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Abstract For the polynomial planar vector fields with a hyperbolic or nilpotent critical point at
the origin, the monodromy problem has been solved, but for the strongly degenerate
critical points this problem is still open. When the critical point is monodromic,
the stability problem or the center- focus problem is an open problem too. In this
paper we will consider the polynomial planar vector fields with a degenerate critical
point at the origin. At first we give some normal form for the systems which has
no characteristic directions. Then we consider the systems with some characteristic
directions at which the origin is still a monodromic critical point and we give a
monodromy criterion. Finally we clarify our work by some examples.
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1. Introduction

Consider the planar system
{

ẋ = P (x, y)

ẏ = Q(x, y),
(1.1)

where P and Q are analytic functions in some planar region Ω. We say that (x0, y0)

is a singular point or critical point of the system (1.1), if P (x0, y0) = Q(x0, y0) = 0.

A critical point p of the system (1.1) is called monodromic if there is no solution of

the system tending or leaving p with a concrete slope and all the orbits turned around

it. The monodromy problem is determining whether the critical point is monodromic
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or not. A critical point p is called focus if every trajectory started in a neighborhood

of p, spirals around p and p is called center if it is surrounded by closed orbits. In

analytic systems a monodromic critical point is either a focus or a center. This fact

has been proved as a consequence of the finiteness of the limit cycles at the beginning

of the 19th century [6].

When both the eigenvalues of the Jacobian matrix at the critical point differs

from zero, the critical point is called non-degenerate. In this case the monodromy

problem has been solved. Indeed, when the eigenvalues of the Jacobian matrix at the

critical point are complex numbers with nonzero imaginary parts, the critical point

is monodromic. If the real part of these eigenvalues are different from zero, i.e. the

critical point is hyperbolic, then the critical point is a focus or center, while if their

real part are zero, then the critical point is a center [7].

When only one of the eigenvalues of the Jacobian matrix at the critical point is

zero, then the critical point is not monodromic [11]. When both the eigenvalues of

the Jacobian matrix at the critical point equals zero but the Jacobian matrix is not

identically zero, the critical point is called nilpotent, and when the planar system has

no linear part the critical point is called strongly degenerate (in short degenerate) or

linearly zero.

As soon as the critical point is monodromic, the stability problem or the center-

focus problem is an open problem too. For the hyperbolic critical point the center-

focus problem has been solved theoretically by Poincaré [12] and Lyapunov [8], by

means of the so called Lyapunov constants. For the nilpotent critical point the mon-

odromy problem was solved by Andreev [3] and the center- focus problem was solved

by Moussu [10].

But for the strongly degenerate points almost nothing has been solved and it has

been rarely studied. For this type of critical point even the monodromy problem

is very complicated, see for instance [5, 9]. The main technique to investigate the

strongly degenerate critical points is the blowing up method [1]. In this method by

means of a non-diffeomorphism change of variable, one can explode the critical point

to a line or a circle. Considering the critical points of the new system on this line or

circle is useful to study the original critical points. In the new system if some of the

critical points are degenerate, then the process is repeated. By Domortier Theorem

this iterative process of desingularization is finite [4].

In this paper we will consider the degenerate critical points of the planar polynomial

systems. Without loose of generality and by a linear transformation, we suppose that

the critical point is moved to the origin.
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In Section 2, we give a normal form for the systems with no characteristic directions

at which the origin is a monodromic critical point. In Section 3, by means of the polar

blow up method we give a monodromy criterion. Finally in Section 4 we give some

examples to clarify our results.

2. Systems with no characteristic directions

Consider the system of differential equations
{

ẋ = P (x, y),

ẏ = Q(x, y),
(2.1)

where

P (x, y) = Pm(x, y) +

n
∑

i=1

Pm+i(x, y),

Q(x, y) = Qm(x, y) +
n
∑

i=1

Qm+i(x, y),

Pk, Qk are homogeneous polynomials of degree k, and at least one of the Pm, Qm is

not identically zero.

Suppose that m > 1, hence the origin is a degenerate critical point of (2.1). In

the polar coordinates and after the change of variable ds = dt rm−1 and denoting the

derivative with respect to s by dr
ds

= ṙ, dθ
ds

= θ̇, one can show easily that the system

(2.1) becomes
{

ṙ = R(θ)r +O(r2),

θ̇ = F(θ) +O(r),
(2.2)

where

R(θ) = cos θ Pm(cos θ, sin θ) + sin θ Qm(cos θ, sin θ),

F(θ) = cos θ Qm(cos θ, sin θ)− sin θ Pm(cos θ, sin θ).

If F ≡ 0 then the origin is called a dicritical point. In this case we have Pm = xWm−1,

Qm = yWm−1, where Wm−1 is a homogeneous polynomial of degree m − 1. If ν is

a root of Wm−1, where ν = tan(θ∗), then θ∗ is called a singular direction [1]. In

this case for every nonsingular direction θ there exists exactly one semipath tending

to the origin which is tangent to θ in forward or backward time and for a singular

direction θ∗, there might be be either no semipaths tending to the origin tangent to

θ∗, or a finite number, or infinitely many [1]. In particular a dicritical point is not

monodromic.
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If F(θ) 6≡ 0, then the roots of F in the interval [0, 2π) is called characteristic direc-

tions. Thus the characteristic directions are the solutions of the following equation

cos θ Qm(cos θ, sin θ)− sin θ Pm(cos θ, sin θ) = 0. (2.3)

In this case every solution of (2.1) tending or leaving the origin are tangent to one

of the characteristic directions [1, 11]. Thus if there are no characteristic direction,

then the origin is monodromic. Unfortunately it is possible that the system has some

characteristic directions and there is no solution of the system tending or leaving the

origin tangent to those characteristic directions. Thus the origin is monodromic, for

instance see Example 4.2.

In this section we introduce a normal form for the planar polynomial vector fields

with a degenerate critical point at the origin having no characteristic directions.

Notation 2.1. If the system (2.2) has no characteristic directions, we call the origin

as a pure monodromic critical point.

The origin is called a conditional monodromic critical point, whenever there are

some characteristic directions and there are no solutions of the system that tend to

the origin tangent to those characteristic directions.

In the following we consider the system
{

ẋ = P (x, y),

ẏ = Q(x, y),
(2.4)

where P = Pm(x, y)+
∑n

i=1 Pm+i(x, y), Q = Qm(x, y)+
∑n

r=i Qm+i(x, y) and Pk, Qk

are homogeneous polynomials of degree k. Suppose that m > 1 and at least one of

the Pm, Qm is not identically zero.

Theorem 2.2. If the origin is a pure monodromic critical point of the system (2.4),

then m is odd and the system can be written as
{

ẋ = −ym + P̄ (x, y),

ẏ = xm + Q̄(x, y),
(2.5)

where

P̄ (x, y) = xPm−1(x, y) +

n
∑

i=1

Pm+i(x, y),

Q̄(x, y) = yQm−1(x, y) +

n
∑

i=1

Qm+i(x, y).
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Lemma 2.3. If the system (2.4) has a pure monodromic critical point at the origin,

then the system can be written as
{

ẋ = aym + P̂ (x, y),

ẏ = bxm + Q̂(x, y),
(2.6)

where at least one of the a, b does not equal zero,

P̂ (x, y) = xPm−1(x, y) +

n
∑

i=1

Pm+i(x, y),

and

Q̂(x, y) = yQm−1(x, y) +
n
∑

i=1

Qm+i(x, y).

Proof. Let Pm =
∑m

j=0 αjx
jym−j, Qm =

∑m

j=0 βjx
jym−j . If α0, βm 6= 0 the proof

is obvious by a = α0, b = βm, P̂ (x, y) = P (x, y) − aym, Q̂(x, y) = Q(x, y) − bxm.

If α0 = βm = 0 consider P̃ (x, y) = Pm(x,y)
x

, Q̃(x, y) = Qm(x,y)
y

, both P̃ , Q̃ are

polynomials and Eq. (2.3) becomes

cos θ sin θQ̃m(cos θ, sin θ)− sin θ cos θP̃m(cos θ, sin θ) = 0.

This equation has at least four solutions in [0, 2π). Thus the origin can not be a pure

monodromic critical point. If α0 = 0 and βm 6= 0, then Eq. (2.3) becomes

cos θ sin θQ̃m(cos θ, sin θ)− sin θPm(cos θ, sin θ) = 0.

This equation has at least two roots in the interval [0, 2π). Similarly if α0 6= 0 and

βm = 0, then the origin is not a pure monodromic critical point. �

Lemma 2.4. Consider the system
{

ẋ = aym + P̂ (x, y),

ẏ = bxm + Q̂(x, y),
(2.7)

where P̂ , Q̂ are polynomials as in lemma 2.3. If the origin is a pure monodromic

critical point, then m is odd.
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Proof. Let Pm = aym +
∑m

j=1 αjx
jym−j, Qm = bxm +

∑m−1
j=0 βjx

jym−j . If m = 2p,

then Eq. (2.3) becomes

b cos2p+1 θ + cos θ





m−1
∑

j=0

βj cos
j θ sinm−j θ



 , (2.8)

− a sin2p+1 θ − sin θ





m
∑

j=1

αj cos
j θ sinm−j θ



 = 0. (2.9)

In the interval
(

π
2 ,

3π
2

)

we can divide the equation by cos2p+1(θ) and we have

−a tan2p+1(θ) +H(cos θ, sin θ) = 0,

where H is an analytic function in the interval
(

π
2 ,

3π
2

)

. Let

G(θ) := −a tan2p+1(θ) +H(cos θ, sin θ),

then we have limθ→π

2
+G(θ) = ∞ and lim

θ→ 3π
2

−G(θ) = ∞, where the sign of ∞

at the first limit is −sgn(a) and in the second one is sgn(a). By the intermediate

value theorem G(θ) has at least one roots in
(

π
2 ,

3π
2

)

and the origin can not be a pure

monodromic critical point of the system. Therefore m is odd. �

Remark 2.5. Without loose of generality one can assume that b = 1.

Lemma 2.6. Consider the system
{

ẋ = ay2p−1 + P̂ (x, y)

ẏ = x2p−1 + Q̂(x, y),
(2.10)

where P̂ , Q̂ are as in the lemma 2.3. If the origin is a pure monodromic critical point

of the system, then a < 0.

Proof. Let Pm =
∑m

j=0 αjx
jym−j, Qm =

∑m

j=0 βjx
jym−j. Suppose that a > 0,

then Eq. (2.3) becomes

cos2p θ + cos θ
(

∑m−1
j=0 αj cos

j sinm−j
)

−a sin2p θ − sin θ
(

∑m

j=1 βj cos
j sinm−j

)

= 0.
(2.11)

In the interval
(

π
2 ,

3π
2

)

we can divide Eq. (2.11) by cos2p(θ) and we have

tan2p(θ) +H(cos θ, sin θ) = 0,

where H is an analytic function. Let

G(θ) := tan2p(θ) +H(cos θ, sin θ).
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In the interval
(

π
2 ,

3π
2

)

, G(θ) is analytic and we have G(0) = 1 and since a > 0,

limθ→π

2
+ G(θ) = −∞ and G(θ) has at least one root in the interval, therefore the

origin can not be a pure monodromic critical point. �

proof of theorem 2.2: By the previous lemmas the proof is obvious.

3. Systems with conditional monodromic critical point

In this section we consider the planar polynomial systems with the origin as a

conditional monodromic critical point. Using the polar blow up method we study the

phase portrait of the system around the origin.

3.1. The blow up method. There are two basic blowing up methods, the polar

blow up and the directional blow up and indeed in the plane both of them are a

unique technique. In the following subsection we recall the polar blow up method

briefly, for more details see [1]. The idea behind the blow up method is to explode

the degenerate critical point to a line or a circle to better understanding of the local

behavior around the critical point. In the following this transformation has been

described.

Consider the planar system
{

ẋ = P (x, y) =
∑m

i=2 Pi(x, y),

ẏ = Q(x, y) =
∑m

i=2 Qi(x, y),
(3.1)

where Pi, Qi are homogeneous polynomials of degree i. The origin is a degenerate

critical point of the system. In the polar coordinates (x, y) = (r cos(θ), r sin(θ)) where

r ∈ R, θ ∈ [0, 2π) after canceling rk−1 ,where k is the least number that Pk or Qk are

not identically zero, the system (3.1) becomes
{

ṙ = R(θ)r +O(r2),

θ̇ = F(θ) +O(r),
(3.2)

where R,F are trigonometric polynomials.

Let θ1, θ2 be two consecutive roots of F . The region limited by r > 0, θ1 < θ < θ2

is called a sector. Let r > 0, θ1 < θ < θ2 be a sector and r(θ) be a trajectory of the

system through a point of the sector, then r(θ) is defined for every θ1 < θ < θ2 and

when θ approaches one of the θ1 or θ2, then either r(θ) approaches 0 or +∞.

Definition 3.1. The sector r > 0, θ1 < θ < θ2 is called

a) elliptic, if r(θ) → 0 when θ approaches θ+1 or θ−2 ,

b) hyperbolic, if r(θ) → +∞ when θ approaches θ+1 or θ−2 ,
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Figure 1. Possible situations for a sector after blowing up.

Figure 2. Possible situations for a sector after going back through
blowing up.

c) parabolic, if R(θ) → 0 when θ → θ+1 and R(θ) → +∞ when θ → θ−2 or vice

versa.

Let θ1 < θ2 < . . . < θk be all the roots of the equation F = 0 in the interval

[0, 2π). For arbitrary 1 ≤ i ≤ k, if ṙ(θi) 6= 0 and ṙ(θi+1) 6= 0, then the sector between

θi, θi+1 has been shown in Figure 1. In this figure we use the ’right horizontal arrow’

to show that the sign of θ̇ in the interval (θi, θi+1) is positive and thus θ increase in

this interval and the ’left horizontal arrow’ shows that the sign of θ̇ in the interval

(θi, θi+1) is negative and thus θ decrease in this interval. Similarly the vertical arrows

show the sign of ṙ(θi) and ṙ(θi+1).

Going back through the blow up, indeed by shrinking the circle r = 0 to a point,

the sectors in Figure 1 transform to the sectors shown in Figure 2 respectively. Thus

the phase portrait around the origin can be found easily and the next result is obvious.

Theorem 3.2. Let the origin be a monodromic critical point of the system (3.1),

which in the polar coordinates becomes the system (3.2). Then either F(θ) has no

roots in the interval [0, 2π), or for every roots of F(θ) we have ṙ(θ) = 0.
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Figure 3. Sectors of the system (3.3) after blowing up.

Figure 4. Sectors of the system (3.3) after blowing up on the cylin-
der (left), after going back through blowing up(right).

Example 3.3. Consider the planar system
{

ẋ = −x2 + 3xy,

ẏ = xy + 2y2,
(3.3)

In polar coordinates and after canceling r the system becomes
{

ṙ = r
(

− cos3 θ + 3 cos2 θ sin θ + 2 sin3 θ + cos θ sin2 θ
)

,

θ̇ = cos θ sin θ(2 cos θ − sin θ).
(3.4)

On the line r = 0 the critical points of the system (3.4) are

(0,
π

2
), (0, π), (0,

3π

2
), (0, θ∗), (0, π + θ∗),

where tan(θ∗) = 2. The phase portrait of the system on the cylinder is shown in

Figure 3. Identifying θ = 0 and θ = 2π the exceptional divisor can be considered as a

circle. Shrinking the circle to a point is going back through the blow up, Figure 4.
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Remark 3.4. If for every root θ∗ of F , ṙ(θ∗) = 0, then the polar blow up method

gives no information about monodromy.

Conjecture: If the origin is a monodromic critical point of the system (1.1), then

there is an analytic change of variables (x, y) = (f(r, θ), g(r, θ)) such that in the

coordinate system (r, θ) there is no characteristic directions.

4. Examples

Here we give two examples of the systems with conditional monodromic critical

point and give some appropriate ’quasi-polar’ coordinates at which the origin is a

pure monodromic critical point. By the quasi-polar coordinates for the system
{

ẋ = −y2p−1 +O(y2p) + xP (x, y),

ẏ = x2q−1 +O(x2q) + yQ(x, y),
(4.1)

we mean the change of variables

x = rpCsθ, y = rqSnθ, (4.2)

where Cs, Sn are the solution of the Hamiltonian system
{

ẋ = −y2p−1,

ẏ = x2q−1.
(4.3)

So we have

ṙ =
x2q−1ẋ+ y2p−1ẏ

pqr2pq−1
, θ̇ =

pxẏ − qyẋ

pqrp+q
.

For more details on quasi-polar coordinates see for instance [2].

Consider the system
{

ẋ = y

ẏ = f(x) + φ(x)y,
(4.4)

where f(x) = axα +O(xα+1) and φ(x) = bxβ +O(xβ+1).

As a consequence of Andreev Theorem, the origin is a monodromic critical point

of (4.4) if a is negative, α = 2n− 1 and one of the following three conditions holds

(1) β > n− 1,

(2) β = n− 1 and b2 + 4an < 0,

(3) φ ≡ 0, [3].
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Example 4.1. By the above descriptions the origin is a monodromic nilpotent critical

point for the system
{

ẋ = y,

ẏ = −x3 + x5y.
(4.5)

In the polar coordinates the system (4.5) becomes
{

ṙ = r cos θ sin θ + r3 cos3 θ sin θ + r6 cos5 θ sin2 θ,

θ̇ = sin2 θ − r2 cos4 θ + r5 cos6 θ sin θ.
(4.6)

In the system (4.6) the equation F = 0 has two roots in the interval [0, 2π). These

roots are 0, π, and ṙ(0) = ṙ(π) = 0 and we can’t find anything about the local behavior

of the system. Using Lyapunov polar coordinate system (x, y) = (r Csθ, r2 Snθ) and

cancel r, the system (4.5) becomes
{

ṙ = r5 Cs5θ Sn2θ,

θ̇ = −1 + r4 Cs6θ Snθ,
(4.7)

where Csθ, Snθ are the solution of the system
{

ẋ = −y,

ẏ = x3.
(4.8)

The system (4.7) has no characteristic directions. Thus the origin is a monodromic

critical point of the system (4.5).

Example 4.2. Consider the system
{

ẋ = −y3 + xy2 + x2y,

ẏ = x5 + 2xy2 + y3,
(4.9)

where in the polar coordinates after canceling r2 becomes
{

ṙ = r(cos2 θ sin2 θ + cos3 θ sin θ + cos θ sin3 θ + sin4 θ) + r3 cos5 θ sin θ,

θ̇ = sin2 θ + r2 cos6 θ.

(4.10)

We have F(θ) = sin2 θ and this system has two characteristic directions in the interval

[0, 2π) i.e. 0, π, and ṙ(0) = ṙ(π) = 0.

Now we use the quasi polar coordinates (x, y) = (r2Csθ, r3Snθ) at which Cs, Sn

are the solutions of the system
{

ẋ = −y3,

ẏ = x5.
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One can show easily that

ṙ =
x5ẋ+ y3ẏ

6r11
, θ̇ =

2xẏ − 3yẋ

6r5
.

In this coordinates after canceling r7 the system (4.9) becomes
{

ṙ = 1
6r (2Csθ Sn5θ + Cs7θ Snθ) + 1

6 (Cs6θ Sn2θ + Sn6θ),

θ̇ = 1− 1
6rCsθ Sn3θ + 1

6r2Cs2θ Sn2θ.
(4.11)

The system (4.11) has no characteristic directions, thus the origin is monodromic.

Example 4.3. Consider the planar system
{

ẋ = −y3 +
∑n

i=4 Pi(x, y),

ẏ = x3 +
∑n

i=4 Qi(x, y),
(4.12)

where Pi, Qi are homogeneous polynomials of degree i and n ∈ N. This system has no

characteristic direction, because in the polar coordinates we have

F(θ) = cos4θ + sin4 θ > 0.

Thus the origin is a monodromic critical point.

Acknowledgment

The authors would like to thank the anonymous reviewers for their useful com-

ments.

References
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