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Abstract In this paper, we develop multi-step methods to solve a class of two-dimensional
nonlinear Volterra integral equations (2D-NVIEs) of the first kind. Here, we convert

a 2D-NVIE of the first kind to a one-dimensional linear VIE of the first kind and then

we solve the resulted equation numerically by multi-step methods. We also verify
convergence and error analysis of the method. At the end, we give some illustrative

examples to show the efficiency and accuracy of the presented method.
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1. Introduction

In general, the integral equations of the first kind are ill-posed problems, that is,
a small perturbation in the given data makes a large perturbation in the solution
[5]. These equations in two-dimensional case have many interesting applications, for
example in mechanic, physics and other applied sciences [11]. But many of these
equations can not be usually solved analytically and they should be solved by nu-
merical methods. Therefore, giving suitable numerical methods for these equations
is very worthwhile. Recently, many researchers have studied two-dimensional inte-
gral equations. For example, homotopy analysis method, the method based on the
piecewise approximation by Chebyshev polynomials and wavelet method have been
presented in [1], [6] and [13], respectively. In [4], the nonlinear Volterra-Fredholm
integral equations have been solved by collocation methods based on polynomials of
spline spaces. In [15], an Euler-type method has been presented for 2D-VIEs of the
first kind. In [12], an adaptive multi-scale moment method has been proposed for
solving two-dimensional Fredholm integral equations (2D-FIEs) of the first kind. The
authors of [17, 18] have developed the well-known Tau method to solve linear and
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nonlinear Volterra integral equations of the first kind. Also in [3] a Runge-Kutta
method and in [14] a method based on application of two-dimensional block-pulse
functions (2D-BPFs) have been applied to solve 2D-VIEs of the first kind. On the
other hand, multi-step methods have been applied to solve one-dimensional integral
equations. For example, in [2, 9, 10] multi-step methods and their stability and con-
vergence have been investigated for one-dimensional linear Volterra integral equations
of the first kind.
As mentioned above, in this paper, we develop multi-step methods to solve 2D-NVIEs
of the first kind. Here, we consider 2D-NVIEs of the first kind of the form:

∫ t

0

∫ x

0

K(x, t, z, s)G(u(z, s))dzds = f(x, t), (x, t) ∈ D := [0, X]× [0, T ],

(1.1)

where f , K and G are continuous functions on their corresponding domains.
By setting y(z, s) = G(u(z, s)) the equation (1.1) is converted to∫ t

0

∫ x

0

K(x, t, z, s)y(z, s)dzds = f(x, t), (x, t) ∈ D, (1.2)

which is linear.
Now, we solve this equation numerically and finally we obtain the numerical solution
of the main unknown function by u(z, s) = G−1(y(z, s)).
It is clear that for solvability of the equation (1.2) , it is necessary that f(x, 0) =
f(0, t) = 0. Also, we assume that K(x, t, x, t) 6= 0.
To discuss the existence and uniqueness of the solution of (1.2), by differentiating of
(1.2) with respect to x, we obtain

∫ t

0

[
K(x, t, x, s)y(x, s) +

∫ x

0

∂K

∂x
(x, t, z, s)y(z, s)dz

]
ds =

∂f

∂x
(x, t). (1.3)

Now, by differentiating of (1.3) with respect to t, we have

K(x, t, x, t)y(x, t) +

∫ x

0

∂K

∂x
(x, t, z, t)y(z, t)dz (1.4)

+

∫ t

0

[
∂K

∂t
(x, t, x, s)y(x, s) +

∫ x

0

∂2K

∂t∂x
(x, t, z, s)y(z, s)dz

]
ds

=
∂2f

∂t∂x
(x, t).

Under the suitable conditions, (1.2) and (1.4) are equivalent. Existence and unique-
ness results for equation (1.4) were obtained by Gronwall in [8] and Goursat in [7],
who used techniques based on Picard,s method of successive approximations [15].
Also, a different approach to prove the existence and uniqueness of the solution of
(1.2) and (1.4) by applying the Picard fixed point iterative procedure to (1.4) can be
found in [15].
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For more details about the existence and uniqueness of the solution of two-dimensional
Volterra integral equations, see [16].

2. multi-step methods

In this section, we introduce multi-step methods for one-dimensional Volterra in-
tegral equations of the first kind, then we extend them to the two-dimensional case.
Consider the equation:∫ t

0

K(t, s)y(s)ds = f(t), t ∈ [0, T ], (2.1)

and set t = ti := ih, i = 0, 1, . . . , N for h = T/N and given positive integer N , then∫ ti

0

K(ti, s)y(s)ds = f(ti), i = 1, . . . , n. (2.2)

Assume that, we have obtained y(tj) ' yj , for j = 0, . . . , i − 1. To obtain an ap-
proximation of the unknown function at the point ti, we use a quadrature rule to
approximate the integral part of (2.2), depending on the points tj , j = 0, . . . , i.
Therefore, by knowing the values yj , j = 0, . . . , i− 1, we obtain the approximation yi
from an algebraic equation, at the ith step.
To explain an r-step method, we define [2]:

[ϕhy]i =


h(yi − ŷi), i = 0, 1, . . . , r − 1

h
∑i

j=0 wijKijyj − fi, i = r, . . . , N.
(2.3)

where, for i = 0, 1, . . . , r − 1, ŷis are the starting values and for i = r, . . . , N , fi and
Kij denote f(ti) and K(ti, tj), respectively. Also wijs are the weights of the quadra-
ture rules and for i = 0, . . . , N , yi denotes approximation of y(ti).
Using a matrix-vector multiplication, Eq.(2.2) can be reduced to the linear system of
algebraic equations:

ϕhy = hUhy − g
where

Uh = (Uij), Uij =

 δij , 0 ≤ i, j ≤ r − 1
wijKij , r ≤ j ≤ i
0, i < j,

(2.4)

y = (y0, . . . , yr−1, yr, . . . , yN )T

and

g = (hŷ0, . . . , hŷr−1, fr, . . . , fN )T . (2.5)

For example, for N = 8, r = 3 and 3/8-Simpson rule, as the main repeated rule and
trapezoidal and Simpson,s rules as the end formulae, the method has the following
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representation (for K ≡ 1):

h



1
0 1
0 0 1

3/8 9/8 9/8 3/8
3/8 9/8 9/8 3/8 + 1/2 1/2
3/8 9/8 9/8 3/8 + 1/3 4/3 1/3
3/8 9/8 9/8 3/8 + 3/8 9/8 9/8 3/8
3/8 9/8 9/8 3/8 + 3/8 9/8 9/8 3/8 + 1/2 1/2
3/8 9/8 9/8 3/8 + 3/8 9/8 9/8 3/8 + 1/3 4/3 1/3





y0
y1
y2
y3
y4
y5
y6
y7
y8


=



hŷ0
hŷ1
hŷ2
f3
f4
f5
f6
f7
f8


To obtain the first exact starting value, we assume K(t, t) 6= 0 for all t ∈ [0, T ] and differen-
tiate (2.1) to get:

y(t) +

∫ t

0

(
∂K

∂t
(t, s)/K(t, t))ds =

f ′(t)

K(t, t)
. (2.6)

Then setting t = 0 in (2.6) yields:

ŷ0 = y(0) =
f ′(0)

K(0, 0)
. (2.7)

Now, one can use any one-step method to produce other required starting values.
The following algorithm can be given to the presented method.

Algorithm of the method:
Step 1: For a given positive integer N, set h = T/N and ti = ih for i = 0, . . . , N .
Step 2: Select main repeated formula and end formula(e) and form the matrix Uh by (2.4).
Step 3: Obtain y0 = ŷ0 exactly by (2.7).
Step 4: For i = 1, . . . , r − 1 obtain ŷi by a one-step method.
Step 5: Form the vector g by (2.5).
Step 6: Solve the lower triangular system hUhy = g.

Here, we will use 3/8-Simpson’s rule as the main repeated formula and 4-step and 5-step
rules as the end formulae.

3. main results

In this section, we describe the method of this paper. As we mentioned previously, it is
sufficient to consider the equation (1.2).
First, we set t = 0 and x = 0 separately in equation (1.4) and obtain,

K(x, 0, x, 0)y(x, 0) +

∫ x

0

∂K

∂x
(x, 0, z, 0)y(z, 0)dz =

∂2f

∂t∂x
(x, 0), (3.1)

and

K(0, t, 0, t)y(0, t) +

∫ t

0

∂K

∂t
(0, t, 0, s)y(0, s)ds =

∂2f

∂t∂x
(0, t). (3.2)

By solving these equations by multi-step methods, the values of the unknown function are
obtained on the boundary of the first quarter of the xt-plane, that is, on the lines x = 0 and
t = 0.
Then, we use a quadrature rule to convert Eq. (1.2) to a one-dimensional case and solve it
by the method described in previous section.
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Let ti = ik, i = 0, 1, . . . ,M and xi = ih, i = 0, 1, . . . , N with k = T/M and h = X/N for
some given positive integers M and N . Setting x = xi in (1.2) implies:∫ t

0

∫ xi

0

K(xi, t, z, s)y(z, s)dzds = f(xi, t), i = 1, . . . , N. (3.3)

Now, we substitute the inner integral by a quadrature rule and get by (3.3):∫ t

0

i∑
j=0

wijK(xi, t, xj , s)y(xj , s)ds = f(xi, t), i = 1, . . . , N, (3.4)

where wijs are the weights of given quadrature rule.
Letting Kij(t, s) := K(xi, t, xj , s), yj(s) := y(xj , s) and fi(t) := f(xi, t), the Eq. (3.4) can
be written as:

i∑
j=0

wij

∫ t

0

Kij(t, s)yj(s)ds = fi(t), i = 1, . . . , N, (3.5)

Now, for i = 1, . . . , N we use the method described in section 2 to obtain approximate values
of y(xi, tj) by using previous approximate values. Finally, to obtain the main solution of the
equation (1.1) at the mesh points we set u(xi, tj) = G−1(y(xi, tj)).
At the first step, that is for x = x1, we use the trapezoidal rule for inner integral because
we just have two points x0, x1, that is for i = 1 the equation (3.5) is converted to:

w10

∫ t

0

K10(t, s)y0(s)ds+ w11

∫ t

0

K11(t, s)y1(s)ds = f1(t), (3.6)

where, w10 = w11 = h/2 are the weights of trapezoidal rule.
Now, we set t = tj for j = 1, . . . ,M in the equation (3.6). The values of y0(tj) = y(0, tj)
are known from the previous step. Therefore, by substituting the integrals of the equation
(3.6) by appropriate quadrature rule, for various values of tj , we obtain y1(tj) = y(x1, tj)
for j = 1, . . . ,M .
For x = x2, we use Simpson,s rule, that is for i = 2, we have:

w20

∫ t

0

K20(t, s)y0(s)ds+ w21

∫ t

0

K21(t, s)y1(s)ds (3.7)

+w22

∫ t

0

K22(t, s)y2(s)ds = f2(t),

where, w20 = w22 = h/3, w21 = 4h/3 are the Simpson,s weights.
Again, we set t = tj for j = 1, . . . ,M in the equation (3.7) and we use appropriate quadrature
rules depending on tj , for the integrals of the equation (3.7). The values of y0(tj) = y(0, tj)
and y1(tj) = y(x1, tj) are known from previous steps. Therefore, in this stage we obtain
y2(tj) = y(x2, tj) for j = 1, . . . ,M . Similarly for x = x3, x4, . . . , xN we use the 3/8-Simpson’s
rule as the main repeated rule with the 4-step and 5-step rules as the end formulae. To apply
the described method, we need the initial values y(x1, t1), y(x1, t2), y(x2, t1) and y(x2, t2),
which we use the trapezoidal and Simpson,s rules at two directions, x and t, to obtain them.

Also, from (1.4) it is obvious that y(0, 0) = ∂2f
∂t∂x

(0, 0)/K(0, 0, 0, 0) with the assumption
K(0, 0, 0, 0) 6= 0.
Now, to obtain the initial values for next stages, that is y(xi, t1) and y(xi, t2) for i = 3, . . . , N ,
first we set t = t1 in (1.2) and we substitute the outer integral by trapezoidal rule and the
inner integral by described multistep method. Therefore, we obtain the values y(xi, t1),
i = 3, . . . , N . Then, we set t = t2 in (1.2) and we substitute the outer integral by Simpson,s
rule and the inner integral by described multi-step method. Therefore, we obtain the values
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y(xi, t2), i = 3, . . . , N . Now, we have the whole of the initial values which we need for
applying the multi-step method for each step.

4. Convergence Analysis

In this section, we present an error bound for the approximate solution and we obtain a
convergence order for the method. To this end, we consider the equation:∫ t

c

∫ x

a

K(x, t, z, s)y(z, s)dzds = f(x, t), (x, t) ∈ J := [a, b]× [c, d]. (4.1)

At the step (i, j), by setting x = xi and t = tj and substitution the integrals by quadrature
rules, we have:

j∑
r=0

i∑
l=0

wjrwilK(xi, tj , xl, tr)yl,r +O(hν) +O(kµ) = fi,j , (4.2)

where yl,r = y(xl, tr), fi,j = f(xi, tj) for i = 1, . . . , N , j = 1, . . . ,M and ν, µ are the order
of quadrature rules with respect to x and t, respectively.
Suppose that, Y is the exact solution of the equation:

j∑
r=0

i∑
l=0

wjrwilK(xi, tj , xl, tr)Yl,r = fi,j . (4.3)

Then we have the following result.

Theorem 4.1. Let

(i) | yp,q − Yp,q |= max | yi,j − Yi,j |, for 1 ≤ i ≤ N , 1 ≤ j ≤M ,

(ii) K(x, t, z, s) ∈ C(J × J),

(iii) γ = sup | K(x, t, z, s) | for x, z ∈ [a, b], t, s ∈ [c, d],

η =| wqqwppK(xp, tq, xp, tq) | and

ξ = (p− 1)h(q − 1)k + wpp(q − 1)k + wqq(p− 1)h.
Then

| yp,q − Yp,q |≤
| O(hν) | + | O(kµ) |

η − γξ . (4.4)

Proof. By subtracting (4.3) from (4.2) for i = p and j = q, we obtain:

q∑
r=0

p∑
l=0

wqrwplK(xp, tq, xl, tr)(yl,r − Yl,r) +O(hν) +O(kµ) = 0. (4.5)

Thus

wqqwppK(xp, tq, xp, tq)(ypq − Ypq) +

q−1∑
r=0

p−1∑
l=0

wqrwplK(xp, tq, xl, tr)(yl,r − Yl,r)
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+

q−1∑
r=0

wqrwppK(xp, tq, xp, tr)(yp,r − Yp,r)

+

p−1∑
l=0

wqqwplK(xp, tq, xl, tq)(yl,q − Yl,q) +O(hν) +O(kµ) = 0, (4.6)

and from the assumptions (i) and (iii) it follows

| wqqwppK(xp, tq, xp, tq) || ypq − Ypq |≤ γ | ypq − Ypq | (p− 1)h(q − 1)k

+γ | ypq − Ypq | wpp(q − 1)k

+γ | (ypq − Ypq) | wqq(p− 1)h+ | O(hν) | + | O(kµ) | . (4.7)

In this inequality we used this fact that for every Newton-Cotes method we have
∑s
i=0 wsi =

sh, where h = si+1 − si.
Therefore, from (4.7) we obtain

| yp,q − Yp,q |≤
| O(hν) | + | O(kµ) |

η − γξ . (4.8)

So the theorem is proved. �

The following results can be obtained from the above theorem.

Corollary 4.2. The approximate solution obtained by described multi-step method tends to
the exact solution at the mesh points if h and k tends to zero.

Corollary 4.3. The order of convergence of the method is min{ν, µ}.

5. Numerical examples

In this section, we give some numerical examples to clarify the efficiency of the presented
method. As mentioned previously, we shall use the 3/8-Simpson’s rule as the main repeated
formula combined with a 4-step and a 5-step end formulae over even and odd subintervals,
respectively. We show the coefficients of 4-step and 5-step rules by αi and βi, respectively. By
choosing the αi and βi such that the quadrature rules are exact for polynomials of degree at
most three, we will have three arbitrary parameters, which with convergence considerations,
we will obtain ([9]):

α0 = 0.39740084,
α1 = 1.07706330,
α2 = 1.05107170,
α3 = 1.07706330,
α4 = 0.39740084.

and



β0 = 0.43284615,
β1 = 1.02180185,
β2 = 0.95933115,
β3 = 1.24606743,
β4 = 0.87843368,
β5 = 0.46151978.

To implement the described method we need the starting values. It can be determined by
one-step methods, such as Runge-Kutta methods. Here, we have used the exact starting
values of solution.
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Example 5.1. As the first example, consider the equation [15]:∫ t

0

∫ x

0

(sin(x+ z) + sin(t+ s) + 3)y(z, s)dzds = f(x, t), (x, t) ∈ [0, 2]× [0, 2],

where f(x, t) is selected such that the exact solution to be y(x, t) = cos(x + t). In this
example, we obtain the results of Table 1. To compare, we report the results of [15] in Table
2.

Table 1. Absolute errors of Example 5.1.

(x, t) h = k = 0.05 h = k = 0.025 h = k = 0.0125
(1,1) 0.2337e -4 0.4858e -5 0.1198e -7
(1,2) 0.1568e -4 0.1373e -5 0.5574e -7
(2,1) 0.1568e -4 0.1373e -5 0.5574e -7
(2,2) 0.2106e -3 0.1797e -4 0.2095e -5

Table 2. Results of [15] with Eulers method for Example 5.1.

(x, t) h = k = 0.05 h = k = 0.025 h = k = 0.0125
(1,1) 0.4060e -1 0.2270e -1 0.1130e -1
(1,2) 0.1230e -1 0.6760e -2 0.3530e -2
(2,1) 0.1230e -1 0.6760e -2 0.3530e -2
(2,2) 0.4060e -1 0.1940e -1 0.9460e -2

Example 5.2. Consider the following two-dimensional VIE for (x, t) ∈ [0, 1]× [0, 1]∫ t

0

∫ x

0

(xz2 + cos(s))y(z, s)dzds =
1

4
x5 − 1

4
x5cos(t) +

1

4
x2sin2(t),

with exact solution y(x, t) = xsin(t). Table 3 shows the numerical result for this example
with h = k = 0.01.

Table 3. Computational results of Example 5.2 for h = k = 0.01.

(x,t) h = k = 0.01
(0.1,0.1) 0.7880e -8
(0.3,0.2) 0.4585e -7
(0.4,0.9) 0.1667e -7
(0.5,0.6) 0.2546e -6
(0.7,0.2) 0.3969e -7
(0.8,0.8) 0.5226e -6

(1,1) 0.1244e -5
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Example 5.3. Consider the third example in the form∫ t

0

∫ x

0

(sin(tz) + 1)y(z, s)dzds =
x2t2 + 2sin(xt)− 2xtcos(xt)

2t2
sin(t),

(x, t) ∈ [0, 1]× [0, 1],

whose exact solution is y(x, t) = xcos(t). Table 4 shows the absolute errors at the points
(x, t) = (2−i, 2−i) for i = 0, 1, ..., 7.

Table 4. Computational results of Example 5.3 for h, k =
1

27
at the points

(x, t) = (2−i, 2−i).

(x, t) = (2−i, 2−i) h = k =
1

27

i = 0 0.5027e -6
i = 1 0.6169e -6
i = 2 0.1929e -6
i = 3 0.1517e -6
i = 4 0.2254e -5
i = 5 0.1570e -4
i = 6 0.1906e -5
i = 7 0.2384e -6

Example 5.4. Consider the following 2D-NVIEs∫ t

0

∫ x

0

6

1 + z + s
u3(z, s)dzds = 2xt3 +

1

2
(6x2 + 12x)t2 + 2x3t+ 6x2t+ 6xt,

(x, t) ∈ [0, 1]× [0, 1].

which has the exact solution as u(x, t) = x + t + 1. To solve this equation, we substitute
y(x, t) = u3(x, t) to get a linear equation.∫ t

0

∫ x

0

6

1 + z + s
y(z, s)dzds = 2xt3 +

1

2
(6x2 + 12x)t2 + 2x3t+ 6x2t+ 6xt,

(x, t) ∈ [0, 1]× [0, 1].

Then we apply the method presented in this paper to obtain the results of Table 5. According
to this Table, we see that the results improve when the step-length h and k decrease.

Example 5.5. Finally, let us consider [14]:∫ t

0

∫ x

0

2ex+tu3(z, s)dzds =
1

9
(ex+t − e4x+t − ex+7t + e4x+7t),

(x, t) ∈ [0, 1]× [0, 1].

The exact solution is u(x, t) = ex+2t. Similar to the previous example, we substitute y(x, t) =
u3(x, t) to get a linear equation.
Table 6 shows the absolute errors at some points using the presented method together with
the results obtained by the method of [14] .

Comparing the results listed in this table, shows the high accuracy of the presented
method with respect to the method of [14]
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Table 5. Computational results of Example 5.4 for different values of h, k.

(x, t) h = k = 0.05 h = k = 0.01
(0.1,0.1) 0.3715e -2 0.5400e -6
(0.2,0.3) 0.4380e -3 0.4086e -6
(0.4,0.7) 0.1592e -3 0.9868e -6
(0.5,0.5) 0.7246e -6 0.5612e -6
(0.6,0.3) 0.1084e -3 0.5864e -6
(0.8,0.8) 0.1019e -5 0.7435e -6
(1,0.9) 0.6840e -6 0.2859e -6

Table 6. Computational results of Example 5.5.

(x, t) = (2−i, 2−i) Present Method Method of [14]

with h = k =
1

27
with m = 64

i = 1 0.1295e -4 0.1000
i = 2 0.3583e -5 0.4600e -1
i = 3 0.4207e -5 0.2900e -1
i = 4 0.1060e -2 0.2300e -1
i = 5 0.2038e -3 0.2000e -1
i = 6 0.3896e -2 0.3100e -1

6. Conclusion

In this paper, we extended multi-step methods to solve two-dimensional nonlinear Volterra
integral equations (2D-NVIEs) of the first kind. We converted a 2D-NVIE of the first kind
to a one-dimensional VIE of the first kind and then we solved the resulted equations by
using multi-step methods. The numerical results confirm the convergence and stability of
the method. It seems that the presented method can be applied to other equations such as
integro-differential equations.
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