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Abstract In this article, we verify the existence and uniqueness of a positive and nondecreasing
solution for nonlinear boundary value problem of fractional differential equation in
the form

Dα

0+
x(t) + f(t, x(t)) = 0, 0 < t < 1, 2 < α ≤ 3,

x(0) = x′(0) = 0, x′(1) = βx(ξ),

where Dα

0+
denotes the standard Riemann-Liouville fractional derivative, 0 < ξ < 1

and 0 < β ξα−1 < α− 1. Our analysis relies on the fixed point theorem in partially
ordered sets. An illustrative example is also presented.
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1. Introduction

In recent years, fractional calculus is one of the interesting issues that have at-

tracted the attention of many scientists, specially in mathematics and engineering

sciences. Many natural phenomena can be presented by boundary value problems

of fractional differential equations. Many authors in different fields such as chemical

physics, fluid flows, electrical networks, viscoelasticity, try to model the phenomena

by boundary value problems of fractional differential equations [1-4]. In order to

achieve extra information in fractional calculus, specially boundary value problems,

the reader can refer to more valuable papers or books that are written by authors
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[5-26].

Bai [17] discussed the existence of positive solutions for the BVP

Dα
0+u(t) + f(t, u(t)) = 0, 0 < t < 1, 1 < α ≤ 2,

u(0) = 0, Dα−1u(1) = βu(η), 0 < η < 1,

where α is a real number, 0 < β ηα−1 < 1 and Dα
0+ denotes Riemann-Liouville

fractional derivative.

In [14], Zhang used some fixed point theorems on cones to verify the existence of a

positive solution for the equation

Dα
0+u(t) + f(t, u(t)) = 0, 0 < t < 1, 1 < α ≤ 2,

with the boundary conditions u(0) + u′(0) = u(1) + u′(1) = 0.

El-Shahed [27] studied the existence and nonexistence of positive solutions to the

following nonlinear FDE

Dα
0+u(t) + λf(u(t)) = 0, 0 < t < 1, 2 < α ≤ 3,

along with boundary conditions u(0) = u′(0) = u′(1) = 0, where Dα
0+ denotes stan-

dard Riemann-Liouville fractional derivative.

In this paper, which is motivated by paper [23], we investigate the existence and

uniqueness of a positive and nondecreasing solution for a nonlocal boundary value

problem for fractional differential equation of the form

Dα
0+x(t) + f(t, x(t)) = 0, 0 < t < 1, 2 < α ≤ 3, (1.1)

x(0) = x′(0) = 0, x′(1) = βx(ξ), (1.2)

where Dα
0+ denotes standard Riemann-Liouville fractional derivative, 0 < ξ < 1,

0 < βξα−1 < α − 1, and f ∈ C([0, 1] × [0,∞), [0,∞)). The main approach is based

upon a fixed point theorem in partially ordered sets.

2. Background materials and preliminaries

We now give definitions, lemmas and theorems that will be used in the remainder

of this paper.

Definition 2.1. ([7,8]) The Riemann-Liouville fractional integral of order α > 0, of

a function x : R>0 −→ R is defined by

Iα0+x(t) =
1

Γ(α)

∫ t

0

(t− s)α−1x(s)ds, n− 1 < α ≤ n, (2.1)
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provided that right-hand side is point wise defined on R>0.

Definition 2.2. ([7,8]) The Riemann-Liouville fractional derivative of order α > 0,

of a function x : R>0 −→ R is given by

Dα
0+x(t) =

1

Γ(n− α)
(
d

dt
)n
∫ t

0

(t− s)n−α−1x(s)ds, n− 1 < α ≤ n. (2.2)

Lemma 2.3. ([7,8]) Let x ∈ C(0, 1) ∩ L(0, 1). Then fractional differential equation

Dα
0+x(t) = 0 has

x(t) = a1t
α−1 + a2t

α−2 + ...+ ant
α−n, ai ∈ R, i = 1, ..., n, n = [α] + 1, (2.3)

as a unique solution.

Lemma 2.4. ([7,8]) Let x ∈ C(0, 1) ∩ L(0, 1) with a fractional derivative of order

α > 0 that belongs to C(0, 1) ∩ L(0, 1). Then

Iα0+D
α
0+x(t) = x(t) + a1t

α−1 + a2t
α−2 + ...+ ant

α−n, (2.4)

for some ai ∈ R, i = 1, ..., n, n = [α] + 1.

Theorem 2.5. ([28]) Assume that (K,≤) be a partially ordered set. Suppose that

there exists a metric d in K so that (K, d) is a complete metric space satisfying the

following condition:

if(un) is a nondecreasing sequence in K s.t un → u, then un ≤ u, ∀n ∈ N. (2.5)

Let T : K −→ K be a nondecreasing mapping so that

d(Tu, T v) ≤ d(u, v)− ϕ(d(u, v)),

where ϕ : R≥0 −→ R≥0 is a continuous and nondecreasing function such that ϕ is

positive in R>0, ϕ(0) = 0 and limt→∞ ϕ(t) = ∞. If there exists u0 ∈ K with u0 ≤ Tu0,

then T has a fixed point.

Theorem 2.6. ([28]) Assume that hypotheses of Theorem 2.5 are satisfied. Suppose

that (K,≤) satisfies the following condition:

for x, y ∈ K there exists z ∈ K which is comparable to x and y. (2.6)

Then, the fixed point is unique.

NOTE. In this paper, we use real Banach space K = C[0, 1] with the norm ‖u‖ =

maxt∈[0,1]{u(t)}. This space can be equipped with a partial order given by

u, v ∈ C[0, 1], u ≤ v ⇔ u(t) ≤ v(t), t ∈ [0, 1].
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Nieto and Rodriguez [29] proved (K,≤) with the metric d(u, v) = supt∈[0,1]{|u(t) −

v(t)|} satisfied condition (2.5). Also, for u, v ∈ C[0, 1] if max{u, v} ∈ K, then, (K,≤)

satisfies condition (2.6).

Lemma 2.7. Assume that 0 < ξ < 1, α−1
β

6= ξα−1 and g(t) ∈ C[0, 1]. Then,

fractional boundary value problem

Dα
0+x(t) + g(t) = 0, 0 < t < 1, 2 < α ≤ 3, (2.7)

x(0) = x′(0) = 0, x′(1) = βx(ξ), (2.8)

has a unique solution

x(t) =

∫ 1

0

G1(t, s)g(s)ds+
βtα−1

α− 1− βξα−1

∫ 1

0

G2(ξ, s)g(s)ds, (2.9)

where

G1(t, s) =
1

Γ(α)

{

tα−1(1 − s)α−2 − (t− s)α−1, 0 ≤ s ≤ t ≤ 1,

tα−1(1 − s)α−2, 0 ≤ t ≤ s ≤ 1,
(2.10)

G2(ξ, s) =
1

Γ(α)

{

ξα−1(1− s)α−2 − (ξ − s)α−1, 0 ≤ s ≤ η ≤ 1,

ξα−1(1− s)α−2, 0 ≤ η ≤ s ≤ 1,
(2.11)

Proof. Lemma 2.4 guarantees that

x(t) = a1t
α−1 + a2t

α−2 + a3t
α−3 − Iα0+g(t). (2.12)

From boundary conditions (2.8), we obtain a2 = a3 = 0 and

a1 =
α− 1

Γ(α)(α − 1− βξα−1)

∫ 1

0

(1−s)α−2g(s)ds−
β

Γ(α)
(

α− 1− βξα−1
)

∫ ξ

0

(ξ−s)α−1g(s)ds.

Substituting a1, a2 and a3 into (2.12), we get

x(t) = −
1

Γ(α)

∫ t

0

(t− s)α−1g(s)ds+
(α− 1)tα−1

Γ(α)(α − 1− βξα−1)

∫ 1

0

(1− s)α−2g(s)ds

−
βtα−1

Γ(α)(α − 1− βξα−1)

∫ ξ

0

(ξ − s)α−1g(s)ds.
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Thus, the unique solution of FBVP (2.7)-(2.8) is

x(t) =
−1

Γ(α)

∫ t

0

(t− s)α−1g(s)ds+
tα−1

Γ(α)

(
∫ t

0

(1− s)α−2g(s)ds+

∫ 1

t

(1− s)α−2g(s)ds

)

+
βtα−1

Γ(α)(α − 1− βξα−1)

(

ξα−1

∫ 1

0

(1 − s)α−2g(s)ds−

∫ ξ

0

(ξ − s)α−1g(s)ds

)

=
1

Γ(α)

∫ t

0

[

tα−1(1− s)α−2 − (t− s)α−1
]

g(s)ds+
1

Γ(α)

∫ 1

t

tα−1(1− s)α−2g(s)ds

+
βtα−1

Γ(α)(α − 1− βξα−1)

∫ ξ

0

[

ξα−1(1 − s)α−2 − (ξ − s)α−1
]

g(s)ds

+
βtα−1

Γ(α)(α − 1− βξα−1)

∫ 1

ξ

ξα−1(1− s)α−2g(s)ds

=

∫ 1

0

G1(t, s)g(s)ds+
βtα−1

α− 1− βξα−2

∫ 1

0

G2(ξ, s)g(s)ds.

The proof is complete. �

Lemma 2.8. The function G1(t, s) is nonnegative and continuous function.

Proof. It is easy to see that G1 is continuous. Now, we show that G1(t, s) ≥ 0.

Case 1. s = 1. Obviously G1(t, 1) = 0

Case 2. For 0 ≤ t ≤ s ≤ 1, it is clear that G1(t, 1) = tα−1(1− s)α−2 ≥ 0.

Case 3. For 0 ≤ s ≤ t ≤ 1, we have

G1(t, s) =
1

Γ(α)

[

tα−1(1 − s)α−2 − (t− s)α−1
]

=
1

Γ(α)

[

tα−1 (1 − s)α−1

(1 − s)
− (t− s)α−1

]

≥
1

Γ(α)

[

tα−1(1 − s)α−1 − (t− s)α−1
]

=
1

Γ(α)

[

(t− ts)α−1 − (t− s)α−1
]

≥ 0.

Thus, the lemma is proved. �

Lemma 2.9. For G1 and G2, the following relations are satisfied, respectively,

(i) sup
t∈[0,1]

∫ 1

0

G1(t, s)ds =
1

(α− 1)Γ(α+ 1)
, (ii)

∫ 1

0

G2(ξ, s)ds =
ξα−1

Γ(α)

( 1

α− 1
−

ξ

α

)

.
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Proof. (i) We have
∫ 1

0

G1(t, s)ds =
1

Γ(α)

{

∫ t

0

tα−1(1− s)α−2ds−

∫ t

0

(t− s)α−1ds+

∫ 1

t

tα−1(1− s)α−2ds
}

=
1

Γ(α)

{ tα−1

α− 1
−

tα

α

}

.

Let us set

k(t) =
1

Γ(α)

{ tα−1

α− 1
−

tα

α

}

.

Then, as

k′(t) =
1

Γ(α)

{

tα−2 − tα−1
}

> 0,

k(t) is strictly increasing and this follows that

sup
t∈[0,1]

∫ 1

0

G1(t, s)ds = k(1) =
1

(α− 1)Γ(α+ 1)
.

(ii) We have

∫ 1

0

G2(ξ, s)ds =
1

Γ(α)

{

∫ ξ

0

ξα−1(1− s)α−2ds−

∫ ξ

0

(ξ − s)α−1ds+

∫ 1

ξ

ξα−1(1 − s)α−2ds
}

=
ξα−1

Γ(α)

( 1

α− 1
−

ξ

α

)

.

Therefore, the proof is completed. �

Lemma 2.10. The function G1(t, s) is strictly increasing with respect to the first

component.

Proof. We assume that

g1(t) =
1

Γ(α)

[

tα−1(1− s)α−2 − (t− s)α−1
]

, s ≤ t,

g2(t) =
1

Γ(α)
tα−1(1 − s)α−2, t ≤ s,

where s is fixed. For s ≤ t, we have

g′1(t) =
1

Γ(α)

[

(α− 1)tα−2(1 − s)α−2 − (α− 1)(t− s)α−2
]

=
1

Γ(α− 1)

[

(t− ts)α−2 − (t− s)α−2
]

≥ 0.

Then, g1(t) is strictly increasing on [s, 1]. On other hand, for 0 ≤ t1 < t2 ≤ s, it is

easy to see that g2(t1) < g2(t2) and so, g2(t) is strictly increasing on [0, s]. Therefore,
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when t1 < t2 ≤ s, and s ≤ t1 < t2, we have G1(t1, s) < G1(t2, s). Now, we show that

in the case t1 ≤ s ≤ t2 with t1 < t2, G1(t1, s) < G1(t2, s). We have g2(t1) ≤ g2(s) =

g1(s) ≤ g1(t2). If g2(t1) = g1(t2), then g2(t1) = g2(s) = g1(s) = g1(t2) and since g1

and g2 are monotone, we conclude that t1 = t2 = s, which contradicts with t1 < t2.

Then g2(t1) < g1(t2) and this shows that G1(t1, s) < G1(t2, s). �

3. Main results

For convenience of presentation, we now present the following hypothesis to be

used in the rest of the paper.

(H1) f : [0, 1]×R≥0 −→ R≥0 is a continuous function and nondecreasing with respect

to second variable.

(H2) There exist H ⊂ [0, 1] with µ(H) > 0 so that f(t, x(t)) 6= 0 for t ∈ H and x ∈ R.

(H3) There exist 0 < γ <
(

1
(α−1)Γ(α+1) +

βξα−1

(α−1−βξα−1)Γ(α) (
1

α−1 − ξ
α
)
)−1

such that for

x, y ∈ R
≥0, with x ≤ y

f(t, x)− f(t, y) ≤ γκ(x− y), 0 ≤ t ≤ 1,

where κ(x) = x
x+2 .

Theorem 3.1. Assume that the hypotheses (H1)-(H3) hold. Then, the boundary

value problem (1.1)-(1.2) has a unique positive and strictly increasing solution x(t).

Proof. Consider the cone

K = {x ∈ C[0, 1] : x(t) ≥ 0}.

Since K is a closed set, K is a complete metric space with the distance given by

d(x, y) = sup
t∈[0,1]

|x(t) − y(t)|.

Let us define the operator A : C[0, 1] −→ C[0, 1], by

Ax(t) =

∫ 1

0

G1(t, s)f(s, x(s))ds +
βtα−1

α− 1− βξα−1

∫ 1

0

G2(ξ, s)f(s, x(s))ds. (3.1)

By Lemma 2.8 and (H1), it follows that A(K) ⊆ K.

Now, using Theorems 2.5 and 2.6 and in three steps, we will prove to theorem.

Step 1. Existence of nonnegative solution.
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By (H1), for x, y ∈ K with x ≥ y, we have

Ax(t) =

∫ 1

0

G1(t, s)f(s, x(s))ds+
βtα−1

1− βξα−2

∫ 1

0

G2(ξ, s)f(s, x(s))ds

≥

∫ 1

0

G1(t, s)f(s, y(s))ds+
βtα−1

1− βξα−2

∫ 1

0

G2(ξ, s)f(s, y(s))ds

= Ay(t).

This shows that A is nondecreasing operator. Also, for x ≥ y, we have

d(Ax,Ay) = sup
t∈[0,1]

|(Ax)(t) − (Ay)(t)| = sup
t∈[0,1]

[

(Ax)(t)− (Ay)(t)
]

≤ sup
t∈[0,1]

∫ 1

0

G1(t, s)
[

f(s, x(s))− f(s, y(s))
]

ds

+
βtα−1

α− 1− βξα−1

∫ 1

0

G2(ξ, s)
[

f(s, x(s)) − f(s, y(s))
]

ds

≤ sup
t∈[0,1]

∫ 1

0

G1(t, s)
γ
[

x(s) − y(s)
]

x(s) − y(s) + 2
ds

+
β

α− 1− βξα−1

∫ 1

0

G2(ξ, s)
[ γ
[

x(s) − y(s)
]

x(s) − y(s) + 2

]

ds.

Using Lemma 2.9 and (H3) and since we know the function κ(x) = x
x+2 is nonde-

creasing, we get

d(Ax,Ay) ≤ γ ·
‖x− y‖

‖x− y‖+ 1

(

sup
t∈[0,1]

∫ 1

0

G1(t, s)ds+
β

α− 1− βξα−1

∫ 1

0

G2(ξ, s)ds
)

= γ ·
‖x− y‖

‖x− y‖+ 1

( 1

(α− 1)Γ(α+ 1)
+

βξα−1

(α − 1− βξα−1)Γ(α)
(

1

α− 1
−

ξ

α
)
)

<
[

‖x− y‖ −
(

‖x− y‖ −
‖x− y‖

‖x− y‖+ 1

)]

.

Let us set ϕ(u) = u − u
u+1 . It is easy to see that ϕ : R≥0 −→ R≥0 is continuous,

nondecreasing, positive in R>0, ϕ(0) = 0 and limu→∞ ϕ(u) = ∞. So, for x ≥ y, we

have

d(Ax,Ay) ≤ d(x, y)− ϕ(d(x, y)).

On the other hand, G1(t, s) ≥ 0 and f ≥ 0 yields

(A0)(t) =

∫ 1

0

G1(t, s)f(s, 0)ds ≥ 0.
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Now, all the conditions of Theorem 2.5 are satisfied. Consequently, the BVP (1.1)-

(1.2) has at least one nonnegative the solution.

Step 2. Uniqueness of the solution.

It is clear that (K,≤) satisfies condition 2.6 and so by Theorem 2.6, we conclude the

uniqueness of solution.

Step 3. The solution is strictly increasing.

As x(0) =
∫ 1

0
G1(0, s)f(s, x(s))ds and G1(0, s) = 0, we have x(0) = 0. We assume

that t1, t2 ∈ [0, 1] with t1 < t2. We distinguish the following cases.

Case 1. If t1 = 0, then x(t1) = 0. We know that x(t) ≥ 0. Assuming x(t2) = 0, we get

G1(t2, s)f(s, x(s)) = 0, a.e.(s) and since G1(t2, s) 6= 0 we have f(s, x(s)) = 0, a.e.(s).

On the other hand, f is nondecreasing with respect to the second variable, and so

we have f(s, 0) ≤ f(s, x(s)) = 0, a.e.(s), which contradicts the hypothesis (H2).

Consequently, x(t1) = 0 < x(t2).

Case 2. If t1 > 0, then

x(t2)− x(t1) = (Ax)(t2)− (Ax)(t1)

+

∫ 1

0

[

G1(t2, s)−G1(t1, s)
]

f(s, x(s))ds

+
β(tα−1

2 − tα−1
1 )

α− 1− βξα−1

∫ 1

0

G2(η, s)f(s, x(s))ds.

Now, by Lemma 2.10 and since f is nonnegative, we get x(t1) = x(t2) and or x(t1) <

x(t2).

Assume that x(t1) = x(t2). Then
∫ 1

0

[

G1(t2, s)−G1(t1, s)
]

f(s, x(s))ds = 0,

and this follows that

[

G1(t2, s)−G1(t1, s)
]

f(s, x(s))ds = 0, a.e.(s),

and Lemma 2.10 yields

f(s, x(s))ds = 0, a.e.(s),

which again contradicts the hypothesis (H2). Thus, x(t1) < x(t2). Therefore, the

proof is completed. �
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4. An example

Example 4.1. Consider the boundary value problem
{

D
5
2

0+x(t) +
tx+x
4x+8 = 0, 0 < t < 1,

x(0) = x′(0) = 0, x′(1) = x(12 ),
(4.1)

in which β = 1, ξ = 1
2 , f(t, x) =

t+1
4 · x

x+2 with

f(t, x)− f(t, y) =
t+ 1

4

( x

x+ 2
−

y

y + 2

)

<
1

2
·

x− y

x− y + 2
, x ≥ y.

Furthermore,

( 1

(α− 1)Γ(α+ 1)
+

βξα−1

(α− 1− βξα−1)Γ(α)
(

1

α− 1
−

ξ

α
)
)−1

≃ 3.2373 >
1

2
= γ.

Thus, the conclusion of Theorem 3.1 applies to problem (4.1).
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