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Abstract The purpose of this study is to present an approximate numerical method for solving
high order linear Fredholm-Volterra integro-differential equations in terms of rational
Chebyshev functions under the mixed conditions. The method is based on the
approximation by the truncated rational Chebyshev series. Finally, the effectiveness

of the method is illustrated in several numerical examples. The proposed method
is numerically compared with others existing methods where it maintains better
accuracy.
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1. Introduction

Many mathematical formulations of physical phenomena contain Fredholm and
Volterra integro-differential equations (FVIDE). These equations arise in fluid dy-
namics, biological models, chemical kinetics and etc. Finding the exact solution of
FVIDE is generally difficult, even impossible. Therefore, it is needed to obtain ap-
proximate solutions. Several numerical methods have been used such as the successive
approximation method for FVIDE P. J. Kauthen [7] in 1989 introduced continuous
time collocation methods for Volterra–Fredholm integral equations. M. T. Rashed
[25] in 2004 used Lagrange interpolation to compute the numerical solutions of differ-
ential, integral and integro-differential equations which includes FVIDE. A. Arikoglu
and I. Ozkol [2] in 2005 presented the solution of boundary value problems for integro-
differential equations by using differential transform method. A. M. Wazwaz [26,27]
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in 2002 suggested a reliable treatment for mixed Volterra–Fredholm integral equations
and in 2006 he presented a comparison between the modified decomposition method
and the traditional methods. K. Maleknejad and Y. Mahmoudi [10] in 2003 using Tay-
lor Polynomial solution of high-order nonlinear Volterra–Fredholm integro-differential
equations.

S. Nas, S. Yalçınbas and M. Sezer [11] in 2000 applied Taylor polynomial approach
for solving high-order linear Fredholm integro-differential equations. E. Boabolian, Z.
Masouri and S. Hatamazadeh-Varmazyar [3] in 2008 constructed new direct method
to solve non-linear Volterra-Fredholm integral and integro-differential equation using
operational matrix block-pulse functions. A. ALJubory [1] in 2010 introduced some
approximation method for solving Volterra-Fredholm integral and integrodifferential
equation. M. Dadkah, Kajanj. M. Tavassoli and S. Mahdavi [5] in 2010 used nu-
merical solution of nonlinear Volterra-Fredholm integro-differential equations using
Legendre wavelets. R. Mohesn and S. H. Kiasoltani [14] in 2011 studied the solution
of non-linear system of Volterra-Fredholm integro-differential equation by using dis-
crete collocation method. Gherjalar H. D. and M. Hossein [6] in 2012 solved integral
and integro-differential equation by using B-splines function.

On the other hand, in recent years, many authors studied the application of ratio-
nal Chebyshev functions for solving different problems of differential equations and
some other physical problems with variable coefficients. Approximate solutions of
high-order ordinary, system of ordinary and intgro-differential equations have been
presented in many papers, see for example Ramadan et al. [15-19]. Parand and
Razzaghi [12] applied rational Chebyshev tau method for solving Volterra population
model. Parand et al. [13] used rational Chebyshev Tau method for solving natural
convection of Darcian fluid about a vertical full cone embedded in porous media with
a prescribed wall temperature.

2. Definition of the problem

Let us consider the high order linear FVIDE as follows,

m∑
k=0

Pk(x)y
(k)(x) = g(x) + λ1

∫ a

0

Kf (x, t)y(t)dt+ λ2

∫ x

0

Kv(x, t)y(t)dt. (2.1)

Under the mixed conditions∑m−1
k=0

∑J
j=0 d

k
ijy

(k) (bj) = αi, 0 ≤ bj ≤ a < ∞,

i = 0, 1, ..., m− 1, j = 0, 1, ..., J,
(2.2)

where y(x) is an unknown function, Pk(x) , g(x) , Kf (x, t) and Kv(x, t) are defined
on an interval 0 ≤ x, t ≤ a < ∞, also dkij , bj and αi are appropriate constants.
We will find the approximate solution of (2.1) by truncated RC series such that

yN (x) =

N∑
n=0

anRn(x), (2.3)

where Rn(x) = cosnθ, x = cot2(θ/2), θ = 2arc cot([x]1/2), 0 ≤ x < ∞
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and an, are rational Chebyshev coefficients to be determined and N is chosen any
positive integer such that N ≥ m.

If we use the expression v(x)=x−1
x+1 in the definition of rational Chebyshev func-

tions, we have

R(x) = V (x)CT , (2.4)

where R(x ) and V (x ) are vectors of the form:

R(x) =
[
R0(x) R1(x) ... RN (x)

]
,

V (x) =
[
v0(x) v1(x) ... vN (x)

]
.

Consequently, thejth derivative of the matrix R(x), can be obtained as

R(j)(x) = V (j)(x)CT . (2.5)

For more details about rational Chebyshev functions and their derivatives see [15]

3. The fundamental relations

Let us write Eq.(2.1) in the form

D(x) = g(x) + λ1If (x) + λ2Iv(x), (3.1)

where the differential term is

D(x) =
m∑

k=0

Pk(x)y
(k)(x). (3.2)

Fredholm integral term is

If (x) =

∫ a

0

Kf (x, t)y(t)dt, (3.3)

and, Volterra integral term is

Iv(x) =

∫ x

0

Kv(x, t)y(t)dt. (3.4)

We convert these terms and the mixed conditions (2.2) to the matrix forms in the
following subsections.

3.1. Matrix relation for the differential term. We first consider the approximate
solution yN (x) of Eq. (2.1) defined by the truncated rational Chebyshev series (2.3).
Then we can put expression (2.3) in the matrix form

[yN (x)] = R(x)A, (3.5)

and

[y
(j)
N (x)] = R(j)(x)A, j = 0, 1, . . . ,m ≤ N (3.6)

where

A =
[
a0 a1 · · · aN

]T
,
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substituting the relation (2.5) into expression (3.6), we have the scheme of the (k)th-
order derivative of the solution function y(x) of the high order differential equations
as [

y
(k)
N (x)

]
= V (k)(x)CTA . (3.7)

By substituting the Eq. (3.7) into Eq. (3.2), we obtain the matrix representation of
the differential term such that

D(x) =
m∑

k=0

Pk(x)V
(k)(x)CTA . (3.8)

3.2. Matrix relation for the Fredholm integral term. We have K(x, t) as a
function of two variables x, t. It can be expressed by expansion of truncated RC
functions as

K(x, t) =
N∑
l=0

N∑
s=0

klsRl,s(x, t).

Based on Basu [19], we can introduce double RC functions in the following form

Rl,s(x, t) = Rl(x)Rs(t),

where Rl, Rs are RC functions. Therefore, the kernel function K (x, t) can be ex-
panded to univariate rational Chebyshev series with respect to t as follows

K(x, t) =
N∑
l=0

N∑
s=0

klsRl(x)Rs(t),

where

kls =
4

clcsπ2

∫ ∞

0

∫ ∞

0

Rl(x)Rs(t)K(x, t)w(x)w(t)dxdt, l , s = 0, 1, ..., N.

Then, the matrix equation of the kernel functions Kf (x, t) becomes

[Kf (x, t)] = R(x)KfR
T (t), (3.9)

where

Kf =


k00 k01 . . . k0N
k10 k11 . . . k1N
...

...
. . .

...
kN0 kN1 . . . kNN

 .

The matrix representation of y(t) can be given by

y(t) = R(t)A. (3.10)

Substituting Eqs. (3.9), (3.10) into Eq. (3.3), we get

[If (x)] =

∫ a

0

R(x)KfR
T (t)R(t)Adt = V (x)CTKfMfA, (3.11)
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where

Mf =

∫ a

0

RT (t)R(t)dt.

3.3. Matrix relation for the Volterra integral part. Similarly, let us assume
that the kernel functions Kv(x, t) can be expanded to univariate rational Chebyshev
series with respect to t. Then the matrix form is obtained

[Kv(x, t)] = R(x)KvR
T (t). (3.12)

Substituting Eqs. (3.10), (3.12) into Eq. (3.4), we get

[Iv(x)] =

∫ x

0

R(x)KvR
T (t)R(t)Adt = V (x)CTKvMv(x)A. (3.13)

4. The fundamental matrix equations based on collocation points

Let us define the collocation points xr as

xr =
c

N
r; r = 0, 1, . . . , N, (4.1)

so that 0 ≤ xr ≤ c < ∞; c ∈ IR+. Substituting the collocation points (4.1) into (3.7),
we obtain the fundamental matrix equations for the differential term as follows

D(xr) =
m∑

k=0

Pk(xr)V
(k)(xr)C

TA,

or shortly

D =

m∑
k=0

PkV
(k) CTA, (4.2)

where

Pk =


Pk(x0) 0 . . . 0

0 Pk(x1) . . . 0

0 0
. . .

...
0 0 . . . Pk(xN )

 ,

V(k) =


V (i)(t0)
V (i)(t1)

...
V (i)(tN )

 =


v(0)(x0) v(1)(x0) . . . v(N)(x0)
v(0)(x1) v(1)(x1) . . . v(N)(x1)

...
...

. . .
...

v(0)(xN ) v(1)(xN ) . . . v(N)(xN )

 .

Similarly, substituting the collocation points (4.1) into (3.11), we have

[If (xs)] =

∫ a

0

R(xs)KfR
T (t)R(t)Adt = V (xs)C

TKfMfA,

or shortly

[If ] = VCTKfMfA. (4.3)
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Finally, substituting the collocation points (4.1) into (3.13), we have

[Iv] = V (xs)C
TKvMv(xs)A.

The fundamental matrix equation is obtained for Volterra integral term such that

[Iv] = V̄CTKvMvA, (4.4)

where

V̄ =


V (x0) 0 · · · 0

0 V (x1) · · · 0
...

...
. . .

...
0 0 · · · V (xN )


(N+1×(N+1)2

,

CT =


CT 0 · · · 0
0 CT · · · 0
...

...
. . .

...
0 0 · · · CT


(N+1)2×(N+1)2

,

Kv =


Kv 0 · · · 0
0 Kv · · · 0
...

...
. . .

...
0 0 · · · Kv


(N+1)2×(N+1)2

,

Kv =


k00 k01 . . . k0N
k10 k11 . . . k1N
...

...
. . .

...
kN0 kN1 . . . kNN

 , Mv =


Mv(x0)
Mv(x1)

...
Mv(xN )


(N+1)2×(N+1)

.

Substituting Eqs. (4.2), (4.3) and (4.4) into Eq. (3.1), we get the fundamental matrix
of equation (2.1) can be obtained as:{

m∑
k=0

PkV
(k) CT − λ1VCTKfMf − λ2V̄CTKvMv

}
A = G. (4.5)

Similarly, the corresponding matrix form for the conditions (2.2) is obtained, by means
of the Eq. (3.7) as follows

m−1∑
k=0

J∑
j=0

dkij V
(k)(bj)C

TA = αi . (4.6)

5. Method of the solution

To obtain the approximate solution of Eq. (2.1) with the mixed conditions (2.2) us-
ing the presented method, we obtain the fundamental matrix equation from equation
(4.5) as follows{

m∑
k=0

PkV
(k) CT − λ1VCTKfMf − λ2V̄CTKvMv

}
A = G.
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Denoting the expression in parenthesis of Eq. (4.5) by W, the fundamental matrix
equation for Eq. (2.1) is reduced to

WA = G or [W ;G], (5.1)

which corresponds to a system of (N +1) linear algebraic equations with unknown
rational Chebyshev coefficients a0, a1, ..., aN . We can obtain the matrix form for the
mixed conditions (2.2), by means of Eq. (4.6), briefly, as

UA = αi; or [U ;αi] i = 0, 1, ...,m− 1 . (5.2)

Now, the solution of Eq. (2.1) under the conditions (2.2), can be obtained by replacing
the rows of matrices (5.2) by the last m rows of the matrix (5.1). Then, we get the
required augmented matrix.
If rank W = rank[W;G] = N + 1, then we can write the matrix equation (5.1) as:

A = (W)−1G

and therefore the coefficients an ; n =0, 1,. . . , N are uniquely determined by Eq.(5.1).

6. Illustrative Examples

In this section, numerical examples are given to illustrate the applicability, accu-
racy and effectiveness of the proposed technique. All examples are performed on the
computer using a program written in MATHEMATICA 7.0. The obtained numerical
results are presented in the given Tables. The absolute errors, in tables, are given by
the values of |y(t)− yN (t)| evaluated at selected points.
Example 1.
Let us consider the linear Volterra–Fredholm integro-differential equation

y(4)(x)− 12

(1 + x)2
y′′(x) =

120− 22 ln[11]

11 + 11x
+

x− ln[1 + x]

1 + x

−
∫ 10

0

t

xt+ x+ t+ 1
y(t)dt−

∫ x

0

1

1 + x
y(t)dt, 0 ≤ x ≤ 10,

with y(0) = 0, y′(0) = 1, y(1) = 1
2 , y(10) =

10
11 .

For N= 4, the collocation points are

x0 = 0, x1 = 2.5, x2 = 5, x3 = 7.5, x4 = 10.

The fundamental matrix equation of this problem is (P0V
(0)CT + P1V

(1)CT +

P2V
(2)CT +P3V

(3)CT +P4V
(4)CT −λ1VCTKfMf −λ2VCTKvMv)A = G. Since

P0, P1, P3, are zero matrices and P4, identity matrix then we can write the funda-
mental matrix equation as

(P2V
(2)CT +V(4)CT − λ1VCTKfMf − λ2V̄CTKvMv)A = G,

where P2, V, V(2), V(4), CT , Kf , Mf , V̄, CT ,KV ,Mv are matrices of order 5 × 5
given, for this example,
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p2 =


−12 0 0 0 0
0 − 48

49
0 0 0

0 0 − 1
3

0 0
0 0 0 − 48

289
0

0 0 0 0 − 12
121

 ,V =


1 −1 1 −1 1
1 3

7
9
49

27
343

81
2401

1 2
3

4
9

8
27

16
81

1 13
17

169
289

2197
4913

28561
83521

1 9
11

81
121

729
1331

6561
14641

 ,

V(2) =


0 −4 16 −36 64
0 − 32

343
− 64

2401
288

16807
3456

117649

0 − 1
54

− 1
54

− 1
81

− 4
729

0 − 32
4913

− 704
83521

− 11232
1419857

− 151424
24137569

0 − 4
1331

− 64
14641

− 756
161051

− 7776
1771561

 ,

V(4) =


0 −48 384 −1584 4608
0 − 1536

16807
9216

117649
50688
823543

6144
823543

0 − 1
162

− 1
486

1
486

17
4374

0 − 1536
1419857

− 21504
24137569

− 133632
410338673

1456128
6975757441

0 − 48
161051

− 576
1771561

− 4464
19487171

− 20352
214358881

 ,

Mf =


10 5.20421 −1.91043 −5.39352 −5.58564

5.20421 4.04478 −0.0946552 −3.74804 −4.33449
−1.91043 −0.0946552 2.20718 0.964378 −1.07064
−5.39352 3.74804 0.964378 4.88458 3.75714
−5.58564 4.33449 −1.07064 3.75714 6.72137

 ,

Kf =


0.25 0.25 0 0 0
−0.25 −0.25 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 , CT =


1 0 −1 0 1
0 1 0 −3 0
0 0 2 0 −8
0 0 0 4 0
0 0 0 0 8



V̄ =


V (x0) 0 0 0 0

0 V (x1) 0 0 0
0 0 V (x2) 0 0
0 0 0 V (x3) 0
0 0 0 0 V (x4)

 ,CT =


CT 0 0 0 0
0 CT 0 0 0
0 0 CT 0 0
0 0 0 CT 0
0 0 0 0 CT


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Mv =



0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
2.5 −0.00552594 −1.80782 −0.457897 0.817805

−0.00552594 0.346091 −0.231711 −0.495007 0.200381
−1.80782 −0.231711 1.6589 0.426566 −0.951389
−0.457897 −0.495007 0.426566 1.20252 −0.342655
0.817805 0.200381 −0.951389 −0.342655 1.03773

5 1.41648 −2.66741 −2.80723 −0.978278
1.41648 1.1663 −0.695372 −1.82284 −0.858094
−2.66741 −0.695372 2.01086 1.25376 −0.415235
−2.80723 −1.82284 1.25376 3.41847 1.31966
−0.978278 −0.858094 −0.415235 1.31966 2.44967

7.5 3.21987 −2.56171 −4.4468 −3.43683
3.21987 2.46915 −0.613464 −2.99927 −2.63082
−2.56171 −0.613464 2.03159 1.20252 −0.516946
−4.4468 −2.99927 1.20252 4.51391 2.93467
−3.43683 −2.63082 −0.516946 2.93467 4.86811

10 5.20421 −1.91043 −5.39352 −5.58564
5.20421 4.04478 −0.0946552 −3.74804 −4.33449
−1.91043 −0.0946552 2.20718 0.964378 −1.07064
−5.39352 −3.74804 0.964378 4.88458 3.75714
−5.58564 −4.33449 −1.07064 3.75714 6.72137



Kv =


Kv 0 0 0 0
0 Kv 0 0 0
0 0 Kv 0 0
0 0 0 Kv 0
0 0 0 0 Kv

 .

We obtain the rational Chebyshev coefficient of this equation in the form

A =
[

1
2

1
2 0 0 0

]T
.

Therefore, we find the solution y(x) =
∑4

n=0 anRn(x), to be of the form y(x) =
1
2R0(x) − 1

2R1(x). Therefore, we find the solution y(x) = x
x+1 , which is the exact

solution of Example 1.
Example 2.
Let us consider the linear Volterra–Fredholm integro-differential equation

y′(x) = −e−x +
1− e

e(x+ 1)
+ cosh(x)− sinh(x)

−1 +

∫ 1

0

1

x+ 1
y(t)dt+

∫ x

0

y(t)dt,
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with y(0) = 1 and the exact solution y(x) = e−x.
If we follow steps in section 5 for N = 5, 7 and 10 and compare the obtained numerical
results with the exact solution you can find that, as shown in Table 1, our method
gives good accuracy to type such type of problems. Also, from Table 2, it is clear
that as N increases the accuracy improves .

Table 1. Comparison between Exact solution and approximate solutions obtained by
present method for y(x) of Example 2.

x Exact solution at N = 5 at N = 7 at N = 10
0 1 1 1 1
0.1 0.904837418 0.904735572 0.904833387 0.904837210
0.2 0.818730753 0.818577625 0.818725994 0.818730524
0.3 0.740818220 0.740656480 0.740812982 0.740817960
0.4 0.670320046 0.670145362 0.670314126 0.670319754
0.5 0.606530659 0.606332907 0.606524092 0.606530335
0.6 0.548811636 0.548590222 0.548804383 0.548811277
0.7 0.496585303 0.496344666 0.496577297 0.496584907
0.8 0.449328964 0.449068145 0.449320175 0.449328528
0.9 0.406569659 0.406273376 0.406560004 0.406569659
1 0.367879441 0.367512984 0.367868595 0.367879441

Table 2. Comparing the L2, L∞ errors
L2 L∞

Present Method N = 5 4.24663e-007 0.000101846
Present Method N = 7 3.71995e-010 4.03059e-006
Present Method N = 10 8.49706e-013 2.07843e-007

Example 3. Consider Volterra integro-differential equation [9]

y′(x) = 1−
∫ x

0

y(t)dt,

with y(0) = 0 and the exact solution y(x) = sin(x). The numerical solutions obtained
for N = 16 is compared with that obtained by the Block Pulse Functions and Oper-
ational Matrices [9] for m = 64 and 128 as shown in Tables 3. From Table 4 we find
that our method gives better accuracy.



294 M. RAMADAN, K.RASLAN, AND M. NASSAR

Table 3. Comparison between Exact solution and approximate solutions obtained by
present method and other existed method for y(x) of Example 3.

x Exact Method in Method in Present Method
solution [9] m = 64 [9] m = 128 N = 16

0.1 0.099833 0.101383 0.097500 0.099806
0.2 0.198669 0.194063 0.197901 0.198649
0.3 0.295520 0.299980 0.296263 0.295505
0.4 0.389418 0.387959 0.391571 0.389407
0.5 0.479426 0.486243 0.482844 0.479416
0.6 0.564642 0.565904 0.562700 0.564636
0.7 0.644218 0.640595 0.646312 0.644214
0.8 0.717356 0.720580 0.717892 0.717355
0.9 0.783327 0.782319 0.784773 0.783329

Table 4. Comparing the L2, L∞ errors
L2 L∞

Method in [9] m = 64 0.00423398 0.007812
Method in [9] m = 128 0.00220667 0.003906
Present Method N = 16 9.5663×10−11 0.0000271053

Example 4. Consider Fredholm integro-differential equation [9]

y′(x) = −e−x + e−1 − 1 +

∫ 1

0

y(t)dt,

with y(0) = 1, and the exact solution y(x) = e−x. The numerical solutions obtained
for N = 8 is compared with the results, using Block Pulse Functions and Operational
Matrices [9] for m = 16 and 64 in Table 5.

Table 5. Comparing the L2, L∞ errors
L2 L∞

Method in [9] m=16 0.013792 0.030281
Method in [9] m=64 0.00350677 0.007752

Present Method N = 8 1.09199×10−16 5.92121×10−8
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Table 6. Comparison between Exact solution and approximate solutions obtained by
present method and other existed method for y(x) of Example 4.

x Exact Method in Method in Present Method
solution [9] m = 16 [9] m = 64 N = 8

0 1 0.969719 0.992248 1
0.1 0.904837 0.910993 0.903455 0.904837
0.2 0.818731 0.804005 0.822608 0.818731
0.3 0.740818 0.755324 0.737384 0.740818
0.4 0.670320 0.666636 0.671399 0.670320
0.5 0.606530 0.588375 0.601842 0.606530
0.6 0.548812 0.552766 0.547986 0.548812
0.7 0.496585 0.487894 0.498951 0.496585
0.8 0.449329 0.458378 0.447261 0.449329
0.9 0.406570 0.404606 0.407240 0.406570

Example 5. Let us consider the linear Volterra–Fredholm integro-differential equa-
tion

y′(x) = 2
(1+t)2 − x−x log[4]

1+2x − (2x−1)(x−2 log[1+x])
1+x

+
∫ 1

0
x

2x+1y(t)dt+
∫ x

0
2x−1
x+1 y(t)dt,

with y(0) = −1 and the exact solution y(x) = x−1
x+1 . When we compare the absolute

error functions obtained by present method of this example at N=7 and 10 with the
exact solution as shown in Table 7. We find that the accuracy improves proportionally
as N increases as it is clear from Table 8.

Table 7. Comparison between absolute error functions obtained by
present method for y(x) of Example 5 for N=7 and 10

x e7 e10
0.1 1.13581 e-008 1.28087 e-010
0.2 2.76309 e-008 1.07782 e-010
0.3 3.95459 e-008 8.15997 e-011
0.4 7.70416 e-009 3.14594 e-011
0.5 3.38876 e-008 2.26566 e-010
0.6 5.83863 e-008 2.75379 e-010
0.7 5.7505 e-008 1.63911 e-010
0.8 3.52009 e-008 1.07457 e-011
0.9 5.942 e-011 1.50656 e-010
1.0 4.01776 e-008 2.02736 e-010

Table 8. Comparing the L2, L∞ errors
L2 L∞

Present Method N = 7 5.10471 ×10−15 5.8386×10−8

Present Method N = 10 1.29975×10−19 2.75379×10−10
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7. Conclusion

In this paper the use of rational Chebyshev (RC) collocation method for solving
high-order linear FVIDE with variable coefficients is investigated. The high-order
linear FVIDE and the given conditions are transformed to matrix equations with
unknown rational Chebyshev coefficients. A considerable advantage of the proposed
technique is that the RC coefficients of the solution are found very easily by using
computer programs, especially if kernel Kf (x, t) and Kv(x, t) are defined on an in-
terval 0 ≤ x, t ≤ a < ∞. This variant or improvement for the method gave us a
faster and more accurate method compared to the other methods. In addition, an
interesting feature of this method is to find the analytical solutions if the equation
has an exact solution that is a rational functions. Illustrative examples are used to
demonstrate the applicability and the effectiveness of the proposed technique.

Future work: the work introduced in this paper can be extended to the infinite do-
main by changing the basis function by the so called exponential Chebyshev functions
where our research group reported some papers about this topic for ordinary, system
and partial differential equations defined in the unbounded domain [8], [20-24].
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