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Abstract As an application of Hirota bilinear method, perturbation expansion truncated at
different levels is used to obtain exact soliton solutions to (2+1)–dimensional nonlin-
ear evolution equation in much simpler way in comparison to other existing methods.
We have derived bilinear form of nonlinear evolution equation and using this bilinear
form, bilinear Bäcklund transformations and construction of associated linear prob-
lem or Lax pair are presented in straightforward manner and finally for proposed
nonlinear equation, explicit one, two and three soliton solutions are also obtained.
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1. Introduction

Advancement in science and mathematical modelling dealing with complex natu-

ral phenomenon give rise to induction of more and more nonlinear partial differential

equations(NLPDE) with constant and variable coefficients, more precisely with con-

cept of deterministic chaos, natural world has been revealed as nonlinear one [1]. Due

to this inherited nonlinearity in partial differential equation, the integrability is big

issue, and moreover the integrability for nonlinear partial differential equation cannot

be claimed in general. When one says the model is integrable, one should point out

under what special meaning it is integrable. Bäcklund transformations, Lax pairs,

conservation laws and infinite symmetries may regarded as predictors of complete in-

tegrability [23]. For example, absence of movable singularities in solution of equation

can be claimed as integrability in sense of Painlevé property and equation having

multi-soliton solution is also eligible candidate for complete integrability in term of

Hirota’s formalism.

Apart from these, integrability can also be defined in terminology of Calogero and
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Eckhaus [4], first is: linearization of equation through local Cole–Hopf transforma-

tion and second: when linearization of equation is possible through inverse scattering

transform.

Authors of this paper believes on basis of literature survey of several recent publi-

cations that existence of multi–soliton solutions for equation can also be regarded

as indicator of complete integrability. The inverse scattering technique [5] developed

by researchers at Princeton University in 1967 is a powerful tool to analyse the in-

tegrability of equation, but it uses powerful analytical methods and makes strong

assumptions about equation. On the other hand, exact solution to almost all equa-

tion can be obtained by travelling wave reductions, but it would be too simple to

claim for integrability.

So in 1971, Ryogo Hirota developed an algorithmic technique [10] (for review see

e.g. [8, 9, 15]) to obtain soliton solutions for nonlinear evolution equations. He suc-

cessfully applied his method to several nonlinear evolution equations including KdV

equation, modified KdV equation, Sine–Gordon equation, Kadomtsev–Petviashvili

equation, Hirota–Satsuma shallow water wave equation [11–13]. This method pop-

ularly known as Hirota bilinear method, serves as powerful method for generating

multi–soliton solutions for equation by writing the equation in bilinear form. Once

the bilinear form of equation is written one can easily construct soliton solutions of

equation, but writing equation in bilinear form is a very tedious job and sometime

not possible without inclusion of additional constraints.

In order to apply Hirota method successfully one has to find dependent variable trans-

formation which relies on WTC method [22] and using this transformation equation

can be transformed to bilinear form and once the bilinear form is written, exact soli-

ton solution can be obtained by typical perturbation expansion method without the

use of inverse scattering technique [15]. Sometime one may face with equation which

can not be directly written in bilinear form, in that case new independent variable

may be introduced along with subsidiary constraint [17].

In this paper we consider (2+1)–dimensional Jimbo–Miwa equation

uxxxy + 3uyuxx − 3uxx + 3uxuxy + 2uyt = 0 (1.1)

integrability of this equation is already proved by using WTC method [3]. We propose

to explore this equation for multi–soliton solutions, bilinear Bäcklund transformations

and Lax pair by using Hirota’s bilinear method.

This paper is planned as follow: in section 2 detailed discussion about derivation of

multi–soliton solution is given, in section 3 we have derived bilinear form, bilinear
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Bäcklund transformations and Lax pair for equation (1.1) and in section 4, one, two

and three soliton solutions have been derived for equation (1.1). Finally, in section 5,

we offered conclusion.

2. Multi Soliton Solution

In this section we would like to give detailed derivation of multi-soliton solutions

using perturbation expansion, we shall see how simple ansätz give rise to terminating

perturbation expansion when Hirota operator is applied to it.

2.1. Perturbation expansion. Let the partial differential equation be written in

the form P [u, ux, ut, uxx, uxt, ...] = 0 such that corresponding bilinear form is written

as F (D){f · f} = 0 by using dependent variable transformation u = U [f(x, t)]. Then

for exact soliton solution we take perturbation expansion as suggested in [15]

f = 1 +
N
∑

i=1

ǫif1 (2.1)

such that

(2.2)f · f = 1 · 1 + (f1 · 1 + 1 · f1) ǫ+ (f2 · 1 + f1 · f1 + 1 · f2) ǫ
2

+ (f3 · 1 + f2 · f1 + f1 · f2 + 1 · f3) ǫ
3 + .....

substituting (2.2) into bilinear form F (D){f.f} = 0, various coefficients of ǫ equal to

zero can be listed as under:

ǫ0 : F (D){1 · 1} = 0 which is trivially zero,

ǫ1 : F (D){f1 · 1 + 1 · f1} = 2F (D){f · 1} = 0,

ǫ2 : 2F (D){f2 · 1}+ F (D){f1 · f1} = 0,

ǫ3 : 2F (D){f3 · 1}+ 2F (D){f1 · f2} = 0, ...... and so on.

Generally, using perturbation method, the expansion (2.1) continues to infinite order

in ǫ and for exact soliton solution this expansion have to truncate at finite level.

Therefore, one may point out that solution so obtained will be just approximation to

exact solution. But using this perturbation expansion for bilinear equation and with

suitable selection of f1 makes the perturbation expansion to truncate upto finite sums

and therefore solution obtained in such case will be exact one [16]. In next section we

demonstrate how to obtain multi–soliton solution using perturbation expansion.
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2.2. One soliton solution. For one soliton solution we make use of ansätz

f1 = eη1 , η1 = α1x+ β1y + γ1t+ δ1 (2.3)

where f1 assumed to be exponential since base of solitary wave is not superposition

of plane waves [16] and parameter α1 indicates the amplitude of wave and δ1 which

is also called phase constant determines the position of wave.

For one soliton solution it is assumed that fi = 0 for i ≥ 2, substituting (2.1) into

bilinear form and noting down the coefficients of ǫ, coefficient of ǫ1 gives

2F (D){f1 · 1} = 2F (D){eη1 · 1} = 2F (∂)eη1 = 0 (2.4)

this gives relation between α1, β1 and γ1 called dispersion relation and in wake of

this dispersion relation, the assumption fi = 0 for i ≥ 2 can be justified [16] and the

coefficient of ǫ2

(2.5)

F (D){f1 · f1}

= F (D){eη1 · eη1}

= F (α1 − α1, β1 − β1, γ1 − γ1)e
η1+η1

= 0

which is identically zero and other coefficients also vanish because fi = 0 for i ≥ 2.

Since ǫ can be absorbed into phase constant δ1 of η1, so without loss of generality by

taking ǫ = 1 the perturbation expansion becomes

f = 1 + eη1 , η1 = α1x+ β1 + γ1t+ δ1

and thus one soliton solution is written as follows:

u(x, t) = U [1 + eη1 ] .

2.3. Two soliton solution. For two soliton solution we make use of ansätz

f1 = eη1 + eη2 , ηi = αix+ βiy + γit+ δi, i = 1, 2 (2.6)

where in perturbation expansion (2.1) fi = 0 for i ≥ 3, substituting perturbation

expansion (2.2) into F (D){f · f} = 0 along with f1 defined by (2.6) and equating

coefficients if ǫ to zero, from coefficient of ǫ1 we have

2F (D){f1 · 1} = 2F (∂){eη1 + eη2} = 0
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this gives dispersion relation F (αi, βi, γi) = 0 for i = 1, 2 and the coefficient of ǫ2

reads as

F (D){f2 · 1 + f1 · f1 + 1 · f2} = 2F (∂)f2 + 2F (D){eη1 · eη2}

= 2F (∂)f2 + 2F (α1 − α2, β1 − β2, γ1 − γ2)e
η1+η2

= 0

(2.7)

where one must have f2 = A12e
η1+η2 , and on back substituting f2 into (2.7).

A12 = −
F (α1 − α2, β1 − β2, γ1 − γ2)

F (α1 + α2, β1 + β2, γ1 + γ2)
(2.8)

and coefficients of ǫ3 is zero and of ǫ4 vanish identically.

The two soliton solution for perturbation parameter ǫ = 1 is thus written as

u = U [1 + eη1 + eη2 +A12e
η1+η2 ] (2.9)

2.4. Three soliton solution. As done in previous cases we make use of ansätz

f1 = eη1 + eη2 + eη3 , ηi = αix+ βiy + γit+ δi, i = 1, 2, 3 (2.10)

where in perturbation expansion (2.1) fi = 0 for i ≥ 4, substituting perturbation ex-

pansion (2.2) along with f1 defined by (2.10) in bilinear form and equating coefficient

of ǫ1 to zero we finds that

2F (D){f1 · 1} = 2F (∂){eη1 + eη2 + eη3} = 0

this again gives dispersion relation F (αi, βi, γi) = 0 for i = 1, 2, 3. coefficient of ǫ2

gives the relation

F (D){f2 · 1 + 1 · f2 + f1 · f1} = 2F (∂)f2 + F (D){f1 · f1} = 0 (2.11)

where

F (D) {f1 · f1} = F (D) {eη1 · eη1 + eη2 · eη2 + eη3 · eη3}+ 2F (D)







∑

i6=j

eηi+ηj







=

3
∑

i=1

F (pi − pi)e
2ηi + 2F (p1 − p2)e

η1+η2

+ 2F (p1 − p3)e
η1+η3 + 2F (p2 − p3)e

η2+η3

(2.12)
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where F (pi − pj) = F (αi − αj , βi − βj , γi − γj) for i, j = 1, 2, 3 and thus by using

(2.12) in (2.11) one must realise that

f2 = A12e
η1+η2 +A13e

η1+η3 +A23e
η2+η3 (2.13)

back substituting f2 from equation (2.13) into (2.11), it is readily found that

Aij = −
F (pi − pj)

F (pi + pj)
(2.14)

for i, j = 1, 2, 3 and i < j. Thus f2 is completely determined and the coefficient of ǫ3

which gives the relation

2F (∂)f3 + 2F (D){f1.f2} = 0 (2.15)

which after some calculation gives

−F (∂)f3 = [A12F (p3 − p1− p2)+A13F (p2 − p1− p3)+A23F (p1 − p2− p3)]e
η1+η2+η3

(2.16)

from equation (2.16) one can readily guess that

f3 = Beη1+η2+η3 (2.17)

from (2.17) back substituting f3 into (2.16) we finds that

B = −
A12F (p3 − p1 − p2) +A13F (p2 − p1 − p3) +A23F (p1 − p2 − p3)

F (p1 + p2 + p3)

(2.18)

in order that the coefficient of ǫ4 should vanish we finds that

B = A12A13A23 (2.19)

combining (2.18) and (2.19) we obtain condition for existence of three soliton solution

(2.20)A12A13A23F (p1 + p2 + p3) +A12F (p3 − p1 − p2)

+A13F (p2 − p1 − p3) +A23F (p1 − p2 − p3) = 0

and coefficients of ǫ5 and ǫ6 also vanishes identically. Thus when condition (2.20) is

satisfied, the three soliton solution of equation (1.1) can be written as

u(x, y, t)=U [1+eη1+eη2+eη3+A12e
η1+η2+A13e

η1+η3+A23e
η2+η3+Beη1+η2+η3 ]

where B is given by equation (2.19).
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3. Bilinearization of equation (1.1)

3.1. Bilinear form. As described in [22], by truncating the Laurent expansion about

singularity manifold at constant level one can easily obtain Bäcklund transformation

for equation (1.1) in the form

u = 2(log f)x + u1 (3.1)

by taking seed solution u1 = 0, we obtain dependent variable transformation

u = 2(log f)x (3.2)

which transforms the equation (1.1) into quadratic expression in f and its derivatives

fxxxyf − fxxxfy − 3fxxyfx + 3fxxfxy − 3fxxf + 3f2
x + 2fytf − 2ftfy = 0 (3.3)

where constant of integration is taken as zero. Using definition of Hirota D-operator,

the equation (3.3) readily reduce to bilinear form

(D3
xDy − 3D2

x + 2DyDt)f.f = 0 (3.4)

which is obtained in corrected form of bilinear equation as given in [3].

3.2. Bilinear Bäcklund transformations and Lax pair. The Bäcklund transfor-

mations relates the two different solutions of equation, once this transformation is

known, starting with seed solution one can construct sequence of explicit solutions

for equation. In order to obtain bilinear Bäcklund transformations for equation (1.1)

we consider pair of solutions of bilinear form (3.4)

(D3
xDy − 3D2

x + 2DyDt)f · f = 0

(D3
xDy − 3D2

x + 2DyDt)g · g = 0

as given in [14] the primitive form of bilinear Bäcklund transformations can be written

as

[(D3
xDy − 3D2

x + 2DyDt)f · f ]g2 − f2[(D3
xDy − 3D2

x + 2DyDt)g · g] = 0

(3.5)
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using exchange formulae for D3
xDy, D

2
x and DyDt [14],

(D3
xDyf · f)g2 − f2(D3

xDyg · g)

= 2Dy(D
3
xf · g) · fg − 6Dx(DxDyf · g) · (Dxf · g)

(D2
xf · f)g2 − f2(D2

xg · g) = 2Dx(Dxf · g) · fg

(DyDtf · f)g2 − f2(DyDtg · g) = 2Dy(Dtf · g) · fg

equation (3.5) simplifies to

(3.6){2Dy(D
3
xf · g) · fg − 6Dx(DxDyf · g) · (Dxf · g)}

+ 2{2Dy(Dtf · g) · fg} − 3{2Dx(Dxf · g) · fg)} = 0

if we take DxDyf.g = λfg, the equation (3.6) readily decouple into pair

(D3
x + 2Dt)f · g = 0 (3.7)

DxDyf · g = λfg (3.8)

this pair of equations (3.7) and (3.8) is nothing but bilinear form of Bäcklund trans-

formations for equation (1.1). As mentioned by author in [20] the decoupling of (3.5)

is not unique, one may also explore for other possible forms of Bäcklund transforma-

tions by employing different exchange formulae for Hirota D-operator.

In order to construct Lax pair for equation (1.1), we have to linearise the bilinear

Bäcklund transformations (3.7) and (3.8) by suitable transformation, so we introduce

new function ψ(x, y, t) through Darboux transformation

f = ψg (3.9)

substituting (3.9) into (3.7) and (3.8) and using following formulas [18]

D3
xψg · g = ψxxxg

2 + 3ψxD
2
xg · g

Dtψg · g = ψtg
2

DxDyψg · g = ψxyg
2

and under dependent variable transformation

u = 2(log g)x,
D2

xg.g

f2
= ux,

DxDyg.g

g2
= uy

Lax pair for (1.1) are found to be

ψxy + ψ(uy − λ) = 0 (3.10a)

ψxxx + 3ψxux + 2ψt = 0 (3.10b)
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where λ is spectral parameter, one can derive equation (1.1) by eliminating ψ from

(3.10) by using compatibility condition ψxyt = ψtxy provided the condition λ = 1

is satisfied. This restriction on spectral parameter does not effect the genuinity of

Lax pair (3.10). Perhaps this restriction on spectral parameter happened to due

decoupling of Eq.(3.6) which according to Ref. [20] can be carried out in infinitely

many ways. We have tried other possible decouplings of Eq.(3.6) but unfortunately

we could not be successful. In fact, in construction of Lax for nonlinear PDEs, the

Lax pair is actually associated eigen value problem where spectral parameter plays

role of eigen value and it actually represents integrals of motions for given PDE such

that the solution of the original equation plays the role of a potential in the eigenvalue

problem. Thus the solution of PDE is mapped to scattering data(values of spectral

parameter λ) of the eigenvalue equation. This scattering data in our case is restricted

to unity only. But still the procedure of inverse scattering transform can be applied.

4. Multi–soliton solutions

In this section we will construct multi–soliton solutions of equation (1.1) by Hirota

method. As this equation is shown to be completely integrable by author in [3], so we

may expect existence of multi–soliton solutions for this equation. We will construct

its one, two and three soliton solutions.

4.1. One soliton solution. For one soliton solution we take

f = 1 + ǫf1, f1 = eη1 , η1 = α1x+ β1y + γ1t+ δ (4.1)

where α1 and β1 are wave numbers and γ1 being frequency, substituting (4.1) into

bilinear form (3.4)

(D3
xDy − 3D2

x + 2DyDt)f · f = 0

from coefficient of ǫ, the dispersion law follows as

α3
1β1 − 3α2

1 + 2β1γ1 = 0 (4.2)

and coefficient of ǫ2 is identically zero, thus by taking perturbation parameter ǫ = 1

and making use dependent variable transformation (3.2), the one soliton solution to

equation (1.1) is found to be

u(x, y, t) =
2α1e

η1

1 + eη1

, η1 = α1x+ β1y +

(

3α2
1

2β1
−
α3
1

2

)

t+ δ1 (4.3)

and this satisfies equation (1.1).
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4.2. Two soliton solution. For two soliton solution we take

f = 1 + ǫf1 + ǫ2f2, f1 = eη1 + eη2 , ηi = αix+ βiy + γit+ δi, (4.4)

here i = 1, 2, substituting (4.4) into bilinear form (3.4), the dispersion law from

coefficient of ǫ follows as

α3
i βi − 3α2

i + 2βiγi = 0, i = 1, 2 (4.5)

from coefficient of ǫ2, we have

f2 = A12e
η1+η2 (4.6)

where

A12 =

α3
1β2 + 3α2

1α2β1 − 3α2
1α2β2 − 3α1α

2
2β1 + 3α1α

2
2β2

1 + α3
2β1 − 6α1α2 + 2β1γ2 + 2β2γ1

α3
1β2 + 3α2

1α2β1 + 3α2
1α2β2 + 3α1α

2
2β1 + 3α1α

2
2β2

1 + α3
2β1 − 6α1α2 + 2β1γ2 + 2β2γ1

(4.7)

coefficient of ǫ3 is identically zero. Thus for perturbation parameter ǫ = 1, the two

soliton solution for (1.1) can be written as

f = 1 + eη1 + eη2 +A12e
η1+η2 (4.8)

where A12 can be interpreted as phase shift function, that is, during interaction of

solitons, a phase shift A12 is introduced [2] and solution (4.8) can be regarded as

nonlinear superposition of two solitons [19] and finally by using dependent variable

transformation (3.2) we write

u(x, t) =
2[α1e

η1 + α2e
η2 +A12(α1 + α2)e

η1+η2 ]

1 + eη1 + eη2 +A12eη1+η2

(4.9)

where ηi = αix+βiy+

(

3α2

i

2βi
−

α3

i

2

)

t+δi for i = 1, 2 and A12 can be calculated as above,

this solution also solves equation (1.1) and can be verified by direct substitution. If an

equation can be put in a bilinear form, then certainly it must have atleast two soliton

solutions [6], however, existence of three soliton solution is subjected to verification

of three soliton solution condition as we shall see in next section.

4.3. Three soliton solution. An equation which can be written in bilinear form

will definitely possess one and two soliton solution, but when one talk about three

soliton solution, it occurs in very restrictive manner [7] and it can be verified that for

equation (1.1), the restriction (2.20) for three soliton solution is satisfied. On similar
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line of action, for three soliton solution we assume

f = 1 + ǫf1 + ǫ2f2 + ǫ3f3, f1 = eη1 + eη2 + eη3 ,

ηi = αix+ βiy + γit+ δi
(4.10)

for i = 1, 2, 3, substituting (4.10) into bilinear form (3.4) and from coefficients of ǫ we

realise that the dispersion law is

α3
i βi − 3α2

i + 2βiγi = 0, i = 1, 2, 3 (4.11)

and

f2 =A12e
η1+η2 +A13e

η1+η3 +A23e
η2+η3 (4.12)

f3 =Beη1+η2+η3 (4.13)

where form of A12 is already given at (4.7) and

A13 =

α3
1β3 + 3α2

1α3β1 − 3α2
1α3β3 − 3α1α

2
3β1 + 3α1α

2
3β3

1 + α3
3β1 − 6α1α3 + 2β1γ3 + 2β3γ1

α3
1β3 + 3α2

1α3β1 + 3α2
1α3β3 + 3α1α

2
3β1 + 3α1α

2
3β3

1 + α3
3β1 − 6α1α3 + 2β1γ3 + 2β3γ1

A23 =

α3
2β3 + 3α2

2α3β2 − 3α2
2α3β3 − 3α2α

2
3β2 + 3α2α

2
3β3

1 + α3
3β2 − 6α2α3 + 2β2γ3 + 2β3γ2

α3
2β3 + 3α2

2α3β2 + 3α2
2α3β3 + 3α2α

2
3β2 + 3α2α

2
3β3

1 + α3
3β2 − 6α2α3 + 2β2γ3 + 2β3γ2

and B is given by (2.19) and finally by taking perturbation parameter ǫ = 1 we have

f = 1 + (eη1 + eη2 + eη3) + (A12e
η1+η2 +A13e

η1+η3 +A23e
η2+η3) +Beη1+η2+η3

(4.14)

and thus by using dependent variable transformation (3.2), the three soliton solution

for equation (1.1) is found to be

(4.15)

u = 2[α1e
η1 + α2e

η2 + α3e
η3

+ (A12(α1 + α2)e
η1+η2 +A13(α1 + α3)e

η1+η3 +A23(α2 + α3)e
η2+η3)

+B(α1 + α2 + α3)e
η1+η2+η3 ][1 + (eη1 + eη2 + eη3)

+ (A12e
η1+η2 +A13e

η1+η3 +A23e
η2+η3) +Beη1+η2+η3 ]

−1

for ηi = αix + βiy +

(

3α2

i

2βi
−

α3

i

2

)

t + δi for i = 1, 2, 3, where by direct substitution

of (4.15) into equation (1.1), one can verify the existence of three soliton solution for

equation. But in principle, the existence of three soliton solution is week condition to

claim for complete integrability [7], however, existence of three such solution is strong

indicator for existence of N-soliton solutions and existence of N-soliton solutions is
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sign of complete integrability in sense of Hirota’s formalism [9](see also [21]). Since

equation (1.1) also passes Painlevé property [3] so existence of N-soliton solutions

is again justified. However, one may also go with conclusion of Ramani [21], that

Painlevé property and three soliton solution go hand in hand and existence of three

soliton solution is suffice to claim for complete integrability.

For N-soliton solution one can extend the expansion (4.10)

f =
∑

µi∈{0,1}

exp







∑

0<i,j≤N

A′
ijµiµj +

N
∑

i=1

ηiµi







, Aij = exp
(

A′
ij

)

(4.16)

and if existence of (N−1)-soliton solution is assumed, then one can obtain condition [7]

∑

σi=±1

F

[

N
∑

i=1

σipi

]

∏

0<i<j≤N

[F (σipi − σjpj)σiσj ] = 0 (4.17)

the equation (4.17) is called Hirota’s condition for existence of N-soliton solutions

and it automatically hold for N = 1, 2 and for N = 3 this equation reduces to (2.20)

which has been verified by direct computation.

5. Conclusion

To conclude, we have firmly established the complete integrability of (2+1)–dimensional

nonlinear evolution equation, the given equation is known to be completely integrable

in sense of Painlevé property and existence of three soliton solution, where three soli-

ton condition is also satisfied, that, again confirms the complete integrability in sense

of Hirota’s formalism. In addition to this, we have also derived Lax pair and Bäcklund

transformations directly using Hirota method.
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