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Finite-time stabilization of satellite quaternion attitude
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Abstract In this paper, a finite-time control scheme is presented for stabilization of the satellite

chaotic attitude around its equilibrium point when its attitude is confused by a
disturbed torque. Controllers and settling-time of stabilizaton are obtained, based
on the Lyapunov stability theorem and finite-time control scheme. This method is
satisfied for any initial condition. Numerical simulations are presented to illustrate

the ability and effectiveness of proposed method.
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1. Introduction

At first this section, a brief history of finite-time stability is presented according to
[3]. The concept of finite-time stability (FTS) dates back to the 1950s, when it was
introduced in the Russian literature [19, 21, 22]; later, during the 1960s, this concept
appeared in the western journals [16, 25, 32].

In the last two decades, FTS and stabilization have been investigated in the context
of continuous-time linear systems [5, 6, 7, 9, 11, 13, 14, 18, 28] and of discrete-time
linear systems [4, 8, 10, 12]; in these papers, conditions for analysis and design are gen-
erally provided in terms of feasibility problems involving Linear Matrix Inequalities
(LMIs) [15] and/or Differential Linear Matrix Inequalities (DLMIs) [27] and Differen-
tial Lyapunov Equations (DLEs). More recently, an effort has been spent to extend
such results to the context of nonlinear systems [13, 23, 34]. The issue of control and
stabilization in most of nonlinear systems, and particularly those who argue about the
control of satellitse attitude, have been analized without calculating the settling-time
[24, 26].

In this paper, along with FTS analysis of satellite attitude, the settling-time also is
calculated. Moreover, quaternion parameters are used instead of Euler angles in the
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satellite’s kinematic equations. These parameters are applied to overcome singularity
problem in the numerical solution when performing the great maneuvers is required.

Another important feature of the proposed control scheme compared to other sim-
ilar control methods, it is the possibility of rapid stabilization of the satellite attitude
around its equilibrium point, with applicable choice of control parameter η.

2. FTS and satellite attitude equations

A system is said to be finite-time stable if, given a bound on the initial condition,
its state does not exceed a certain threshold during a specified time interval. More
precisely, given the system

ẋ(t) = f(t, x), x(t0) = x0, (2.1)

where f : R+ × Rn −→ Rn is continuous nonlinear function, x ∈ Rn is the state
vector, x0 is initial state, we can give the following formal definition [3].

Definition 2.1. (FTS) Given an initial time t0, a positive scalar T , two sets X0 and
Xt, system (2.1) is said to be finite-time stable with respect to (t0, T,X0, Xt) if

x0 ∈ X0 ⇒ x(t) ∈ Xt, t ∈ [t0, t0 + T ], (2.2)

where, x(.) denotes the solution of (2.1) starting from x0 at time t0, X0 is initial set,
and Xt is trajectory set. Sets X0 and Xt are generally determined from practical
considerations.

We consider another definition of FTS in this paper which will be utilized in ana-
lyzing the stability of our system.

Definition 2.2. (see [31]). Consider the dynamic system (2.1), if there exists a con-
stant T ∗ > 0 (T ∗ may depend on the initial state X(0)), such that limt→T∗ ∥ x(t) ∥ =
0, and ∥ x(t) ∥= 0 if t ≥ T ∗, then the system (2.1) is finite-time stable.

In the following this section, we describe the satellite’s attitude equations. These
equations are expressed by kinematics and kinetic equations.

2.1. kinematics equations. The kinematics equations explain relationship between
attitude and angular velocity in inertial frame. The quaternion is a four-dimensional
vector which is defined as [33]

q⃗ =
[
Q⃗T q4

]T
, (2.3)

where Q⃗ = [q1 q2 q3]
T=êsin(υ), q4 = cos(υ/2), ê is the unit vector in the direction

of the Euler axes and υ is the rotation angle between the body and orbital frames.
The quaternion vector satisfy the constraint q⃗T q⃗ = 1. By regarding the satellite as
an ideal rigid body, the kinematics equations based on quaternion parameters are
expressed as [29] q̇1 = 1

2 (wzq2 − wyq3 + wxq4) , q̇2 = 1
2 (−wzq1 + wxq3 + wyq4) ,

q̇3 = 1
2 (wyq1 − wxq2 + wzq4) , q̇4 = 1

2 (−wxq1 − wyq2 − wzq3) ,
(2.4)

where wx, wy, wz are angular velocities around axes fixed in the rigid body.
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2.2. kinetic equations. Relation between angular velocity and torque in body frame
is given by kinetic equations. These equations can be derived from a Newton-Euler
formulation [17]


ẇx = 1

Ix
[(Iy − Iz)wywz + cx] ,

ẇy = 1
Iy

[(Iz − Ix)wxwz + cy] ,

ẇz = 1
Iz

[(Ix − Iy)wxwy + cz] ,

(2.5)

where Ix, Iy, Iz are the inertial moments of the satellite about its principal axes, and
cx, cy, cz are torques applied around these axes at time t.

3. Chaos analysis based on the Lyapunov exponents (LEs)

By combining (2.4) and (2.5), the satellite attitude system is presented as

q̇1 = 1
2 (wzq2 − wyq3 + wxq4) ,

q̇2 = 1
2 (−wzq1 + wxq3 + wyq4) ,

q̇3 = 1
2 (wyq1 − wxq2 + wzq4) ,

q̇4 = 1
2 (−wxq1 − wyq2 − wzq3) ,

ẇx = 1
Ix

[(Iy − Iz)wywz + cx] ,

ẇy = 1
Iy

[(Iz − Ix)wxwz + cy] ,

ẇz = 1
Iz

[(Ix − Iy)wxwy + cz] .

(3.1)

In the following, we use SA symbol to refer to the equation (3.1).
Now by choosing constant values and initial conditions given in Table 1, the LEs

of SA system are obtained under the perturbing torques

 cx
cy
cz

 =

 −1200 0 (1000)
√
6
2

0 350 0

−(1000)
√
6 0 −400

 wx

wy

wz

 , (3.2)

for more detail the reader can see [20, 30]. Figure 1 illustrates dynamics of LEs of the
SA system. In this figure value of each of LEs is given in time t = 50(s), and existing
positive LE, indicate that the system is chaotic.

4. Prelimination

Consider dynamical system

ẋi(t) = fi(x1(t), x2(t), ..., xn(t)), i = 1, ..., n. (4.1)
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Table 1. Initial conditions and constant values of the SA system.

Attitudes Values Constants Values
q10 0.2425 Ix(kgm

2) 3000
q20 0.04915 Iy(kgm

2) 2000
q30 0.4645 Iz(kgm

2) 1000
q40 0.8503
wx0(r/s) 0.2
wy0(r/s) 0.6
wz0(r/s) 0.8

Figure 1. Dynamics of LEs of the SA system under the perturbing
torques (3.2).

where, x1, x2, ..., xn are components of attitude vector x, fi : Rn −→ Rn, (i = 1, ..., n)
are continuous nonlinear functions. The finite-time controlled system with initial
conditions is

ẋi(t) = fi(x1(t), x2(t), ..., xn(t)) + ui(t), i = 1, ..., n.
xi(0) = xi,0,

(4.2)

where, xi,0, (i = 1, ..., n) are components of initial attitude x0, and ui(t), (i = 1, ..., n)
are control functions.
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Let

e(t) = x(t)− x̄, (4.3)

is attitude error vector where, x̄ is the equilibrium point of system (4.2). The goal is
to design the appropriate controllers ui(t) such that for any initial condition x0, we
have

lim
t→T∗

∥ e(t) ∥ = 0,

where ∥ . ∥ is the Euclidean norm and T ∗ is the settling time. Settling time dependent
to initial conditions.

We need the following theorem to analyze the finite-time stability of the SA system
and calculate the value of T ∗.

Theorem 4.1. [35] Suppose that function V (t) : [0,∞) −→ [0,∞) is differentiable
(the derivative of V (t) at 0 is, in fact, its right derivative) and

V̇ (t) ≤ −KV (t)α, (4.4)

where K > 0 and 0 < α < 1. Then V (t) will reach to zero in finite time T ∗ ≤
V (0)(1−α)

K(1−α) , and V (t) = 0 for all t > T ∗.

5. Finite-time stability and control

Considering the error vector corresponding to the SA system, and choosing the
equilibrium point x̄ = (0, 0, 0, 1, 0, 0, 0), dynamic of error system is identical with SA
system. Then controlled system of the SA system is presented as

q̇1 = 1
2 (wzq2 − wyq3 + wxq4) + u1,

q̇2 = 1
2 (−wzq1 + wxq3 + wyq4) + u2,

q̇3 = 1
2 (wyq1 − wxq2 + wzq4) + u3,

q̇4 = 1
2 (−wxq1 − wyq2 − wzq3) + u4,

Ixẇx = [(Iy − Iz)wywz + cx] + u5,

Iyẇy = [(Iz − Ix)wxwz + cy] + u6,

Izẇz = [(Ix − Iy)wxwy + cz] + u7,

(q1(0), ..., q4(0), wx(0), wy(0), wz(0)) = (q10 , ..., q40 , wx0 , wy0 , wz0).

(5.1)

The control functions will be designed such that for any initial condition, we have

lim
t→T∗

∥ (q1, q2, q3, q4, wx, wy, wz)− (0, 0, 0, 1, 0, 0, 0) ∥ = 0.
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Lemma 5.1. [2] Suppose a1, a2, ..., an and 0 < q < 2 are all real numbers, then the
following inequality holds

|a1|q + |a2|q + ...+ |an|q ≥ (a1
2 + a2

2 + ...+ an
2)

q
2 . (5.2)

Theorem 5.2. System (5.1) can be finite-time stable for any different initial condi-
tion with following control functions

u1 = −η |q1|α sign(q1),

u1 = −η |q2|α sign(q2),

u2 = −η |q3|α sign(q3),

u4 = −η |1− q4|α sign(q4 − 1),

u5 = −ηIx
α+1
2 |wx|α sign(wx)− [(Iy − Iz)wywz + cx]− 1

2q1,

u6 = −ηIy
α+1
2 |wy|α sign(wy)− [(Iz − Ix)wxwz + cy]− 1

2q2,

u7 = −ηIz
α+1
2 |wz|α sign(wz)− [(Ix − Iy)wxwy + cz]− 1

2q3,

(5.3)

where 0 < α < 1, η > 0 is control parameter, and the settling time is

T ∗ ≤ V (0)
1−α
2

η2
α+1
2 ( 1−α

2 )
. (5.4)

Proof. Consider the lyapunov function as

V (t) =
1

2
[q21 + q22 + q23 + (1− q4)

2 + Ixw
2
x + Iyw

2
y + Izw

2
z ], (5.5)

therefor

V̇ = q1q̇1 + q2q̇2 + q3q̇3 + q̇4(q4 − 1) + Ixwxẇx + Iywyẇy + Izwzẇz

= 1
2 (q1wx + q2wy + q3wz) + wx [(Iy − Iz)wywz + cx]

+wy [(Iz − Ix)wxwz + cy] + wz [(Ix − Iy)wxwy + cz]

+q1u1 + q2u2 + q3u3 + (q4 − 1)u4 + wxu1 + wyu2 + wzu3.

(5.6)

By replacing control functions (5.3) in (5.6), we have

V̇ = −η(|q1|α+1
+ |q2|α+1

+ |q3|α+1
+ |1− q4|α+1

+
∣∣√Ixwx

∣∣α+1
+
∣∣√Iywy

∣∣α+1
+
∣∣√Izwz

∣∣α+1
).

(5.7)

From Lemma 5.1, equality (5.7) be changed as

V̇ ≤ −η(|Ixwx|2 + |Iywy|2 + |Izwz|2 + |q1|2 + |q2|2 + |q3|2

+ |1− q4|2)
α+1
2 .

(5.8)

Therefore

V̇ ≤ −η(2V (t))
α+1
2 , (5.9)
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or

V̇ ≤ −(η2
α+1
2 )V (t)

α+1
2 . (5.10)

Due to 0 < α < 1, it yields 0 < α+1
2 < 1. Therefore, from theorem 4.1, and (5.10),

it is obtained

V (t) ≡ 0, t > T ∗, (5.11)

where settling time T ∗ is given as

T ∗ ≤ V (0)
1−α
2

η2
α+1
2 ( 1−α

2 )
. (5.12)

�

Remark 5.3. [1] The sign(.) function, as a rigid switcher, in the control functions
(5.3), may cause undesirable oscillations. In order to avoid this problem, they are
approximated by the tanh(ρ(.)) function, where ρ > 0 is a constant. Hence, we
rewrite the control functions (5.3) as



u1 = −η |q1|α tanh(ρq1),

u1 = −η |q2|α tanh(ρq2),

u2 = −η |q3|α tanh(ρq3),

u4 = −η |1− q4|α tanh(ρ(q4 − 1)),

u5 = −ηIx
α+1
2 |wx|α tanh(ρwx)− [(Iy − Iz)wywz + cx]− 1

2q1,

u6 = −ηIy
α+1
2 |wy|α tanh(ρwy)− [(Iz − Ix)wxwz + cy]− 1

2q2,

u7 = −ηIz
α+1
2 |wz|α tanh(ρwz)− [(Ix − Iy)wxwy + cz]− 1

2q3.

(5.13)

6. Numerical simulation of finite-time control

To demonstrate and verify the validity of the proposed scheme, we present the
numerical results for finite-time control of satellite chaotic attitude. Assuming α =
0.7, ρ = 100, the initial point and the constant values given in Table 1, system (5.1)
is solved with control functions (5.13) by Maple software. We control satellite from
an arbitrary initial attitude to its equilibrium point (0, 0, 0, 1, 0, 0, 0) in a finite time.

Figure 2 and Figure 3 illustrate the simulation results of the system (5.1) based
on the control functions (5.13) for η = 0.25 and η = 5, respectively. In these figures,
time series responses corresponding to quaternion parameters and angular velocities
demonstrate the appropriate performance of the controllers in order to return satellite
attitude to its equilibrium point. Simple calculations show the settling time for η =
0.25 and η = 5, is T ∗ = 39.8557s, and T ∗ = 1.9928s, respectively. Thus, if possible,
by choosing a large and allowable amount from control parameter η, we can more
quickly converge to the equilibrium point of system.
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Figure 2. Time series responses corresponding to angular velocities
and quaternion parameters of the system (5.1) with control parame-
ter η = .25.

Figure 3. Time series responses corresponding to angular velocities
and quaternion parameters of the system (5.1) with control parame-
ter η = 5.

7. Conclusion

A finite-time control scheme along with quaternion parameters were applied on the
SA system for stabilization the satellite chaotic attitude around its equilibrium point,
when this system is confused by a disturbed torque. In this method, it is possible
to calculate the settling time. Whilst this method can solve the singularity problem
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in the numerical solution of system, the simulation results illustrated quick stability
the SA system as for achieving the its equilibrium point, by choosing a large and
allowable amount from control parameter η.
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