other methods. The system performance is compared
by two different methods and gives better results for a selected case study.
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