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The modified simplest equation method and its application
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Abstract In this paper, the modified simplest equation method is successfully imple-
mented to find travelling wave solutions of the generalized forms B(n, 1) and
B(−n, 1) of Burgers equation. This method is direct, effective and easy to
calculate, and it is a powerful mathematical tool for obtaining exact travelling
wave solutions of the generalized forms B(n, 1) and B(−n, 1) of Burgers equa-
tion and can be used to solve other nonlinear partial differential equations in
mathematical physics.
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1. Introduction

Exact solutions to nonlinear partial differential equations (NLPDEs) play
an essential role in the nonlinear science, especially they may provide much
physical information and help one to understand the mechanism that governs
these physical models. In recent years, new exact solutions may help to find
new phenomena. A variety of powerful methods, such as the (G

′

G )-expansion
method [10, 14], the Exp-function method [4], extended tanh method [1, 2],
Jacobi elliptic function method [6] and F-expansion method [11], the homoge-
neous balance method [3] ,and so on.
One of the most powerful and direct methods for constructing solutions of non-
linear partial differential equations is the modified simplest equation method
[5, 7, 8, 9, 12, 13].
The modified simplest equation method is based on the assumptions that the
exact solutions can be expressed by a polynomial in F ′

F , such that F = F (ξ)
is a solution of an unknown linear ordinary equation to be determined later.
The generalized forms B(n, 1) and B(−n, 1) of Burgers equation appear in
various areas of mathematics, such as the modeling of fluid dynamics, the
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propagation of waves, and traffic flow. Here, our goal is finding exact solu-
tions of the generalized forms B(n, 1) and B(−n, 1) of Burgers equation by
using the modified simplest equation method.

2. Modified simplest equation method

This method consists of the following steps:

Step 1. Consider a general form of nonlinear partial differential equation
(PDE)

P (u, ux, ut, uxx, uxt, · · · ) = 0. (2.1)

Assume that the solution is given by u(x, t) = U(ξ) where ξ = x− ct. Hence,
we use the following changes:

∂

∂t
(.) = −c

∂

∂ξ
(.),

∂

∂x
(.) =

∂

∂ξ
(.), (2.2)

∂2

∂x2
(.) =

∂2

∂ξ2
(.).

and so on for other derivatives. Using (2.2) changes the PDE (2.1) to an ODE

Q(U,U ′, U ′′, · · · ) = 0. (2.3)

where U = U(ξ) is an unknown function, Q is a polynomial in the variable U
and its derivatives.

Step 2. We suppose that Eq. (2.3) has the following formal solution:

U(ξ) =
N∑
i=0

Ai(
F ′

F
)i, (2.4)

where Ai are arbitrary constants to be determined such that AN ̸= 0, while
F (ξ) is an unknown function to be determined later.

Step 3. We determine the positive integer N in (2.4) by balancing the highest
order derivatives and the nonlinear terms in Eq.(2.3).

Step 4. We substitute (2.4) into (2.3), we calculate all the necessary deriva-
tives U ′, U ′′, · · · and then we account the function F (ξ). As a result of this

substitution, we get a polynomial of F ′(ξ)
F (ξ) and its derivatives. In this poly-

nomial, we equate with zero all the coefficients of it. This operation yields a
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system of equations which can be solved to find Ai and F (ξ). Consequently,
we can get the exact solution of Eq. (2.1).

3. Applications

In this section, we apply the modified simplest equation method to construct
the travelling wave solution of generalized forms of Burgers equation.

3.1. The B(n, 1) Burgers equation. This B(n, 1) Burgers equation is given
as

ut + a(un)x + buxx = 0, n > 1, a, b ̸= 0. (3.1)

Using the transformation u(x, t) = U(ξ), where ξ = x−ct, the PDE is reduced
to an ODE

−cU ′ + a(Un)′ + b(U)′′ = 0, (3.2)

where primes denote the derivative with respect to ξ. Integrating once with
respect to ξ and taking constant of integration to be zero, (3.2) reduces to

−cU + a(Un) + b(U)′ = 0. (3.3)

Now balancing Un and U ′, we obtain

m =
1

n− 1
, n > 1

A necessary condition for obtaining a closed form analytic solution is that m
must a positive integer. Using the transformation

U = V
1

n−1 , (3.4)

(3.3) converts to

−c(n− 1)V + a(n− 1)V 2 + bV ′ = 0. (3.5)

Balancing V 2 with V ′ gives N = 1. Therefore, we have

V (ξ) = A0 +A1
F ′

F
, A1 ̸= 0. (3.6)

Using (3.6), we obtain

V 2 = A0
2 + 2A0A1(

F ′

F
) +A1

2(
F ′

F
), (3.7)

V ′ = A1(
F ′′

F
− (

F ′

F
)2). (3.8)
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Substituting (3.6) to (3.8) into Eq. (3.5) and setting the coefficients of F j(j =
0,−1,−2) to zero, we obtain

− c(n− 1)A0 + a(n− 1)A2
0 = 0, (3.9)

− c(n− 1)A1F
′ + 2a(n− 1)A0A1F

′ + bA1F
′′ = 0, (3.10)

a(n− 1)A2
1F

′2 − bA1F
′2 = 0. (3.11)

Eqs. (3.9) and (3.11) directly imply following solutions:

A0 =
c

a
, A1 =

b

a(n− 1)
.

Thus, Eq. (3.10) becomes

c(n− 1)F ′ + bF ′′ = 0. (3.12)

The general solution of Eq. (3.12) is

F (ξ) = a0 + a1e
− c(n−1)

b
ξ. (3.13)

where ai(i = 0, 1) are arbitrary constants.
Thus, we have

V (ξ) =
c

a
+

b

a(n− 1)
(
−a1

c(n−1)
b e−

c(n−1)
b

ξ

a0 + a1e
− c(n−1)

b
ξ

)

Now using of U = V
1

n−1 have:

U(ξ) = [
c

a
+

b

a(n− 1)
(
−a1

c(n−1)
b e−

c(n−1)
b

ξ

a0 + a1e
− c(n−1)

b
ξ

)]
1

n−1 (3.14)

If we set a0 = a1 = 1, n = 2 in (3.14), then solution of (3.1) is obtained as

u(x, t) =
c

2a
[1 + tanh(

c

2b
)(x− ct)]

3.2. The B(−n, 1) Burgers equation. This B(−n, 1) Burgers equation is
given as

ut + a(u−n)x + buxx = 0, n > 1, a, b ̸= 0. (3.15)

Using the transformation u(x, t) = U(ξ), where ξ = x−ct, the PDE is reduced
to an ODE

−cU ′ + a(U−n)′ + b(U)′′ = 0, (3.16)

where primes denote the derivative with respect to ξ. Integrating once with
respect to ξ and taking constant of integration to be zero, (3.16) reduces to

−cU + a(U−n) + b(U)′ = 0. (3.17)
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Now balancing U−n and U ′, we obtain

m = − 1

n+ 1
, n > 1

By using of the transformation

U = V − 1
n+1 , (3.18)

(3.17) converts to

−c(n+ 1)V + a(n+ 1)V 2 − bV ′ = 0. (3.19)

Balancing V 2 with V ′ gives N = 1. Therefore, we have

V (ξ) = A0 +A1
F ′

F
, A1 ̸= 0. (3.20)

Using (3.20), we obtain

V 2 = A0
2 + 2A0A1(

F ′

F
) +A1

2(
F ′

F
), (3.21)

V ′ = A1(
F ′′

F
− (

F ′

F
)2). (3.22)

Substituting (3.20)-(3.22) into Eq. (3.19) and setting the coefficients of F j(j =
0,−1,−2) to zero, we obtain

− c(n+ 1)A0 + a(n+ 1)A2
0 = 0, (3.23)

− c(n+ 1)A1F
′ + 2a(n+ 1)A0A1F

′ − bA1F
′′ = 0, (3.24)

a(n+ 1)A2
1F

′2 + bA1F
′2 = 0. (3.25)

Eqs. (3.23) and (3.25) directly imply following solutions:

A0 =
c

a
, A1 = − b

a(n+ 1)
.

Thus, Eq. (3.24) becomes

c(n+ 1)F ′ − bF ′′ = 0. (3.26)

The general solution of Eq. (3.26) is

F (ξ) = a0 + a1e
c(n+1)

b
ξ. (3.27)

where ai(i = 0, 1) are arbitrary constants.
Thus, we have

V (ξ) =
c

a
− b

a(n+ 1)

(
a1

c(n+1)
b e

c(n+1)
b

ξ

a0 + a1e
c(n+1)

b
ξ

)
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. Now using U = V − 1
n+1 we have:

U(ξ) =
[ c
a
− b

a(n+ 1)
(
a1

c(n+1)
b e

c(n+1)
b

ξ

a0 + a1e
c(n+1)

b
ξ
)
]− 1

n+1 (3.28)

If we set a0 = a1 = 1, n = 2 in (3.28), then solution of (3.15) is obtained as

u(x, t) =
1

[ c
2a(1− tanh(3c2b)(x− ct))]

1
3

4. Conclusion

In this paper, the modified simplest equation method is applied successfully
for solving the B(n, 1) burgers equation and the B(−n, 1) burgers equation.
The results show that this method is efficient in finding the exact solutions of
nonlinear differential equations.
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