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Abstract We present a collocation method to obtain the approximate solution of Troesch’s
problem which arises in the confinement of a plasma column by radiation pressure
and applied physics. By using the Christov rational functions and collocation points,
this method transforms Troesch’s problem into a system of nonlinear algebraic equa-

tions. The rate of convergence is shown to be exponential. The numerical results
obtained by the present method compares favorably with those obtained by various
methods earlier in the literature.
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1. Introduction

The aim of this paper is to introduce a new approach for the numerical solution of
the Troesch’s problem. This problem, which is a nonlinear two point boundary-value
problem, is given by

y′′ = λ sinh(λy), 0 ≤ x ≤ 1, (1.1)

subject to the boundary conditions

y(0) = 0, y(1) = 1, (1.2)

where λ is a positive constant. Troesch’s problem arises from a system of nonlinear
ordinary differential equations which occur in an investigation of the confinement of
a plasma column by radiation pressure [28]. Also, Troesch’s problem occurs in the
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theory of gas porous electrodes [15]. Roberts and Shipman [23] give the closed form
solution to this problem in terms of the Jacobian elliptic function:

y(x) =
2

λ
sinh−1

{
y′(0)

2
sc

(
λx|1− 1

4
y′(0)2

)}
, (1.3)

where y′(0) = 2
√
1−m, and the constantm satisfies the solution of the transcendental

equation

sinh
(
λ
2

)
√
1−m

= sc(λ|m). (1.4)

Here, the Jacobian elliptic function sc(λ|m) is defined by sc(λ|m) = tanϕ, where ϕ, λ
and m are related by the integral

λ =

∫ ϕ

0

1√
1−m sin2 θ

dθ.

It has been shown that y(x) has a singularity located at a pole of sc(λ|m) or approx-
imately at [23,27]

xs =
1

λ
ln

(
8

y′(0)

)
. (1.5)

As pointed by [23], in addition to its intrinsic interest, Troesch’s problem has become
something of a test case for methods of solving unstable two-point boundary value
problems because of its difficulties.

There are different techniques for solving Troesch’s problem. Temimi [25] proposed
a new discontinuous Galerkin finite element method to solve this problem. Chang
in [6] used the simple shooting method and in [5] the author applied the variational
iteration method for solving Troesch’s problem. Also, a numerical algorithm based on
the decomposition method is presented by Deeba et al. [12] for this problem. In [32]
the sinc-Galerkin method is used to solve the nonlinear two point boundary value
problem with application to Troesch’s equation. Khuri and Sayfy [20] used a finite
element approach based on the cubic B-spline collocation method on both a uniform
mesh and a piecewise-uniform Shishkin mesh to solve this problem. Moreover, the
modified homotopy perturbation technique [14], differential transform method [7],
reproducing kernel Hilbert space method [17] and the Jacobi collocation method [13]
are employed to solve Troesch’s problem.

In the current investigation, we construct the solution of Troesch’s problem using
a different approach. This approach is based on the collocation technique. Our
method consists of reducing the problem to the solution of algebraic equations by
expanding the required approximate solution as the elements of the Christov rational
functions (CRFs) with unknown coefficients. The properties of CRFs are then utilized
to evaluate the unknown coefficients.

The current paper is organized as follows: Section 2 is devoted to the basic for-
mulation of CRFs required for our subsequent development. Section 3 applies the
collocation method together with CRFs to the Troesch’s problem. In Section 4, we
present some numerical examples to show the efficiently and applicability of this
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method. An application of the model is described in Section 5. Also a conclusion is
given in Section 6.

2. Properties of the CRFs

Norbert Wiener introduces the complex-valued rational functions [31, page 35]

ρn(x) =
1√
π

(ix+ 1)n

(ix− 1)(n+1)
, n = 0, 1, 2, ..., i =

√
−1, (2.1)

as Fourier transforms of the Laguerre functions. Higgins [16] defined it also for nega-
tive indices n and proved its completeness and orthogonality. One way to see this is
to make the change of variable [30]

eiθ =
1 + ix

1− ix
, i.e. x = tan

θ

2
,

which maps the entire real line x ∈ [−∞,∞] to θ ∈ [−π, π]. The first work which
exclusively deals with the basis functions (2.1) appears to come from [10] in 1982.
Christov [10] show that this system consists of two real subsequences of odd functions
Sn and even functions Cn, namely

Sn(x) =
ρn(x) + ρ−n−1(x)

i
√
2

, n = 0, 1, 2, ..., (2.2)

Cn(x) =
ρn(x)− ρ−n−1(x)√

2
, n = 0, 1, 2, ... . (2.3)

As pointed by [10], both sequences are orthonormal and each member of (2.2) is
orthogonal to all members of (2.3); each member of (2.3) is also orthogonal to all
members of (2.2). It is worth indicating that, Sn and Cn can be defined for negative
n through the relations

S−n = Sn and C−n = Cn.

Unlike Hermite and Laguerre sets of functions which behave exponentially at infinity,
this system exhibits asymptotic behavior x−1 for the odd sequence and x−2 for the
even one [10]. The Weiner functions applied successfully to time integration of the
Benjamin-Ono equation by James and Weideman [18]. The functions Sn and Cn

have been employed as forward solvers in the solution of a differential equation on
an infinite interval [10], KdV and Kuramoto-Sivashinsky equation [11], fifth order
KdV [1], the time dependent problem of interacting 1D solitons [8] and for computing
the stationary solutions of Boussinesq equation [9]. We also refer the interested reader
to [2–4]. Very recently, Narayan and Hesthaven [21, 22] introduced the generalized
Wiener rational basis functions and generalized the algebraically-decaying functions
of Wiener. Most of the practically important formulae for the functions Sn and Cn

are discussed thoroughly in [10] and here an overview of the basic formulation of these
functions required for our subsequent development is presented. The odd functions
Sn and even functions Cn can be expressed in an explicit way:

Sn(x) =

√
2

π

∑n+1
k=1(−1)n+k

(
2n+1
2k−1

)
x2k−1

(x2 + 1)n+1
, n = 0, 1, 2, ..., (2.4)



250 A. SAADATMANDI AND T. ABDOLAHI-NIASAR

Cn(x) =

√
2

π

∑n+1
k=1(−1)n+k+1

(
2n+1
2k−2

)
x2k−2

(x2 + 1)n+1
, n = 0, 1, 2, ... . (2.5)

Theorem 2.1. For the first and second derivative of the basis functions, the following
recurrence relation hold

dSn(x)

dx
=

1

2

{
nCn−1(x)− (2n+ 1)Cn(x) + (n+ 1)Cn+1(x)

}
, (2.6)

dCn(x)

dx
=

−1

2

{
nSn−1(x)− (2n+ 1)Sn(x) + (n+ 1)Sn+1(x)

}
, (2.7)

d2Sn(x)

dx2
=

−1

4

{
(n2 − n)Sn−2(x)− 4n2Sn−1(x) + (6n2 + 6n+ 2)Sn(x)

− 4(n + 1)2Sn+1(x) + (n2 + 3n+ 2)Sn+2(x)
}
, (2.8)

d2Cn(x)

dx2
=

−1

4

{
(n2 − n)Cn−2(x)− 4n2Cn−1(x) + (6n2 + 6n+ 2)Cn(x)

− 4(n+ 1)2Cn+1(x) + (n2 + 3n+ 2)Cn+2(x)
}
. (2.9)

Proof. The proof is done by direct verification and the detailed proof can be found
in [10]. �

Theorem 2.2. The functions Sn and Cn can be expressed, by using trigonometric
functions, in an explicit way:

Sn(x) = (−1)n+1 sin(n+ 1)θ + sin(nθ)√
2

, (2.10)

Cn(x) = (−1)n
cos(n+ 1)θ + cos(nθ)√

2
, (2.11)

where x = tan θ
2 or θ = 2arctan(x) is a transformation of the independent variable.

Proof. See Ref. [8]. �

As said in [8,9] any function f(x) is a periodic function of θ with period 2π. Now,
any localized function of f(x) may be expanded as

f(x) =
∞∑

n=0

(anCn(x) + bnSn(x)). (2.12)

which in its turn can be rewritten as a Fourier series for the periodic function

f

(
tan

θ

2

)
=

∞∑
n=0

(
an(−1)n

cos(n+ 1)θ + cos(nθ)√
2

+bn(−1)n+1 sin(n+ 1)θ + sin(nθ)√
2

)
, (2.13)
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which are known to have exponential convergence. Since, the Fourier series have
exponential convergence for periodic functions, then the exponential convergence of
Cn, Sn series follows [9].

3. Solution with CRFs

The basic idea of our method for solving Troesch’s problem on the interval [0, 1]
is to transform the problem, with a properly selected variable transformation, to the
interval (−∞,+∞) and then to solve the transformed problem by the collocation
method. Let y(x) be the solution of boundary value problem (1.1)-(1.2). First of
all, we reformulate the problem by applying the transformation ỹ(x) = y(x)− x that
makes the boundary conditions become homogeneous. Therefore problem (1.1)-(1.2)
reduces to the following boundary value problem

ỹ′′(x) = λ sinh(λ(ỹ(x) + x)), 0 ≤ x ≤ 1, (3.1)

ỹ(0) = 0, ỹ(1) = 0. (3.2)

Now, application of the variable transformation [24]

x = ψ(t) =
1

2
tanh

(
t

2

)
+

1

2
, (3.3)

together with the change of notation

u(t) = ỹ(ψ(t)), (3.4)

transforms the problem to

u′′(t)− ψ′′(t)

ψ′(t)
u′(t) = (ψ′(t))2λ sinh

(
λ(u(t) + ψ(t))

)
, −∞ < t < +∞,

(3.5)

subject to the boundary conditions

lim
t→±∞

u(t) = 0. (3.6)

Using (3.3) we get

ψ′(t) = ψ(t)(1− ψ(t)), −ψ
′′(t)

ψ′(t)
= 2ψ(t)− 1. (3.7)

Substituting (3.7) in (3.5) we obtain

u′′(t)+ (2ψ(t)− 1)u′(t)− (ψ(t))2(1−ψ(t))2λ sinh
(
λ(u(t)+ψ(t))

)
= 0, (3.8)

We are now ready to solve (3.8) by using CRFs. The approximate solution for u(t)
in (3.8) is represented by

u(t) ≈ uN (t) =
N∑
i=0

(aiCi(t) + biSi(t)). (3.9)
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It is noted that, the approximate solution in (3.9) satisfies the boundary conditions
(3.6) since Sn(t) and Cn(t) are zero when t → ±∞. A collocation scheme is defined
by substituting uN (t) into the (3.8) and evaluating the result at

ti = ln
( xi
1− xi

)
, i = 1, 2, · · · , 2N + 2,

where

xi = ih, i = 1, 2, · · · , 2N + 2, h =
1

2N + 3
.

Employing Theorem 2.1, for j = 1, 2, · · · 2N + 2, we get( N∑
i=0

aiC
′′
i (tj) + biS

′′
i (tj)

)
+ (2ψ(tj)− 1)

( N∑
i=0

aiC
′
i(tj) + biS

′
i(tj)

)
− (ψ(tj))

2(1− ψ(tj))
2λ sinh

(
λ
(( N∑

i=0

aiCi(tj) + biSi(tj)
)
+ ψ(tj)

))
= 0.

(3.10)

Equation (3.10) generates a set of 2N +2 nonlinear algebraic equations, which can be
solved for the unknown coefficients {ai}Ni=0 and {bi}Ni=0. Thus, uN (t) given in (3.9)
can be calculated. Consequently the unknown function y(x) may be approximated
by

yN (x) = uN
(
2 tanh−1(2x− 1)

)
+ x.

Remark 3.1. It is worth to mention here that, the system (3.10) can be solved by
applying an iterative method, like the Newton’s method. Having solved the nonlinear
system (3.10) analytically for very small N , say N = 1, we see that some components
of solution of this system are close to zero. Therefore, for larger values of N the
initial guesses for ai’s and bi’s of the Newton’s method can be estimated by values
close to zero. Throughout this paper, we use the Maple’s fsolve command with the
initial approximation ai = bi = 0.01. Also, we note that the Newton’s method has a
convergence rate of quadratic order, which directly depends on the equations of (3.10)
and initial guesses for ai’s and bi’s.

4. Results and discussion

To illustrate the effectiveness of our method we shall consider Troesch’s problem
for different values of the parameter λ. We calculated the approximate solution at the
uniform grid points xi = ih, i = 1, 2, · · · 9, h = 0.1. Taking λ = 0.5, 1, in Tables 1,2
and Figures 1 and 2 we compare absolute errors of the new method together with the
results obtained by using the second-order modified homotopy perturbation method
(MHPM) given in [14], cubic B-spline collocation method given in [20], sinc-Galerkin
method (SGM) given in [32] and the one given in [19], which is based on Laplace
transformation and a modified decomposition. From these tables and figures, we can
see that CRFs solutions are either equally good or are better than those obtained by
other methods. Also, Figures 3 and 4 displays solutions of the collocation method by
using CRFs for different values of λ. It is clear from Figures 3 and 4 that solutions
exhibit a boundary layer near x = 1 and gets narrower with increasing λ.
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Table 1. Comparison of absolute error for λ = 0.5.

x Exact Laplace [19] MHPM [14] Spline [20] SGM [32] CRFs (N=9)

0.1 0.095176 7.7× 10−4 8.2× 10−4 7.7× 10−4 7.7× 10−4 2.1× 10−4

0.2 0.190633 1.5× 10−3 1.6× 10−3 1.5× 10−3 1.5× 10−3 5.8× 10−4

0.3 0.286653 2.1× 10−3 2.3× 10−3 2.1× 10−3 2.1× 10−3 1.2× 10−3

0.4 0.383522 2.7× 10−3 2.9× 10−3 2.7× 10−3 2.7× 10−3 1.9× 10−3

0.5 0.481537 3.0× 10−3 3.2× 10−3 3.0× 10−3 3.0× 10−3 2.4× 10−3

0.6 0.581002 3.1× 10−3 3.4× 10−3 3.1× 10−3 3.1× 10−3 2.5× 10−3

0.7 0.682235 3.0× 10−3 3.2× 10−3 3.0× 10−3 3.0× 10−3 2.3× 10−3

0.8 0.785571 2.4× 10−3 2.7× 10−3 2.4× 10−3 2.4× 10−3 1.8× 10−3

0.9 0.891367 1.5× 10−3 1.6× 10−3 1.5× 10−3 1.5× 10−3 9.3× 10−4

Table 2. Comparison of absolute error for λ = 1.

x Exact Laplace [19] MHPM [14] Spline [20] SGM [32] CRFs (N=6)

0.1 0.081797 2.9× 10−3 3.6× 10−3 2.8× 10−3 2.9× 10−3 4.8× 10−5

0.2 0.164530 5.9× 10−3 7.1× 10−2 5.6× 10−3 5.6× 10−3 2.3× 10−3

0.3 0.249167 8.2× 10−3 1.0× 10−2 8.2× 10−3 8.2× 10−3 4.2× 10−3

0.4 0.336732 1.0× 10−2 1.3× 10−2 1.0× 10−2 1.0× 10−2 5.7× 10−3

0.5 0.428347 1.2× 10−2 1.6× 10−2 1.2× 10−2 1.2× 10−2 7.7× 10−3

0.6 0.525274 1.3× 10−2 1.7× 10−2 1.3× 10−2 1.3× 10−2 6.9× 10−3

0.7 0.628971 1.3× 10−2 1.7× 10−2 1.3× 10−2 1.3× 10−2 6.0× 10−3

0.8 0.741168 1.1× 10−2 1.5× 10−2 1.1× 10−2 1.1× 10−2 7.7× 10−3

0.9 0.863970 7.4× 10−3 9.7× 10−3 7.4× 10−3 7.4× 10−3 1.8× 10−3

Figure 1. Comparison of absolute error for λ = 0.5
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Figure 2. Comparison of absolute error for λ = 1
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Figure 3. Aproximated solutions of Troesch’s problem by using
CRFs for λ ≤ 5
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5. An application

The plasma will be regarded as consisting of two oppositely charged ideal gases
which penetrate each other without friction. The Troesch’s problem which arises in
the investigation of the confinement of a plasma column by radiation pressure, was
initially introduced and formulated by Weibel and Landshoff [29] and Troesch [26].
In this section we will trace its origin to a system of ordinary differential equations
derived and solved in natural units [26, 29].

1

r

d

dr
(r
dE0

dr
) +

(
ω2 − e2N

M
− e2n

m

)
E0 = 0, (5.1)

1

r

d

dr
(rEr) = e(N − n), (5.2)
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Figure 4. Aproximated solutions of Troesch’s problem by using
CRFs for λ > 5

Er = −dU
dr
, (5.3)

n(r) = n0 exp

(
eU

kT
− e2E2

0

4mω2kT

)
, (5.4)

N(r) = N0 exp

(
−eU
kT

− e2E2
0

4Mω2kT

)
, (5.5)

where n and N are variable ion and electron densities, E = (Er(r), 0, E0(r) cosωt)
is the electric field and E0(r) cosωt represents the applied field plus the field due to
the plasma current. Also, T is temperature and equation (5.3) represents the radial
electrostatic field due to charge separation. Moreover, Ion and electron temperatures
are assumed equal and constant.
As described in [26], if these equations are considered in Cartesian, rather than polar
coordinates, and if, E0 is assumed to be negligibly small, then the system reduces to

dE

dx
= N(x)− n(x), (5.6)
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E(x) = −dU
dx

, (5.7)

n(x) = n0 exp(λU), (5.8)

N(x) = N0 exp(−λU), (5.9)

up to constant factors. Substituting (5.7),(5.8) and (5.9) into (5.6), a second-order
nonlinear ordinary differential equation is obtained as

d2U

dx2
= N0 exp(−λU)− n0 exp(λU). (5.10)

Also, applying the simplifying assumption N0 = n0 = N∗ and setting U = −y, we
can write

y′′ = 2N∗ sinh(λy). (5.11)

6. Conclusion

In this study, a new method using the Christov rational functions, to numerically
solve the Troesch’s problem is presented. The comparison of the results obtained by
the present method, the exact solution and the other methods reveals that the method
is very effective and convenient. The work emphasized our belief that the method is
a reliable technique to handle these types of problems.
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