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Abstract In this paper, we obtained the 1-soliton solutions of the symmetric regularized long
wave (SRLW) equation and the (3+1)-dimensional shallow water wave equations.
Solitary wave ansatz method is used to carry out the integration of the equations and
obtain topological soliton solutions The physical parameters in the soliton solutions
are obtained as functions of the dependent coefficients. Note that, this method
is always useful and desirable to construct exact solutions especially soliton-type
envelope for the understanding of most nonlinear physical phenomena.
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1. Introduction

Nonlinear problems are of interest to engineers and mathematicians because most

physical systems are naturally nonlinear in nature [2]. Nonlinear partial differen-

tial equations (NPDEs) are difficult to solve and give rise to interesting phenomena

such as fluid mechanics, mathematical biology, diffusion process, chemical kinematics,

chemical physics, plasma physics, optical fibers, neural physics, solid state physics and

many other fields. It is well known that wave phenomena of optical fibers are modeled

by dark shaped tanhp solutions or by bright shaped sechp solutions. There is plainly

a tendency in the modern nonlinear science community to obtain exact solutions for

nonlinear equations.

In recent years, new exact solutions may help to find new phenomena. A vari-

ety of powerfull methods, such as the tanh-sech method [25, 26, 40], extended tanh

method [12, 13, 41], sine-cosine method [5, 42], homogeneous balance method [14, 38],

first integral method [16,34], Jacobi elliptic function method [15,23],
(

G′

G

)

-expansion
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method [6,39], exp-function method [20,27] and F-expansion method [1,47] were used

to develop nonlinear dispersive and dissipative problems.

Solitons are caused by a cancellation of nonlinear and dispersive effects in the

medium. Solitons arise as the solutions of a widespread class of weakly nonlinear

dispersive partial differential equations describing physical systems. The soliton phe-

nomenon was first described by John Scott Russell. Solitons in a fiber optic system

are described by the Manakov equations. Solitons are ubiquitous in nature, appear-

ing in diverse systems such as shallow water waves, DNA excitations, matter waves

in Bose–Einstein condensates, and ultrashort pulses in nonlinear optics [22, 24].Two

different types of envelope solitons, bright and dark, can propagate in nonlinear dis-

persive media. Compared with the bright soliton which is a pulse on a zero-intensity

background, the dark soliton appears as an intensity dip in an infinitely extended

constant background [32]. Topological solitons are also known as dark solitons in

the context of nonlinear optics media. Much experimentation has been done using

solitons in fiber optics applications. It is known that topological solitons are more

stable in presence of noise and spreads more slowly in presence of loss, in the optical

communication systems, as compared to bright solitons [25-34].

This study is purposed topological soliton solutions of constant-coefficient nonlinear

wave equations, so we will consider the following three constant-coefficient nonlinear

wave equations.

2. Symmetric Regularized Long Wave (SRLW) Equation

We consider nonlinear symmetric regularized long wave (SRLW) equation is given

by [3]

utt + uxx + uuxt + uxut + uxxtt = 0, (2.1)

which arises in several physical applications including ion sound waves in plasma [33].

Eq.(2.1) is explicitly symmetric in the x and t derivatives and is very similar to the

regularized long wave equation that describes shallow water waves and plasma drift

waves [21]. Also, this equation was shown to describe weekly nonlinear ion acoustic

and space-charge waves, and the real-valued u(x, t) corresponds to the dimensionless

fluid velocity with a decay condition. In 1987, 1992 Guo [18,19] and in 1989 Zheng et

al [48] found and analysed the global and numerical solutions of the SRLW equation.

Recently, Bekir [7] obtained some the solitary and periodic wave solutions by using
(

G′

G

)

-expansion method. Xu [46] used the exp-function method with the aid of Maple

to obtain some periodic solutions and soliton solutions. Qawasmeh [30] has applied
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sine-cosine function method to obtain exact solutions of SRLW equation. In order to

start off with the solution hypothesis, the following ansatz is assumed,

u(x, t) = λ tanhp τ, (2.2)

and

τ = B(x− vt), (2.3)

where λ and B are the free parameters and v is the velocity of the soliton, respectively.

These will be determined. The exponent p is also unknown.

From (2.2) it is possible to obtain

utt = pv2λB2{(p− 1) tanhp−2
τ − 2p tanhp τ + (p+ 1) tanhp+2

τ}, (2.4)

uxx = pλB2
{

(p− 1) tanhp−2
τ − 2p tanhp τ + (p+ 1) tanhp+2

τ
}

, (2.5)

uuxt = −λ2pvB2
{

(p− 1) tanh2p−2 τ − 2p tanh2p τ + (p+ 1) tanh2p+2 τ
}

,

(2.6)

uxut = −p2λ2B2v{tanh2p+2 τ − 2 tanh2p τ + tanh2p−2 τ}, (2.7)

uxxtt = pλB4v2































(p− 1)(p− 2)(p− 3) tanhp−4 τ

−4(p− 1)(p2 − 2p+ 2) tanhp−2 τ

+2p(p2 + 5) tanhp τ

−4(p+ 1)(p2 + 2p+ 2) tanhp+2 τ

+(p+ 1)(p+ 2)(p+ 3) tanhp+4 τ































, (2.8)
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where τ = B(x− vt). Substituting (2.4)–(2.8) into (2.1), gives

pv2λB2{(p− 1) tanhp−2 τ − 2p tanhp τ + (p+ 1) tanhp+2 τ}

+pλB2
{

(p− 1) tanhp−2 τ − 2p tanhp τ + (p+ 1) tanhp+2 τ
}

−λ2pvB2
{

(p− 1) tanh2p−2 τ − 2p tanh2p τ + (p+ 1) tanh2p+2 τ
}

−p2λ2B2v{ tanh2p+2 τ − 2 tanh2p τ+tanh2p−2 τ}

+p(p− 1)(p− 2)(p− 3)λB4
v2 tanhp−4 τ

−4λB4v2p(p− 1)(p2−2p+ 2) tanhp−2 τ

+pλB
4
v2{2p(p2+5) tanhp τ − 4(p+ 1)(p

2
+2p+ 2) tanhp+2

τ

+(p+ 1)(p+ 2)(p+ 3) tanhp+4 τ} = 0

(2.9)

Now, from (2.9) equating the exponents of tanh2p+2 τ and tanhp+4 τ gives,

2p+ 2 = p+ 4, (2.10)

so that

p = 2. (2.11)

It needs to be noted that the same value of p is yielded when the exponents pairs

2p and p+2, 2p− 2 and p are equated with each other. Hence setting their respective

coefficients to zero yields a set of algebraic equations:

pv2λB2(p− 1) + pλB2(p− 1)− 4λB4v2p(p− 1)(p2 − 2p+ 2) = 0, (2.12)

−λ2pvB2(p+ 1)− p2λ2B2v + p(p+ 1)(p+ 2)(p+ 3)λB4v2 = 0, (2.13)

p(p+ 1)v2λB2+p(p+ 1)λB2−4p(p+ 1)(p2+2p+ 2)λB4
v2

+2p2λ2vB2+2p2λ2B2v = 0.
(2.14)

If we put p = 2 in (2.12)-(2.14) the system reduces to;

2λB2 + 2v2λB2 − 16λB4v2 = 0, (2.15)

120λB4v2 − 10λ2B2v = 0, (2.16)

6v2λB2 + 16λ2vB2 + 6λB2 − 240λB4v2 = 0. (2.17)
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Solving the above equation (2.15), it yields

B = ±
√
2 + 2v2

4v
, (2.18)

Solving Eq. (2.16) by using (2.18) we get

λ =
3 + 3v2

2v
. (2.19)

Hence, finally, the topological soliton solution to (2.1) is given by

u(x, t) =
3 + 3v2

2v
tanh2

(

±
√
2 + 2v2

4v
(x− vt)

)

, (2.20)

which exist provided that v 6= 0.

Remark 1: Comparing our results with Qawasmeh’s and Xu’s [30, 46] results, it

can be seen that the results are new.

3. The Shallow Water Wave Equations

In [10, 43] the (2+1)- dimensional shallow water wave equations

uyt + uxxxy − 3uxxuy − 3uxuxy = 0, (3.1)

and

uxt + uxxxy − 2uxxuy − 4uxuxy = 0, (3.2)

were studied. Both equations reduce to the potential KdV equation for y = x. The

difference between the two models (3.1) and (3.2) is that x replaces y in the term uyt

and in the coefficients of the other terms.

In [10, 43, 44] the (3+1)- dimensional shallow water wave equations

uyzt + uxxxyz − 6uxuxyz − 6uxzuxy = 0, (3.3)

and

uxzt + uxxxyz − 2(uxxuyz + uyuxxz)− 4(uxuxyz + uxzuxy) = 0, (3.4)

were also studied. Both equations reduce to the potential KdV equation for z = y = x.

The difference between the first terms of the two models is that x replaces y in the

term uyzt.

The studies about Eqs. (3.1)-(3.4) in [10,43,44], and some of the references therein

were to show that each model is completely integrable and each one gives rice to

multiple soliton solutions.
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In this work, we will introduce four extended shallow water wave equations in

(2+1) and (3+1) dimensions that were extended by Wazwaz [45]

uyt + uxxxy − 3uxxuy − 3uxuxy + αuxy = 0, (3.5)

uxt + uxxxy − 2uxxuy − 4uxuxy + αuxy = 0, (3.6)

uyzt + uxxxyz − 6uxuxyz − 6uxzuxy + αuxyz = 0, (3.7)

and

uxzt + uxxxyz − 2(uxxuyz + uyuxxz)− 4(uxuxyz + uxzuxy) + αuxyz = 0. (3.8)

The extended equations are established by adding the derivative of u(x, t) with

respect to the space variables x and y for the first two equations (3.1) and (3.2), and

with respect to the space variables x, y and z for the last two equations (3.3) and (3.4).

In [4], Bekir and Aksoy studied the exact solutions which include hyperbolic functions,

trigonometric and rational functions for Eqs. (3.5) and (3.6) by the
(

G′

G

)

-expansion

method.

Now, we will study the extended (3+1)-dimensional shallow water wave Eq. (3.7)

and topological soliton solution of this equation will be obtained. The following ansatz

is assumed,

u(x, y, z, t) = λ tanhp τ, (3.9)

and choosing now a suitable solitary wave ansatz with (3+1) dependent variables of

the form

τ = ax+ by + cz − vt, (3.10)

where λ,a, b and c are unknown free parameters and v is the velocity of the soliton,

that will be determined. The exponent p is also unknown.

From Eqs. (3.9) and (3.10), we have:

uyzt =− p(p− 1)(p− 2)λvbc tanhp−3
τ

+
{

p(p− 1)(p− 2) + 2p3
}

λvbc tanhp−1 τ

−
{

p(p+ 1)(p+ 2) + 2p3
}

λvbc tanhp+1 τ

+ p(p+ 1)(p+ 2)λvbc tanhp+3
τ,

(3.11)
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uxxxyz = p(p− 1)(p− 2)(p− 3)(p− 4)λa
3
bc tanhp−5 τ

−p(p+ 1)(p+ 2)(p+ 3)(p+ 4)λa
3
bc tanhp+5

τ

−p(p− 1)(p− 2)
[

2p2+2(p− 2)2+(p− 3)(p− 4)
]

λa3bc tanhp−3 τ

+p(p+ 1)(p+ 2)
[

2p2+2(p+ 2)
2
+(p+ 3)(p+ 4)

]

λa3bc tanhp+3 τ

+

{

2p(p− 1)(p− 2)
[

p2+(p− 2)
2
]

+4p5+p2(p− 1)
2
(p− 2) + p

2
(p+ 1)

2
(p+ 2)

}

λa3bc tanhp−1 τ

−
{

2p(p+ 1)(p+ 2)
[

p2+(p+ 2)
2
]

+4p5+p2(p− 1)
2
(p− 2) + p

2
(p+ 1)

2
(p+ 2)

}

λa3bc tanhp+1 τ (3.12)

uxuxyz =p2(p− 1)(p− 2)λ2a2bc tanh2p−4
τ

−
{

2p2(p− 1)(p− 2) + 2p4
}

λ2a2bc tanh2p−2 τ

+
{

2p2(p2 + 2) + 4p4
}

λ2a2bc tanh2p τ

−
{

2p2(p+ 1)(p+ 2) + 2p4
}

λ2a2bc tanh2p+2
τ

+ p2(p+ 1)(p+ 2)λ2a2bc tanh2p+4 τ,

(3.13)

uxzuxy =p2(p− 1)2λ2a2bc tanh2p−4 τ − p2(4p2 − 4p)λ2a2bc tanh2p−2 τ

+ p2(6p2 − 2)λ2a2bc tanh2p τ − p2(4p2 + 4p)λ2a2bc tanh2p+2 τ

+ p2(p+ 1)2λ2a2bc tanh2p+4 τ,

(3.14)

uxyz =p(p− 1)(p− 2)λabc tanhp−3 τ

−
{

p(p− 1)(p− 2) + 2p3
}

λabc tanhp−1 τ

+
{

p(p+ 1)(p+ 2) + 2p3
}

λabc tanhp+1 τ

− p(p+ 1)(p+ 2)λabc tanhp+3 τ,

(3.15)
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where τ = ax+by+cz−vt. Substituting Eqs. (3.9)-(3.15) into Eq.(3.7), we obtain

−p(p− 1)(p− 2)λvbc tanhp−3 τ+
{

p(p− 1)(p− 2) + 2p
3
}

λvbc tanhp−1 τ

−
{

p(p+ 1)(p+ 2) + 2p
3
}

λvbc tanhp+1 τ + p(p+ 1)(p+ 2)λvbc tanhp+3 τ

+p(p− 1)(p− 2)(p− 3)(p− 4)λa3bc tanhp−5 τ

−p(p+ 1)(p+ 2)(p+ 3)(p+ 4)λa
3
bc tanhp+5 τ

−p(p− 1)(p− 2)
[

2p2+2(p− 2)
2
+(p− 3)(p− 4)

]

λa3bc tanhp−3 τ

+p(p+ 1)(p+ 2)
[

2p2+2(p+ 2)
2
+(p+ 3)(p+ 4)

]

λa
3
bc tanhp+3

τ

+

{

2p(p− 1)(p− 2)
[

p2+(p− 2)2
]

+4p5

+p2(p− 1)
2
(p− 2) + p

2
(p+ 1)

2
(p+ 2)

}

λa3bc tanhp−1 τ

−
{

2p(p+ 1)(p+ 2)
[

p2+(p+ 2)
2
]

+4p5

+p2(p− 1)
2
(p− 2) + p

2
(p+ 1)

2
(p+ 2)

}

λa3bc tanhp+1 τ

−6p2(p− 1)(p− 2)λ
2
a2bc tanh2p−4 τ

+6
{

2p2(p− 1)(p− 2) + 2p
4
}

λ2a2bc tanh2p−2 τ

−6
{

2p2(p
2
+2) + 4p

4
}

λ2a2bc tanh2p τ

+6
{

2p2(p+ 1)(p+ 2) + 2p4
}

λ2a2bc tanh2p+2 τ

−6p2(p+ 1)(p+ 2)λ
2
a2bc tanh2p+4 τ − 6p2(p− 1)

2
λ2a2bc tanh2p−4 τ

+6p2(4p
2−4p)λ

2
a2bc tanh2p−2 τ − 6p2(6p

2−2)λ
2
a2bc tanh2p τ

+6p2(4p2+4p)λ2
a2bc tanh2p+2 τ − 6p2(p+ 1)2λ2a2bc tanh2p+4 τ

+αp(p− 1)(p− 2)λabc tanhp−3 τ − α
{

p(p− 1)(p− 2) + 2p
3
}

λabc tanhp−1 τ

+α
{

p(p+ 1)(p+ 2) + 2p
3
}

λabc tanhp+1 τ − αp(p+ 1)(p+ 2)λabc tanhp+3 τ,

(3.16)

Thus, from matching the exponents of tanh2p+4 τ and tanhp+5 τ terms in Eq (3.16),

we obtain

2p+ 4 = p+ 5, (3.17)

which yields

p = 1. (3.18)
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It needs to be noted that the same value of p is yielded when the exponents pairs

2p+2 and p+3, 2p and p+1, 2p−2 and p−1, 2p−4 and p−3 are equated with each

other. Thus (47) has the linearly independent functions tanhp+j τ for j = ±1, ±3 and

tanh2p+k
τ for k = 0, ±2, ±4.Now, tanhp−5

τ is a stand alone linearly independent

function. Therefore setting its coefficients to zero also yields the same value of p as

in (3.18) Hence setting their respective coefficients to zero which gives the following

set of equations:

−p(p+ 1)(p+ 2)(p+ 3)(p+ 4)λa
3
bc− 6p2(p+ 1)

2
λ2a2bc

−6p2(p+ 1)(p+ 2)λ
2
a2bc = 0, (3.19)

p(p+ 1)(p+ 2)λvbc

+p(p+ 1)(p+ 2)
[

2p2+2(p+ 2)2+(p+ 3)(p+ 4)
]

λa3bc

+6
{

2p2(p+ 1)(p+ 2) + 2p4
}

λ2a2bc+ 6p2(4p2+4p)λ2
a2bc

−αp(p+ 1)(p+ 2)λabc = 0

(3.20)

−
{

p(p+ 1)(p+ 2) + 2p
3
}

λvbc

−
{

2p(p+ 1)(p+ 2)
[

p2 + (p+ 2)2
]

+ 4p5+p2(p− 1)
2
(p− 2) + p

2
(p+ 1)

2
(p+ 2)

}

λa
3
bc

−6
{

2p2(p2+2) + 4p4
}

λ2a2bc− 6p2(6p2−2)λ2
a2bc+ α

{

p(p+ 1)(p+ 2) + 2p3
}

λabc

=0, (3.21)

{

p(p− 1)(p− 2) + 2p
3
}

λvbc

+

{

2p(p− 1)(p− 2)
[

p2+(p− 2)
2
]

+4p5

+p2(p− 1)
2
(p− 2) + p

2
(p+ 1)

2
(p+ 2)

}

λa3bc

+6
{

2p2(p− 1)(p− 2) + 2p4
}

λ2a2bc

+6p2(4p
2−4p)λ

2
a2bc− α

{

p(p− 1)(p− 2) + 2p
3
}

λabc = 0

(3.22)
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Solving the above equation (3.19) by using (3.18), we get

λ = −2a. (3.23)

Lastly, solving Eq. (3.20) by using (3.18) and (3.23) we obtain

v = a(4a2 + α). (3.24)

Hence, we can determine the topological (dark) 1-soliton solution for the extended

shallow water wave equation

u(x, y, z, t) = −2a tanh(ax+ by + cz − a(4a2 + α)t). (3.25)

Now, we present the extended (3+1)-dimensional shallow water wave Eq. (3.8) and

topological soliton solution of this equation will be obtained. The following ansatz is

assumed,

u(x, y, z, t) = λ tanhp τ, (3.26)

and choosing now a suitable solitary wave ansatz with (3+1) dependent variables of

the form

τ = ax+ by + cz − vt, (3.27)

where λ,a, b and c are unknown free parameters and v is the velocity of the soliton,

that will be determined.

From Eqs. (3.26) and (3.27), we have:

uxzt =− p(p− 1)(p− 2)λvac tanhp−3 τ

+
{

p(p− 1)(p− 2) + 2p3
}

λvac tanhp−1
τ

−
{

p(p+ 1)(p+ 2) + 2p3
}

λvac tanhp+1 τ

+ p(p+ 1)(p+ 2)λvac tanhp+3 τ,

(3.28)

uxxuyz =p2(p− 1)2λ2a2bc tanh2p−4 τ − p2(4p2 − 4p)λ2a2bc tanh2p−2 τ

+ p2(6p2 − 2)λ2a2bc tanh2p τ − p2(4p2 + 4p)λ2a2bc tanh2p+2 τ

+ p2(p+ 1)2λ2a2bc tanh2p+4 τ,

(3.29)
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uyuxxz =p2(p− 1)(p− 2)λ2a2bc tanh2p−4 τ

−
{

2p2(p− 1)(p− 2) + 2p4
}

λ2a2bc tanh2p−2 τ

+ (6p4 + 4p2)λ2a2bc tanh2p τ

−
{

2p2(p+ 1)(p+ 2) + 2p4
}

λ2a2bc tanh2p+2 τ

+ p2(p+ 1)(p+ 2)λ2a2bc tanh2p+4 τ,

(3.30)

where τ = ax+ by+ cz− vt. Substituting Eqs. (3.12)-(3.15) and (3.28)-(3.30) into

Eq.(3.8), we obtain

−p(p− 1)(p− 2)λvac tanhp−3 τ+
{

p(p− 1)(p− 2) + 2p
3
}

λvac tanhp−1 τ

−
{

p(p+ 1)(p+ 2) + 2p
3
}

λvac tanhp+1 τ + p(p+ 1)(p+ 2)λvac tanhp+3 τ

+p(p− 1)(p− 2)(p− 3)(p− 4)λa
3
bc tanhp−5 τ

−p(p+ 1)(p+ 2)(p+ 3)(p+ 4)λa3bc tanhp+5 τ

−p(p− 1)(p− 2)
[

2p2+2(p− 2)
2
+(p− 3)(p− 4)

]

λa3bc tanhp−3 τ

+p(p+ 1)(p+ 2)
[

2p2+2(p+ 2)
2
+(p+ 3)(p+ 4)

]

λa3bc tanhp+3 τ

+

{

2p(p− 1)(p− 2)
[

p2+(p− 2)
2
]

+4p5

+p2(p− 1)
2
(p− 2) + p

2
(p+ 1)

2
(p+ 2)

}

λa3bc tanhp−1 τ

−
{

2p(p+ 1)(p+ 2)
[

p2+(p+ 2)
2
]

+4p5

+p2(p− 1)2(p− 2) + p
2(p+ 1)2(p+ 2)

}

λa3bc tanhp+1 τ

−2p2(p− 1)2λ2a2bc tanh2p−4 τ + 2p2(4p2−4p)λ2
a2bc tanh2p−2 τ

−2p2(6p
2−2)λ

2
a2bc tanh2p τ + 2p2(4p

2
+4p)λ

2
a2bc tanh2p+2 τ

−2p2(p+ 1)
2
λ2a2bc tanh2p+4

τ − 2p2(p− 1)(p− 2)λ
2
a2bc tanh2p−4

τ

+2
{

2p2(p− 1)(p− 2) + 2p4
}

λ2a2bc tanh2p−2 τ − 2(6p4+4p2)λ2
a2bc tanh2p τ

+2
{

2p2(p+ 1)(p+ 2) + 2p
4
}

λ2a2bc tanh2p+2 τ − 2p2(p+ 1)(p+ 2)λ
2
a2bc tanh2p+4 τ

−4p2(p− 1)(p− 2)λ
2
a2bc tanh2p−4 τ + 4

{

2p2(p− 1)(p− 2) + 2p
4
}

λ2a2bc tanh2p−2 τ
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−4
{

2p2(p2+2) + 4p4
}

λ2a2bc tanh2p τ

+ 4
{

2p2(p+ 1)(p+ 2) + 2p
4
}

λ2a2bc tanh2p+2 τ

−4p2(p+ 1)(p+ 2)λ
2
a2bc tanh2p+4 τ

−4p2(p− 1)
2
λ2a2bc tanh2p−4 τ + 4p2(4p

2−4p)λ
2
a2bc tanh2p−2 τ

−4p2(6p
2−2)λ

2
a2bc tanh2p τ + 4p2(4p

2
+4p)λ

2
a2bc tanh2p+2 τ

−4p2(p+ 1)2λ2a2bc tanh2p+4 τ + αp(p− 1)(p− 2)λabc tanhp−3 τ

−α
{

p(p− 1)(p− 2) + 2p
3
}

λabc tanhp−1 τ

+α
{

p(p+ 1)(p+ 2) + 2p
3
}

λabc tanhp+1
τ

− αp(p+ 1)(p+ 2)λabc tanhp+3 τ= 0

(3.31)

Thus, from matching the exponents of tanh2p+4
τ and tanhp+5

τ terms in Eq (3.31),

we obtain

2p+ 4 = p+ 5, (3.32)

which yields

p = 1. (3.33)

It needs to be noted that the same value of p is yielded when the exponents pairs

2p + 2 and p + 3, 2p and p + 1, 2p − 2 and p − 1, 2p − 4 and p − 3 are equated

with each other. Thus (3.31) has the linearly independent functions tanhp+j τ for

j = ±1, ±3 and tanh2p+k τ for k = 0, ±2, ±4.Now, tanhp−5 τ is a stand alone

linearly independent function. Therefore setting its coefficients to zero also yields the

same value of p as in (3.33) Hence setting their respective coefficients to zero and put

p = 2 which gives the following set of equations:

132λ2a2bc+ 6λvac+ 240λa3bc− αλabc = 0, (3.34)

60λ2a2bc+ 120λa3bc = 0, (3.35)

−136λa3bc− 84λ2a2bc+ 8αλabc− 8λvac = 0, (3.36)

12λ2a2bc− 2αλabc+ 16λa3bc+ 2λvac = 0 (3.37)
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Solving the above equation (3.34), we get

v = bα− 22λab− 40a2b. (3.38)

And we solving Eq. (3.35), we obtain

λ = −2a (3.39)

It needs to be noted that by equating the two values of the velocity v from (3.36) and

(3.37) also implies (3.38).

Thus, finally the topological soliton solution to the extended (3+1)-dimensional

shallow water wave equation (3.8) is given by

u(x, y, z, t) = λ tanh(ax + by + cz − vt), (3.40)

where the free parameters λ is given by (3.39) and the velocity v of the wave is given

by (3.38).

Remark 2: Comparing our results with Wazwaz’s [45] results, it can be seen that

the results are new.

Remark 3: Similarly, for the extended (2+1)-dimensional shallow water wave

equations, using the wave variable

τ = ax+ by − vt, (3.41)

Eqs. (3.5) and (3.6) and the ansatz method is applied to these equations, it can be

seen that the obtained solutions are the same with solutions of Equations (3.7) and

(3.8), respectively.

4. Conclusions

We have derived the exact topological soliton solutions of the three nonlinear equa-

tions. The 1-soliton solution is obtained by solitary wave ansatz method. With the

aid of Maple, it is confirmed that the solutions are correct since these solutions satisfy

the original equation. To our knowledge, these new solutions have not been reported

in former literature. In view of the analysis, we see that the used method is an efficient

method of integrability for constructing exact soliton solutions.
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242 ÖZKAN GÜNER
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